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Abstract

Background—In well-responding patients to chemoradiotherapy for locally advanced rectal 

cancer (LARC), a watch-and-wait strategy can be considered. To implement organ-sparing 

strategies, accurate patient selection is needed. We investigate the use of MRI-based radiomics 

models to predict tumor response to improve patient selection.

Materials and Methods—Models were developed in a cohort of 70 patients and validated in an 

external cohort of 55 patients. Patients received chemoradiation followed by surgery and 

underwent T2-weighted and diffusion-weighted MRI (DW-MRI) before and after chemoradiation. 

The outcome measure was (near-)complete pathological tumor response (ypT0–1N0).

Tumor segmentation was done on T2-images and transferred to b800-images and ADC maps, after 

which quantitative and four semantic features were extracted. We combined features using 

principal component analysis and built models using LASSO regression analysis. The best models 

based on precision and performance were selected for validation.

Results—21/70 patients (30%) achieved ypT0–1N0 in the development cohort versus 13/55 

patients (24%) in the validation cohort. Three models (t2_dwi_pre_post, semantic_dwi_adc_pre, 

semantic_dwi_post) were identified with an area-under-the-curve (AUC) of 0.83 (95% CI 0.70–
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0.95), 0.86 (95% CI 0.75–0.98) and 0.84 (95% CI 0.75–0.94) respectively. Two models 

(t2_dwi_pre_post, semantic_dwi_post) validated well in the external cohort with AUCs of 0.83 

(95% CI 0.70 – 0.95) and 0.86 (95% CI 0.76 – 0.97). These models however did not outperform a 

previously established four-feature semantic model.

Conclusion—Prediction models based on MRI radiomics non-invasively predict tumor response 

after chemoradiation for rectal cancer and can be used as an additional tool to identify patients 

eligible for an organ-preserving treatment.
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INTRODUCTION

The current standard treatment for patients with locally advanced rectal cancer (LARC) is 

total mesorectal excision (TME) after neoadjuvant chemoradiation (CRT) [1,2]. Despite this 

homogeneous treatment schedule, the response of these tumors is very heterogeneous and 

approximately 20% of patients will achieve a pathological complete response (pCR) defined 

as no residual tumor and complete nodal response as reported at histology after a standard 

resection [3]. Given the good oncological outcome of these patients, organ-sparing treatment 

approaches such as a watch-and-wait policy or a local excision could be considered [4–6]. 

By avoiding extensive surgery, patients are likely to develop less treatment-related 

symptoms and to maintain a better quality of life [7,8].

Accurate detection of a clinical complete response (cCR) as a surrogate for pCR, is essential 

to select patients for organ-sparing strategies. Currently, qualitative assessment of 

anatomical and functional T2-weighted and diffusion-weighted magnetic resonance imaging 

(T2-MRI and DW-MRI) followed by digital rectal examination and endoscopy is the optimal 

strategy to define a good response to chemoradiation [9–11]. In addition to this qualitative 

assessment, prediction models built on manually annotated semantic parameters on pre- and 

posttreatment images, such as volumetric T2-MRI parameters, DW-MRI parameters and 

positron-emission tomography (PET) parameters, were developed with strong predicting 

performance for (near-)complete response in patients with locally advanced rectal cancer 

[12,13]. More recently, others have explored the potential of the novel field of radiomics, i.e. 

the automatic extraction of numerous quantitative image features for the comprehensive 

quantification of tumor phenotypes [14–16], for prediction of response of patients with 

rectal cancer to chemoradiation, with promising results. To date however, radiomics models 

have not yet been combined or compared with already established semantic quantitative 

MRI models [17,18].

In this study, we therefore aim to improve the strategy for selection of well-responding 

patients with rectal cancer undergoing chemoradiation that are eligible for organ-preserving 

treatment strategies. First, we develop novel radiomics prediction models for rectal cancer 

and validate them on an external patient cohort. Additionally, we investigate the addition of 

radiomics features to update a previously reported four-feature semantic model to further 
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enhance the accurate prediction of response to chemoradiation in patients with locally 

advanced rectal cancer [13].

MATERIALS AND METHODS

Study design and patients

In the development cohort, data were collected in a prospective clinical trial () under 

approval of the institutional ethical committee after obtaining written informed consent. 

Between January 2012 and February 2015, eighty-five patients with LARC defined as 

histologically proven adenocarcinoma of the rectum, clinical stage T3–4N0 or T1–4N1–2 

were consecutively included in the cohort. Patients with distant metastases, prior 

chemotherapy or radiotherapy for rectal cancer, previous or concurrent malignancies, and 

known allergies to intravenous contrast agents or other contraindications for MRI acquisition 

were excluded. Patients were treated with chemoradiation (45 Gy in 25 fractions of 1.8 Gy; 

continuous infusion of 5-Fluorouracil 225 mg/m2/d) followed by TME after an interval of 

eight weeks from completion of chemoradiation. Patients received multiparametric MRI 

prior to chemoradiation and prior to surgery (6 weeks after chemoradiation)(Ingenia, Philips 

Healthcare, Best, The Netherlands).

In the validation cohort, patient data were collected in an observational prospective study 

under approval of the institutional ethical committee after obtainment of written informed 

consent. For the validation cohort, accrual of fifty-five patients was done consecutively 

between November 2008 and December 2011. LARC was defined as primary histologically 

proven adenocarcinoma of the rectum, clinical stage T4Nx or TxN2 or T3 with threatened 

mesorectal fascia. Exclusion criteria were non-resectable and/or metastatic disease, 

insufficient MR image quality and patients with a mucinous rectal tumor. All patients gave 

written informed consent prior to study entry. Patients received chemoradiation (50 Gy in 25 

fractions of 2 Gy; capecitabin 825 mg/m2 bid) followed by TME after an interval of seven to 

ten weeks from completion of chemoradiation. Multiparametric MRI was obtained prior to 

chemoradiation and one to two weeks prior to surgery at a 3 Tesla MRI scanner 

(AchievaTX, Philips Medical System, Best, the Netherlands).

In both the development and validation cohort, only patients with availability of pre-

treatment and pre-surgery axial T2-weighted and DW-MRI images were included. Exclusion 

criteria were incomplete MRI data or insufficient MRI quality. All patients have been 

previously reported. This prior article dealt with the development of a semantic model 

whereas in this manuscript quantitative MRI features were used [13]. The study was 

conducted using the TRIPOD recommendations for prediction model development and 

validation [19].

Imaging protocol

For the development cohort, MRIs were performed at a 3T MRI scanner (Ingenia, Philips 

Medical System, Best, the Netherlands). The MRI protocol consisted of T2-weighted turbo 

spin-echo (TSE) sequences (repetition time (TR)/echo time (TE) 5000ms/95ms; acquired 

resolution of 0.69 × 0.82 mm2, slice thickness 3.0 mm). DWI was performed by using a 
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single-shot Spin-Echo Echo Planar Imaging (ssSE-EPI) sequence (TR/TE: 5775ms/68ms; 

EPI factor: 63, acquired resolution of 3.02 × 3.08 mm2, slice thickness 5.0 mm), with 

spectral attenuated inversion-recovery (SPAIR) fat suppression and isotropic diffusion 

weighting in three directions with six b-values: 0, 50, 100, 300, 600, 1000 sec/mm2.

For the validation cohort, MRIs were obtained at a 3T MRI scanner (AchievaTX, Philips 

Medical System, Best, the Netherlands). The MRI protocol consisted of T2 weighted TSE 

sequence (repetition time (TR)/echo time (TE) 5632ms/120ms; acquired resolution of 0.45 × 

0.45 mm2, slice thickness 3.0 mm). Four patients received a 3D T2 sequence and were 

excluded in the analyses. DWI was performed by using a single-shot Spin-Echo Echo Planar 

Imaging (ssSE-EPI) sequence (TR/TE: 7600ms/63ms; EPI factor: 63, acquired resolution of 

2.5 × 2.5 mm2, slice thickness 4.0 mm and the number of averages was three), with spectral 

attenuated inversion-recovery (SPAIR) fat suppression and isotropic diffusion weighting in 

three directions with three b-values: 0, 200, 800 s/mm2.

Outcome measure

The primary outcome measure was (near-)complete pathological tumor response (pCR) 

defined as ypT0–1N0. Histologic evaluation of the resection specimen was performed by 

experienced pathologists according to the method of Quirke et al. [20]. In the development 

cohort, two patients had clinical evidence of a clinical complete response (repeated digital 

rectal examination, endoscopy, MRI) with disease-free survival of more than 4 years in a 

watch-and-wait protocol, which was considered a surrogate endpoint for pCR.

Image selection and annotation processing

We extracted the imaging protocol descriptions from the Digital Imaging and 

Communications in Medicine (DICOM) header and standardized annotations for axial T2- 

and DW-MRI images. Next, a board-certified radiologist (VV) and a board-certified 

radiation oncologist (MI) manually delineated the region of interest (ROI) on the axial T2-

weighted images of the development and validation cohort, respectively. Thereafter, all 

contours were independently revised by PB and AC and adjustments were made in 

agreement when deemed necessary.

For DW-MRI analyses, b0 and b800 images were selected. Due to unavailability in the 

development cohort, b800 images were obtained using the available b-values 0, 50, 100, 

300, 600 and 1000, by ordinary least squares regression based on the linear model:

lnSx = lnS0 − x * ADC

where Sx is the voxel intensity for the image with b-value x. ADC maps were constructed in 

both cohorts using b0 and b800 values. T2-derived ROIs were transferred to b800 DW 

images and ADC maps after registration.

Next, 2131 image features based on intensity, shape and size, texture, and wavelet and Gabor 

filters were extracted for each ROI on T2-MRI images, b800 DW-MRI images and ADC 

maps using our image feature pipeline [21,22]. Furthermore, two volumetric and two ADC 
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parameters (=semantic features) used in a previously published prediction model were 

calculated: percentage change in tumor volumetry (ΔVolume%), equivalent sphere diameter 

post-chemoradiation (Sphere_post), average ADC value post-chemoradiation 

(ADC_avg_post) and the ratio of average ADC before and after chemoradiation 

(ADCratio_avg) [13].

Statistical analysis

As our features, we derived quantitative radiomic features extracted from T2-weighted, b800 

DW-MRI images, and ADC maps, pre- and post-chemoradiation, along with the four 

semantic features. We combined various subsets of this feature set and built models on each 

of them. To combine features from different modalities and time points, we concatenated the 

raw feature vectors for each patient. The dimensionality of the concatenated feature vectors 

was very large (for e.g., we had 4 × 2131 = 8524 features, if using two modalities and two 

time points) compared to the number of patients. First, each feature was standardized by 

removing the mean and scaling to unit variance in the development cohort – on the 

validation cohort, the means and standard deviations learned on the development cohort 

were used for standardizing features. Then, principal component analysis (PCA) was used 

for dimensionality reduction as to linearly combine the radiomics features of T2-MRI 

images, b800 DW-MRI images and ADC maps with the four semantic features. Finally, 

logistic regression with a least absolute shrinkage and selection operator (LASSO) was used 

on the reduced dimensionality features to develop prediction models combining different 

imaging modalities with and without the four semantic features. We tuned the following 

hyperparameters: the number of components in PCA, the regularization weight and the 

penalty in LASSO, using five-fold cross validation on the development cohort – the 

remaining hyperparameters were left at their default values in Python scikit-learn, version 

0.19.2. Finally, the model was refit on the full development cohort using the obtained best 

hyperparameters. The code used in this project is publicly available at https://github.com/

gevaertlab/Colorectal_cancer_radiomics.

For these models, cross-validated performance using the area under the curve (AUC) of the 

Receiver Operating Characteristic (ROC) curve and the operating points including precision 

(positive predicting value (PPV)), sensitivity and specificity were calculated. The confidence 

intervals were obtained via bootstrapping. To safely predict complete response and to 

overcome the risk of undertreatment, models with the highest positive predictive value and 

additionally an AUC > 0.75 were selected for validation in the validation cohort. Lastly, 

model performances were compared using the Delong test with a significance level of α = 

0.05 [23].

RESULTS

Seventy out of eighty-five patients in the development cohort were available for analysis. Six 

patients were excluded due to lack of complete MRI data and nine due to insufficient MRI 

quality. For the validation cohort, data of all fifty-five patients were included. Patient 

demographics of both cohorts are summarized in Table 1. In both cohorts, median age at 

diagnosis was 64 years. All patients completed the chemoradiation schedule. 
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Chemoradiation was followed by surgery after a median interval of 54 days in the 

development cohort and 55 days in the validation cohort. A total of 21 patients (30%) and 13 

patients (24%) were considered to have a ypT0–1N0 response in the development cohort and 

in the validation cohort respectively.

Using various subsets from the available feature set (pre and post-chemoradiation data of 

T2-MRI images, b800 DW-MRI images and ADC maps, along with four semantic features), 

forty-two different models were developed (Supplementary table 1). To safely predict 

complete response and to overcome the risk of undertreatment, only models with the highest 

precision (after refitting on the development cohort using best hyperparameters) were 

selected. Of these most precise models, the additional selection criterion of an AUC > 0.75 

resulted in a selection of three prediction models (Figure 1A, Table 2). The first model 

selected was a radiomics model based on quantitative T2-MRI and b800 DW-MRI features, 

using both pretreatment and post-chemoradiation data (t2_dwi_pre_post). With a 

performance of AUC 0.83 (95% CI 0.73 – 0.93), this model predicted (near-)complete 

response to chemoradiation with a sensitivity of 50% and a specificity of 90% for a positive 

predictive value (PPV) of 67%. Next, two models combining radiomics features and the four 

previously defined semantic MRI parameters were selected. The first one combined the 

semantic parameters with pretreatment b800 and ADC maps radiomics features 

(semantic_dwi_adc_pre), with a predicting performance of AUC 0.86 (95% CI 0.75 – 0.98), 

resulting in a sensitivity of 52%, specificity of 98% and a PPV of 92%. The second model 

combined semantic features with post-chemoradiation b800 radiomics features 

(semantic_dwi_post). This model predicted response with AUC 0.84 (95% confidence 

interval (CI) 0.75 – 0.94), resulting in a sensitivity of 63% and specificity of 88% for a PPV 

of 67%. Furthermore, since the delineation method of the previously published model using 

only semantic MRI parameters was slightly different [13], we recalculated the performance 

and operating points for this model using two volumetric parameters and two ADC 

parameters (Supplementary Figure 1, Table 3). In the development cohort, this four-feature 

semantic model predicted response with an AUC of 0.86 (95% CI 0.77 – 0.95) with a 

sensitivity of 53%, specificity of 94% and a PPV of 77%.

Two out of three selected models validated well, thereby identifying these models as 

independent predictors of tumor response to chemoradiation (Figure 1B, Table 2). The 

radiomics model t2_dwi_pre_post had an AUC of 0.83 (95% CI 0.70 – 0.95) with a PPV of 

80% for a 33% sensitivity and 97% specificity. Likewise, the combination signature 

semantic_dwi_post yielded an AUC of 0.86 (95% CI 0.75 – 0.97) with a PPV of 80% for a 

33% sensitivity and 97% specificity. On thethe other hand, combination model based on the 

four manually-derived features and pretreatment imaging validated poorly, given the mean 

predicting performance of AUC 0.49 (95% confidence interval 0.24 – 0.74). Additionally, 

the previously reported validation of the four-feature semantic model was confirmed in this 

analysis as shown by the AUC of 0.87 (95% CI 0.76 – 0.97) with a PPV of 100% for a 

sensitivity of 33% and a specificity of 100%. On the validation cohort, performance did not 

significantly differ between the four-feature semantic model and the radiomics models, 

except for the semantic_dwi_adc_pre model which predicted tumour response significantly 

worse (p = 0.009) (supplementary table 2).
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DISCUSSION

In this study we showed that MRI radiomics can be used to predict (near-)complete tumor 

response to chemoradiation in patients with rectal cancer. Two of the three selected models 

using pre- and posttreatment imaging combined or posttreatment imaging alone were 

externally validated, thereby making these models a tool for clinical decision making when 

considering organ-preserving strategies. Nevertheless, these radiomics models did not 

outperform a previously validated four-feature semantic model.

Using T2-MRI and DW-MRI data, we identified three models based on radiomics analyses 

that accurately predicted the tumor response to chemoradiation, of which two validated well 

in an external patient cohort: the radiomics model t2_dwi_pre_post and the semantic-

radiomics combination model semantic_dwi_post. These models had performances and 

operating points similar to the accepted strategy to select patients with cCR based on the 

visual judgement of MRI combined with digital rectal examination (DRE) and endoscopy 

[9]. Both validated models included post-chemoradiation data, which is in compliance with 

previous reports that indicate the importance of posttreatment MRI findings to assess tumor 

response [24,25]. In contrast, pretreatment MRI radiomics did not validate well in our 

cohort. Also, previous reports on pretreatment MRI radiomics to predict pCR or pT-stage in 

patients with rectal cancer lacked validation [26–28], except for prediction of pCR after 

chemoradiation using pretreatment MRI intensity histogram analysis, which was validated in 

a vendor-independent external patient-cohort albeit with a lower AUC (0.75) than the AUCs 

observed in our study when also using posttreatment data [29]. We therefore believe that up 

to now posttreatment imaging needs to be included in a prediction model. Nevertheless, as 

observed from the AUCs on the validation cohort, neither the pure radiomics model 

(t2_dwi_pre_post; AUC = 0.83) nor the semantic-radiomics combination model 

(semantic_dwi_post; AUC = 0.86) outperformed the four-feature semantic model (AUC = 

0.87) (Table 3, Supplementary Figure 1). Since feature derivation and model building in a 

radiomics workflow is an abstract technique, the use of the semantic feature model using 

only four T2-MRI and DW-MRI parameters therefore is more comprehensible and favorable 

from the clinician’s point of view.

The strength of our study lies in the use of an independent patient cohort for external 

validation, which increases the robustness of our findings and decreases selection bias. The 

results of our radiomics analyses are concordant with previous reports that did not use such 

external validation. Although Nie et al. reported on an adequate predicting performance of 

T2-MRI radiomics (AUC = 0.84), the study was limited by the lack of a validation cohort 

[30], as was the study of Horvat et al. reporting an AUC of 0.93 for pCR prediction with T2-

MRI radiomics [31]. Liu et al. were the first to validate that T2- and DW-MRI radiomics 

could predict pCR with an AUC of 0.98, however this was not an external cohort and 

selection bias could be introduced in their results as the data was collected retrospectively 

[32].

Notwithstanding the external validation, our study had several limitations. First, slight 

differences in patient and tumor characteristics and radiation dose were observed the 

development between the development and validation cohort, which could influence the 
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response outcome given the dose-response relationship in rectal cancer [33]. Nevertheless, 

response rates were comparable. It would however be interesting to take differences in 

patient and tumor characteristics into account when developing prediction models, certainly 

when applying novel techniques such as deep learning [34]. Second, patient numbers are 

relatively low, which might introduce bias in our results as the risk for overfitting increases. 

Also, this could influence the decrease in sensitivity observed when applying the models on 

the validation cohort. Nevertheless, when trying to select patients for organ-preservation 

strategies, it is important to aim for a high specificity in order to avoid incorrect patient 

selection, which in turn leads to an expected decrease in model sensitivity. Therefore, ypT0–

1N0 was selected over pCR as an endpoint as the higher occurrence rate would allow for 

more robust prediction model development. Also, local excision is an alternative for ypT1 

tumours in order to preserve the rectum after chemoradiotherapy. Additionally, we chose 

ypT0–1N0 as an endpoint as in the current analysis surgery was performed seven to eight 

weeks after chemoradiotherapy and it is known that tumor regression proceeds beyond this 

interval [35]. Another limitation is the potential addition of noise in the data due to the 

interpolation in the development cohort of b800 images between different b-value images to 

standardize the images. This could explain the sometimes-higher AUCs on the validation 

cohort. Lastly, to simplify the use of our models, ROIs were delineated on T2-MRI images 

and then transferred to b800 images and ADC maps. Potentially, separate ROI definition on 

DW-MRI could improve performance but this has to be weighed up against the extra effort 

to delineate this ROI. Furthermore, ROIs were delineated by only one reader. In the future, 

these obstacles could be overcome by the introduction of automatic delineation tools 

[36,37].

In conclusion, our study shows that models based on MRI radiomics that predict rectal 

cancer response to chemoradiotherapy can be validated in an external patient cohort. 

Therefore, although they do not outperform a simpler four-feature semantic MRI model, 

they can be used as an additional tool for clinical decision making to adequately and non-

invasively select patients for organ-preserving strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AUC Area Under the ROC Curve

cCR Clinical Complete Remission

CRT Chemoradiotherapy/Chemoradiation

LARC Locally Advanced Rectal Cancer

pCR Pathological Complete Remission

PPV Positive Predictive Value

TME Total Mesorectal Excision
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HIGHLIGHTS

• Prediction models based on quantitative imaging using multiparametric MRI 

can validated were to predict the response of patients with rectal cancer to 

chemoradiation. These models can either be based on radiomics parameters 

only (AUC = 0.83) or a combination of radiomics and semantic MRI features 

(AUC = 0.86).

• The newly developed radiomics-based models do not outperform a relatively 

simple four-feature semantic MRI model (AUC = 0.87).

• MRI-based models provide the potential for non-invasive selection of patients 

with complete response following chemoradiation for locally advanced rectal 

cancer, eligible for an organ-preserving treatment. These findings can be used 

to tailor the treatment for individual patients with rectal cancer.
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Figure 1. Receiver operating characteristic curves for the three radiomics models on both the 
training (A) and the validation (B) cohort.
Grey area represents the 95% confidence interval.
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Table 1:
Patient characteristics, Surgery and Response Outcome.

Data are presented as n (%) or median (range). Abbreviations: APR = Abdominoperineal Resection; W&W = 

Watch and Wait; TEM = Transanal Endoscopic Microsurgery; pCR = pathologic Complete Response.

Development cohort (n = 70) Validation cohort (n = 55)

Age (years) 64 (56–69) 64 (56–70)

Sex

Female 23 (33%) 13 (24%)

Male 47 (67%) 42 (76%)

Clinical tumor stage

T2 12 (17%) 0 (0%)

T3 55 (79%) 46 (84%)

T4 3 (4%) 9 (16%)

Clinical nodal stage

N0 3 (4%) 5 (9%)

N1 19 (27%) 15 (27%)

N2 48 (69%) 35 (64%)

Interval to Surgery (days) 54 (49–56) 55 (48–60)

Type of surgery

Sphincter-sparing 64 (91%) 36 (65%)

APR 4 (6%) 18 (33%)

W&W 2 (3%) 0 (0%)

TEM 0 (0%) 1 (2%)

pCR (ypT0N0)

No 58 (83%) 47 (85%)

Yes 12 (17%) 8 (15%)

Near-pCR (ypT0–1N0)

No 49 (70%) 42 (76%)

Yes 21 (30%) 13 (24%)
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Table 2:
Performance and operating points of the selected models that predict response to 
chemoradiation for patients with rectal cancer, for both the development and the 
validation cohort.

Data between brackets represents the 95% confidence interval. Abbreviations: AUC = Area Under the Curve; 

PPV = Positive Predictive Value; t2_dwi_pre_post = prediction model based on T2-weighted and b800 images 

pre- and post-chemoradiation, semantic_dwi_adc_pre = prediction model based on the four semantic features 

and b800 images and ADC maps pre-chemoradiation; semantic_dwi_post = prediction model based on the 

four semantic features and b800 images post-chemoradiation.

Development Cohort Validation Cohort

t2_dwi_pre_post

AUC 0.83(0.73–0.93) 0.83(0.70–0.95)

PPV 67% 80%

Sensitivity 50% 33%

Specificity 90% 97%

Accuracy 79% 82%

semantic_dwi_adc_pre

AUC 0.86(0.75–0.98) 0.49(0.24–0.74)

PPV 92% 0%

Sensitivity 52% 0%

Specificity 98% 100%

Accuracy 85% 75%

semantic_dwi_post

AUC 0.84(0.75–0.94) 0.86(0.76–0.97)

PPV 67% 80%

Sensitivity 63% 33%

Specificity 88% 97%

Accuracy 81% 82%
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Table 3:
Performance and operating points of the four-feature semantic model that predicts 
response to chemoradiation for patients with rectal cancer, for both the development and 
the validation cohort.

Data between brackets represents the 95% confidence interval. Abbreviations: AUC = Area Under the Curve; 

PPV = Positive Predictive Value.

Development Cohort Validation Cohort

semantic

AUC 0.86(0.77–0.95) 0.87(0.76–0.97)

PPV 77% 100%

Sensitivity 53% 33%

Specificity 94% 100%

Accuracy 82% 84%
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