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Abstract

While preclinical studies have reported improvement of behavioral deficits in the Ts65Dn mouse
model of Down syndrome (DS), translation to human clinical trials to improve cognition in
individuals with DS has had a poor success record. Timing of the intervention, choice of animal
models, strategy for drug selection, and lack of translational endpoints between animals and
humans contributed to prior failures of human clinical trials. Here, we focus on in vitro cell
models from humans with DS to identify the molecular mechanisms underlying the brain
phenotype associated with DS. We emphasize the importance of using these cell models to screen
for therapeutic molecules, followed by validating them in the most suitable animal models prior to
initiating human clinical trials.

Lack of Success in Clinical Trials to Improve Cognition in Down Syndrome

Down syndrome (DS) is a complex genetic condition caused by an extra copy of
chromosome 21 (HSAZ21, see glossary) that results in dysregulation of many genes across
the genome. The multigenic nature of DS not only complicates the understanding of its
pathophysiology, but also the design of therapeutic interventions [1]. All individuals with
DS exhibit significant hypoplasia of the frontal lobe, hippocampus, and cerebellum, and
mild to severe intellectual disability [2, 3].

In the last two decades, improvement of cognition and prevention of neurodegeneration have
been the focus of preclinical and clinical trials [4, 5]. Preclinically, more than 20 drugs have
been shown to rescue neurobiological and/or cognitive defects in the Ts65Dn mouse model

of DS [5-7]. The success of these preclinical studies opened a new research era and led to
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the translation of several of these drugs to human clinical trials designed to improve
cognitive outcomes. However, most of these clinical trials failed to show significant
therapeutic effects. As we are witnessing a rapid increase in the number of preclinical drug
trials, there is an urgent need to understand the challenges to translational research in DS and
develop novel research strategies to overcome them.

PubMed and Clinicaltrials.gov report the use of 13 different pharmacological interventions
in 25 completed and ongoing human clinical trials (Table 1) [8, 9]. Despite evidence of
efficacy in preclinical mouse studies, the tested compounds have shown no improvement in
cognitive performance with one exception, epigallocatechin gallate (EGCG). EGCG, when
combined with cognitive enrichment, improved visual recognition memory, inhibitory
control, and adaptive behavior in young adults with DS [10].

Here we address some of the reasons for lack of success in human clinical trials to date,
including limitations in preclinical and clinical experimental study designs, timing of
interventions, methods used for drug design and screening, adequacy of animal models, and
the absence of human translational endpoints, all of which suggest the need for novel models
and strategies to improve the likelihood of therapeutic success (see Clinician’s Corner).

Challenges in Preclinical and Clinical Trials to Improve Cognition in Down

Syndrome

Clinical trial failures stem from challenges related to the study design, drug design and
pharmacokinetic properties and validity of preclinical data for humans. These challenges
include (Figure 1):

The low number of participants and lack of standardized outcome measures

To date, most clinical trials have had very few participants, ranging from eight to 350 for the
largest study (Table 1). Individuals with DS exhibit interindividual variability in cognitive
impairment and other phenotypes, which may limit the usefulness of small sample size
studies. To address this issue, the United States National Institutes of Health (NIH) has
recently launched the INvestigation of Co—occurring conditions across the Lifespan to
Understand Down syndromE (INCLUDE) project (https://www.nih.gov/include-project).
One of its goals is to develop large cohorts of people with DS that can be rapidly mobilized
to test new therapies. Moreover, clinical trial outcome measures are seldom standardized,
making it difficult to compare results from different trials [9, 11]. To address this challenge,
the NIH has established standard clinical trial outcome measures for children and adults with
DS and other intellectual disabilities [11, 12].

Timing of intervention

Due to safety concerns, participation in clinical trials is typically limited to older children,
adolescents, and adults. Only one study has been conducted in infants using leucovorin [13],
and a pilot study is being conducted during the prenatal period using fluoxetine [8]. Because
critical periods of brain development, including neurogenesis, synapse formation, and
gliogenesis occur mainly during prenatal and early neonatal stages, there is a unique window
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of opportunity to improve brain development and achieve maximum treatment efficacy [4, 6,
7, 14]. Although potential benefits of early intervention are now recognized, detailed
pharmacological and toxicological studies /n vitroand in vivo are necessary to ensure safety
of potential candidate therapies for the affected fetus or infant and the mother [15, 16].
Ethical aspects of fetal therapy for DS have been discussed elsewhere [17].

The placebo effect

Complicating clinical study interpretation is the presence of a significant placebo effect
observed in individuals with DS and other forms of genetically driven intellectual disabilities
[9, 18]. Precise mechanisms for apparent placebo effects are unknown but may be due to
increased caregiver support and positive clinician—patient interactions [18]. Expectation of a
positive effect may be enough to elicit improvement in cognitive performance [19]. It is
important to note that the placebo effect is apparent in subjective, such as caregiver or
clinical staff observations, as well as objective measures of cognitive performance. The
placebo effect is heightened in younger patients but absent in individuals with dementia
[18]. Apparent placebo effects underscore the need for careful study design to understand
the contribution of treatment versus placebo in future clinical trials. Trial measures should
include multitest-retest sessions for objective measures. For subjective measures requiring
experimenter scoring, the presence of a second reader may reduce placebo effect. Finally,
multi-center clinical trials performed by different research groups using standardized
procedures provide another potential avenue for treatment validation.

Strategy of drug design

Most clinical trials in humans with DS have evaluated repurposed drugs approved for other
conditions, particularly Alzheimer disease (AD).

Drugs repurposed from AD and dementia.—The presence of APP on HSA21 and its
important role in familial early onset AD, coupled with the accumulation of amyloid
plaques in the brains of individuals with DS led to the use of medications designed for AD—
related dementia to enhance cognition in DS [20]. These include memantine, rivastigmine
and donepezil, which target glutamatergic and cholinergic signaling (Table 1). Memantine
had significant therapeutic effects in Ts65Dn mice, while chronic treatment with donepezil
failed to improve hippocampal spatial memory in this model [21, 22]. The effects of
rivastigmine were not evaluated in a mouse model of DS prior to beginning a human clinical
trial. Other studies include the completed scyllo—inositol and ongoing ACI1-24 liposomal
vaccine trials (X'} targeting amyloid plaques [23, 24].

Drugs targeting GABAergic signaling.—Although human studies in individuals with
DS reported decreased GABA in the frontal and temporal cortices [25, 26], two drugs
(basmisanil and pentylenetetrazol [PTZ]) were used to further block this signaling in
humans with DS (Table 1). The choice of these two molecules stems from increased
inhibitory neuronal transmission in the Ts65Dn mouse model [27, 28]. Both molecules were
shown to improve multiple cellular, behavioral, and electrophysiological deficits in this
mouse [29, 30]. In clinical trials, basmisanil (XIV, XV XVI XVl fajled to show efficacy in
improving cognition and functional abilities in individuals with DS (Table 1). In 2012, a
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phase | human clinical trial with PTZ was initiated in young adults with DS in Australia
(ACTRN12612000652875%XIV). To date, however, no results have been communicated on
the safety or efficacy of PTZ in this population (Table 1). PTZ was revoked by the FDA in
1982 because of its strong epileptogenic and convulsive effects [31].

Bumetanide, a potent blocker of Na-K-Cl-solute cotransporters and modulator of GABA
signaling, was reported to improve social communication and interactions in children and
adolescents (two to 18 years old) with autism spectrum disorder [32]. ]. In 2016, a phase Il
clinical trial (2015-005780-16%XV) was initiated to evaluate the efficacy of three months of
treatment with bumetanide in improving cognitive function in children and adolescents (10—
16 years old) with DS. To date, no trial results have been published. Outcomes of these trials
demonstrate the need to develop therapies that target specific altered mechanisms occurring
in DS.

The choice of preclinical animal models—Rodents are the only small animals that
share large syntenic regions with human Hsa21. Peclinical testing of DS treatments has
almost exclusively relied on a single rodent model, the Ts65Dn mouse (See box 1 for a
summary of DS mouse models). Studies in this model have identified cholinergic,
adrenergic, and GABAergic neuronal network deficits as possible targets for improving
cognition [33-35]. Compounds targeting these pathways induced significant improvement of
behavioral and electrophysiological alterations in the Ts65Dn mouse. Despite their
usefulness, engineered mice do not fully recapitulate the genotype and complex, cognitive
phenotypes of humans with DS, which may curtail their relevance as indicators of drug
efficacy. There is a need to develop models that better mimic the genotype and phenotypes
of individuals with DS.

Interspecies differences in drug pharmacokinetic properties.

In preclinical trials, drug pharmacokinetics (ADMET), are as important as efficacy [36].
For an orally administered drug, ideal ADMET properties include good bioavailability,
blood clearance and volume distribution allowing appropriate dosing, low potential for
drug—drug interaction, and no toxicity in humans [37]. Allometric scaling, physiological
models, and computational modeling allow for interspecies extrapolation of drug
pharmacokinetics, and the use of these methods has improved dosing translation from small
animal preclinical studies to human clinical trials [38, 39]. However, interspecies differences
in drug metabolism further complicate the interpretation of animal data during drug
discovery and limit their translation to humans [40]. Drug metabolism involves oxidation,
reduction, and hydrolysis (Phase 1), and conjugation (Phase Il) reactions. Differences in
isoforms of enzymes catalyzing these reactions, such as the Cytochrome P (CYP) protein
family is a major contributor to interindividual and interspecies differences in metabolism
[37, 41, 42]. Translation of pharmacokinetic parameters from animal models to humans
remains a major hurdle for drug discovery in general, and DS in particular, because detailed
pharmacokinetic studies are lacking for individuals with DS.
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Lack of human-relevant endpoints in behavioral testing to evaluate therapeutic efficacy

The key to linking post-treatment rodent and human cognitive outcomes requires behavioral
tests that reflect cognitive performance in humans (Table 2). Behavioral tests often suffer
from a lack of method standardization across research groups, which limits comparison of
results between studies [1, 43, 44]. Furthermore, the choice of the behavioral endpoints
varies between investigators. Current standard murine behavioral tests, such as fear
conditioning or the Morris water maze, are not relevant or reproducible in humans (Table 2).
There is an unmet need to develop behavioral tests in animal models that directly translate
from human clinical studies, including the NIH Toolbox, CANTAB and ACTB (Table 2)
[11, 12, 45].

Human Cells as Potential Models to Design Effective Therapies for Trisomy

21

Existing mouse models of DS do not completely mirror the karyotype and phenotypes
present in humans with DS; therefore, they cannot be used alone to design and test potential
therapeutics (Figure 2) [46]. Additionally, lack of accessibility, problems with tissue
integrity, and ethical concerns hinder the use of human post—-mortem tissues to study the
pathophysiology of DS. Development and use of human cell models may enable better
understanding of the underlying mechanisms of DS in a human context, and spur
identification of druggable targets for treatment [47]. Despite their lack of complexity, /n
vitro cell models derived from humans with trisomy 21 (T21) have the advantage of
recapitulating the human genotype and epigenetic changes. They may also provide a fast
and scalable tool to design and screen therapies for safety and efficacy prior to costly and
time—consuming mouse preclinical and human clinical trials. They do not, however, allow
for the analysis of complex interactions between different cell types or high cognitive
functions that would occur in a whole organism.

The use of primary cells and cell lines in DS research

Primary cells (amniocytes, chorionic villi (CV), fibroblasts, CNS derived neurons and
astrocytes) and lymphoblastoid cell lines have been used for diagnostic procedures or
studying limited aspects of the phenotype. These cells exhibit commonalities in phenotypes
and dysregulated signaling pathways/cellular processes (Table 3), which provide starting
points for better understanding the molecular mechanisms of DS and identifying potential
targets for therapy.

Chorionic villi and amniocytes.—Little is known about cellular and molecular
phenotypes of CV. A single study described T21 villi as hypertrophic and hypovascular [48].
Another study identified differential patterns of DNA—methylation in T21 CV samples [49].
Amniotic fluid contains a mixed population of cells (amniocytes) in various states of
differentiation with some retaining stem cell like properties and expression of pluripotency
markers [50, 51]. Amniocytes from fetuses with T21 exhibit transcriptome dysregulation,
reduced proliferation, earlier senescence, increased oxidative stress, shorter telomeres, and
increased proteolysis (Table 3) [46, 52-55].
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Fibroblasts.—Fibroblasts from individuals with DS exhibit reduced proliferation rates and
earlier senescence, mitochondrial dysfunction with reduced ATP production and abnormal
cristae morphology, increased oxidative stress, and lower levels of antioxidant molecules
compared to euploid fibroblasts [56-58]. T21 fibroblasts also increased expression of pro—
inflammatory molecules, particularly overactivation of interferon signaling [59]. Candidate
molecules that have been tested on T21 fibroblasts include metformin and EGCG. Both
molecules promoted mitochondrial biogenesis and restored mitochondrial function (Table 3)
[56, 60].

CNS derived neurons and astrocytes.—/n vitro, primary cortical neurons and
astrocytes derived from fetuses with DS showed increased reactive oxygen species (ROS)
and apoptosis [61], increased accumulation of A intracellularly, and deficits in
amyloidogenic processing [62]. Coculture of T21 primary astrocytes with rat primary
cortical neurons resulted in altered dendritic spine morphology and abnormal synapse
formation [63]. T21 primary astrocytes exhibited mitochondrial dysfunction and genome
wide dysregulation of genes related to mitochondrial function that was rescued with
antioxidant and mitochondrial cofactor treatment [63-66].

Lymphoblastoid cell lines.—Lymphoblastoid cell lines from individuals with DS have
been used to analyze genome-wide dysregulation compared to euploid cells but also
between individuals with and without heart defects [67]. In several studies, T21
lymphoblastoid cells exhibited decreased proliferation, higher oxidative stress,
mitochondrial dysfunction, activation of interferon and NF—xB inflammatory pathways,
increased proteasome activity, and enlarged endosomes similar to findings in T21 fibroblasts
(Table 3) [59, 68].

Studies of T21 primary cells demonstrate their importance as valuable tools for studying
dysregulated gene expression, molecular and cellular phenotypes, and most importantly for
validation of new /n vitro models; however, primary cells are limited in their growth and
expansion capacity, excluding them from use in high-throughput drug screening assays.
Furthermore, use of post-mortem tissue and human fetal brain derived neural cells, neurons
and astrocytes is hindered by ethical, legal, and accessibility concerns.

Induced pluripotent stem cells for modeling DS

Since the advent of stem cell reprograming technology over a decade ago [69], induced
pluripotent stem cells (iPSCs) have become the gold standard for disease modeling, gene
editing and drug discovery /n vitro [69]. iPSCs have been used in preclinical trials for
different disorders with promising results [70, 71] leading to the initiation of several human
clinical trials in the last decade. The diseases that have been targeted include macular
degeneration, spinal cord injury, achondroplasia, amyotrophic lateral sclerosis, diabetes,
severe heart failure, and AD [72, 73]. However, the cost and time to develop patient specific
iPSC lines and differentiated cells, variable transformation efficiencies, limit the use of iPSC
lines [74]. Outweighing their limitations are advantages of human iPSCs, such as their
capacity for self-renewal and differentiation into other cell types including neural stem cells
(NSC). NSCs give rise to neurons, astrocytes, and oligodendrocytes, allowing for detailed
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examination of critical events associated with brain development in humans with T21 [75].
To date, few groups have explored this approach and shown its feasibility. Importantly,
common cellular phenotypes were observed in cell types derived from iPSCs from people
with T21 [76-79].

Neurons.—In humans with T21, the number of neurons is reduced in the particularly
hypoplastic brain regions (frontal cortex, hippocampus, and cerebellum) [80-83].
Lamination and cell layer definition are altered, with diffuse cellular distribution, poorly
defined layers, and less neuronal prominence in the visual cortex [84]. In developing brains
of fetuses with T21, the number of cells in the subplate, intermediate zone, ventricular and
subventricular zones is reduced by a third compared to euploid fetuses [82]. During infancy,
the number of neurons in layers Il and IV (granular layers) is reduced by 20-50%, along
with a significant reduction of calbindin+ and parvalbumin+ interneurons in the prefrontal
cortex [83, 85]. Similar observations are reported in the dentate gyrus, pre—subiculum,
entorhinal cortex, and lateral parahippocampal gyrus [80]. In the cerebellum, a significant
reduction of neuronal populations in the granular, molecular, and Purkinje cell layers is
observed during the second trimester [80]. In addition to neurogenesis defects, neurons
possess altered synapses and spines. Expanded dendritic arbors appear earlier in T21, but
expansion ceases and atrophy occurs in cortical pyramidal neurons and Purkinje cells during
infancy [86].

T21 iPSC derived neurons exhibit reductions in synapse formation, lower frequency of
spontaneous post—synaptic currents (SPSCs) and fewer synapsin puncta [77, 86]. Oxidative
stress and mitochondrial membrane potential were increased in T21 iPSC derived neurons,
but there was no increase in apoptosis [77]. However, another study showed increased
caspase 3 positive cells in T21 derived neurons along with decreased Ki—67 positive cells,
implicating increased apoptosis and reduced proliferation [86]. EGCG rescued Ki-67
expression, reduced caspase—3 activity, and restored neurogenesis and expression of neural
markers [86].

Astrocytes.—Compared to euploid fetuses, the number of radial glia increases between 18
and 19 weeks of gestation but decreases after 20 weeks in the frontal lobe of fetuses with
T21 [87]. This early maturation of radial glia is accompanied by a significant increase in the
number of GFAP+ mature astrocytes in fetuses with T21 [87], and twice as many S100p+
astrocytes throughout the lifespan (between 17 weeks of gestation and 68 years of age) in
the cerebral cortex of individuals with T21 [88]. In the hippocampus, astrogliosis was
present during gestation, infancy, and adulthood [89, 90]. Although the cerebellum is the
most affected brain region in humans with T21, to date no studies have been conducted to
investigate the cellular density of cerebellar radial astrocytes (Bergman glia) and other glial
populations in individuals with DS.

Several studies have shown an altered gliogenic pathology when T21 iPSCs differentiate
spontaneously in the absence of neurogenic factors [76, 79, 86]. T21 iPSCs showed a two to
three—fold increase in the production of glial cells. Ratios of neurons to glia were altered, but
the timing of the neurogenic to gliogenic switch was similar in both T21 and euploid cells
[76]. Studies of iPSCs derived from monozygotic twins discordant for T21 showed
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alterations in neuronal differentiation based on decreased expression of the neuronal markers
B-Tubulin and MAP2, and an increased expression of the glial markers GFAP and OLIG2
[86]. T21 iPSC derived NSCs demonstrated a preference toward astrocytic rather than
neurogenic differentiation following spontaneous differentiation [79]. These astrocytes show
increased expression of S100p and GFAP. No reduction or delay in differentiation of T21
iPSCs to neural progenitors and neurons occurs following directed differentiation protocols
[77]. However, production of reactive oxygen species in T21 iPSC derived astrocytes is
significantly higher through overactivation of inducible nitric oxide synthase and subsequent
NO production and release. Paradoxically, these cells do not exhibit increased apoptosis, but
rather, higher proliferative rates than controls [79]. Conditioned media from T21 iPSC
derived astrocytes leads to decreased neurogenesis, increased apoptosis, and altered
functional properties in control and T21 neurons [79].

Oligodendrocytes.—Mpyelination begins late in the prenatal period and continues into
adulthood with peak activity occurring between six months and two years of age [91].
Imaging, histological, and molecular studies have reported that individuals with T21 show
decreased myelination and reduced density of OLIG2+ cells throughout the lifespan [92-94].
Molecular and cellular mechanisms leading to myelination defects in humans with DS are
poorly understood, but delayed maturation of oligodendrocytes progenitors is thought to
play a major role [94]. To date, no studies have investigated these mechanisms in T21 iPSCs
derived oligodendrocytes.

Microglia.—Microglia are important regulators of the inflammatory response and are
essential for proper brain development through synapse pruning, neurogenesis, and
differentiation [95]. In humans with DS, the number of microglia is increased; they possess
an activated and ramified morphology [96]. Understanding the role of astrocytes and
microglia in the exacerbated inflammatory status in the brain of individuals with DS is key
to improving overall brain function in this population. This can be achieved through the
study of iPSCs derived microglia [97].

Patient-derived iPSC models of DS provide a promising strategy for understanding
mechanisms underlying neurodevelopmental alterations occurring in DS and provide
potential methods to identify new therapies. Unlike primary cells, iPSC models are capable
of large scale, self-renewal for use in high-throughput screening assays. Studies of T21
iPSC-derived cells show that these models reflect molecular and cellular phenotypes
observed in primary cells and in individuals with DS. Growth and differentiation conditions
can be controlled and directed in iPSCs providing a larger degree of standardization than
primary cells; however, inherent variability due to genetic background remains in iPSCs.
Patient specific iPSCs generated from skin biopsies or prenatally from amniocytes may
allow researchers to generate biobanks of iPSC lines to evaluate therapeutic efficacy in drug
screening assays.
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Perspectives and Future Directions in Drug Development for Down
Syndrome

Despite major advances in our understanding of the mechanisms underlying developmental
alterations occurring in DS, no effective treatments are available to date (see outstanding
questions). New paradigms for translational and clinical research are needed for the
development of novel, targeted, and effective therapies to improve cognitive abilities and
independent life skills in individuals with DS (Figure 2A). Each currently available model
has limitations that reduce the ability to translate results from that model toward
development of human therapies. Going forward it will be important to tackle the challenges
presented in this review through the integration of multidisciplinary approaches.

First and foremost is the identification of relevant endpoint and phenotypic targets that can
be easily translated from humans with DS to mouse models, and vice-versa. This will
require the use of human/murine integrated approaches throughout the lifespan and
identification of the most adequate human cell and mouse models that recapitulate the
genotype/phenotype of individuals with DS (Figure 2B-D). Availability of primary cells
from humans with DS and advances in iPSC development make it possible to generate
patient—specific multipotent cells that can be differentiated and used for phenotyping and
drug screening (Figure 2C). T21 iPSC derived cells share several phenotypic alterations that
have been observed in humans with DS, which may allow for further identification of DS-
specific molecular signatures and initial screening of candidate therapies prior to costly
mouse preclinical and human clinical trials (Figure 2E). T21 iPSC derived models have a
distinct advantage in that they are more accessible, not limited in their growth potential, and
can produce large cell populations for medium and high—throughput phenotyping and drug
screening. T21 iPSC models can provide important preliminary information about possible
toxicity, efficacy, and mechanisms of action for targeted therapeutics; however, in vitro
models alone are not sufficient for translational studies (Figure 2F). The use of /n vivo
models will provide complementary information not only about the drug efficacy but also
the ADMET profiles of candidate therapeutic molecules in a complex system (Figure 2F).

Selection of appropriate animal models and testing regimens is equally important. In
generating new or validating existing mouse models, it is critical to consider the human DS
karyotype (Figure 2D). In 95% of cases, DS is caused by the presence of a third freely
segregating chromosome 21. Additionally, there is need to re—evaluate the current cognitive
tests that are being used in the DS clinical research field and to translate those tests for use in
animal models. The use of common, standardized behavioral and cognitive screening
protocols is essential for ensuring harmonization of results across institutions and research
groups.

The timing of therapeutic interventions is critical for maximum beneficial impact in DS.
Currently, most research studies are focused on understanding and developing interventions
for early neurodegeneration in adults with DS. In light of the evidence of early phenotypic
alterations in fetuses, infants, and young children with DS, it is crucial to direct similar or
more attention and resources to early and safe interventions that could not only improve
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cognition but might by the same mechanisms prevent or minimize early neurodegeneration
in DS (Figure 2G).

Finally, the creation of multi—center patient cohorts and national and international consortia
will bring multidisciplinary experts together to define strategic goals, promote resource and
material sharing as well as standardization of preclinical and clinical protocols, encourage
collaboration and cooperation, nurture and create funding opportunities for young
investigators, and accelerate the discovery of therapies for neurodevelopmental and
neurodegenerative sequelae that are associated with DS. In the last few years, several
consortia have been established for other conditions, including the Academic Drug
Discovery Consortium (ADDC), the International Rare Disease Research Consortium
(IRDIRC), and the PsychENCODE consortium to only cite a few [98-100].

Concluding Remarks

In the last two decades, many attempts have been made to ameliorate the cognitive aspects
of DS using mouse models. Although animal studies resulted in beneficial effects,
translation to humans was unsuccessful. The lack of success can be linked to many
challenges both in preclinical studies (strategy for drug design, choice of adequate models,
and lack of human translational endpoints to test therapies) and clinical trials (low numbers
of participants, lack of standardized outcome measures, timing of intervention, and placebo
effects).

To tackle these challenges, standardized preclinical and clinical studies across the lifespan
are needed that can improve the reproducibility of results and the likelihood of identification
of successful therapeutic interventions. Combining human cell studies with the best
available animal models may improve the success rates of clinical trials in DS. Developing a
multidisciplinary approach using human translational, measurable, and relevant endpoints
across all levels from gene expression and cellular functioning to the systems level
behavioral tasks in appropriate animal models will enable real progress towards the
identification of effective therapeutics that will improve cognition and enhance the
independent life skills of people with DS.

Clinician’s Corner

The life expectancy of individuals with DS has increased considerably due to the
development of surgical and pharmacological treatments for the non—neurological
complications of DS, including congenital heart disease and hypothyroidism. With the
increase in life expectancy, intellectual disability, and early neurodegeneration are the two
biggest handicaps that hinder the development of independent life skills in individuals with
DS.

Due to safety concerns, almost all clinical trials to date have been performed in older
children or adults. Abnormalities in brain growth and development, however, occur
prenatally. Compared to other syndromes associated with intellectual disability, DS is unique
because in many countries pregnant women are offered blood-based noninvasive screening
for trisomy 21. Positive screens are confirmed via diagnostic procedures such as
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amniocentesis or CV sampling. Both of these procedures produce fetal or placental cells
upon which to directly test the efficacy and safety of different molecules, effectively
providing fetal personalized medicine to improve neurocognition. Advances in fetal brain
imaging enable objective assessment of treatment effects on the developing brain.

To realize the vision of treatment of DS to improve independent life skills, further work
needs to be done. Importantly, the way forward will include the use of both human iPSCs
and differentiated neural cells lines to screen candidate therapies, with more thorough testing
in animal models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Resources

Index of Clinical Trials
ClinicalTrials.gov
1. https://clinicaltrials.gov/ct2/show/NCT00748007
1. https://clinicaltrials.gov/ct2/show/NCT01084135
11. https://clinicaltrials.gov/ct2/show/NCT00675025

V. https://clinicaltrials.gov/ct2/show/NCT00754052
V. https://clinicaltrials.gov/ct2/show/NCT00754013
V. https://clinicaltrials.gov/ct2/show/NCT02094053
VII. https://clinicaltrials.gov/ct2/show/NCT00570128
VII. https://clinicaltrials.gov/ct2/show/NCT01112683
IX. https://clinicaltrials.gov/ct2/show/NCT00240760
X. https://clinicaltrials.gov/ct2/show/NCT02304302
XI. https://clinicaltrials.gov/ct2/show/NCT01791725
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Index of Clinical Trials

XXI. https://clinicaltrials.gov/ct2/show/NCT01576705
XXII. https://clinicaltrials.gov/ct2/show/NCT00056329
XXIII. https://clinicaltrials.gov/ct2/show/NCT01594346

Australian New Zealand Clinical Trials Registry

XXIV. ACTRN12612000652875  https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362609
EU Clinical Trials Register

XXV. 2015-005780-16 https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-005780-16/1T

Allometric scaling
understanding how organisms change relative to size and development

Amniocytes
Cells obtained from amniotic fluid for routine prenatal clinical diagnosis of trisomy 21
(T21).

Amyloid plaques
Accumulation of AP peptides occurs due to overproduction of type AB-42, a less soluble,
neurotoxic form of AP believed to underlie neurodegeneration in AD.

APP

A gene that codes for amyloid precursor protein. APP is cleaved by enzymes to produce
soluble amyloid precursor protein and amyloid-B (AB). APP mutations are linked to early-
onset Alzheimer disease (AD).

Bioavailability
The amount of administered dose that reaches the systemic circulation and varies by route of
administration (e.g. oral vs intravenous).

Cholinergic
Molecules that modulate acetylcholine signaling. Potentiation of acetylcholine signaling is
used to improve cognition in individuals with dementia.

Chorionic villi (CV)
Projections of placental tissue that contain cells produced by the fetus. CV are primarily
used for diagnosis of T21 or other aneuploidies.

DYRKI1A

Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A is an enzyme that catalyzes
autophosphorylation on serine/threonine and tyrosine residues that may be involved in
regulating cell proliferation and brain development.

Epigallocatechin gallate (EGCG)
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is a polyphenol with antioxidant activity found in green tea that acts as a DYRK1A kinase
inhibitor.

GABA
gamma-aminobutyric acid is the primary inhibitory neurotransmitter in the central nervous
system (CNS).
Glutamatergic
Molecules that modulate the excitatory glutamate signaling pathway. Inhibition of NMDA
type glutamate receptors is used to improve cognition in individuals with dementia.
Hsa2l
Human chromosome 21 is one of the smallest autosomes and contains over 200 protein
coding genes present in three copies in Down syndrome (DS).
Liposomal vaccine
In AD, phosphorylated tau accumulates in response to increased AP levels causing
neurotoxicity. The vaccine elicits an immune response, targeting phosphorylated form of
microtubule associated protein Tau to reduce tauopathy.
Lymphoblastoid
B-lymphocytes transformed using Epstein Bar virus to confer immortality.
Microglia
Small cells that act as the resident phagocyte within the CNS.
Pharmacokineticss ADMET
What the body does to a drug, including absorption, distribution, metabolism, and excretion
(ADME). Adding the study of toxicity becomes the acronym ADMET.
Placebo
A substance or procedure that mimics treatment but lacks any active ingredients, used as a
control to determine the efficacy of treatment.
Senescence
The period when cells exit the cell cycle and cease to divide but continue to carry out
physiological activities.
Ts65Dn
A mouse model of DS with a small freely segregating chromosome trisomy of the
centromeric region (50 genes non-orthologous to Hsa21) of Mmul7 and distal region (104
genes orthologous to Hsa21) of Mmu16.
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Box 1: Most Commonly Used Mouse Models of Down Syndrome

A recent study of the phenotypes of the three most widely used mouse models of DS
(Dp(16)1/Yey, Ts65Dn and Ts1Cje), at three different stages in the lifespan, reported not
only differences in the genotypes of these mice, but also major differences in gene
expression, neurogenesis, and behavioral profiles [43]. Although Ts65Dn mice
demonstrated aberrant neurogenesis and learning/memory deficits, they do not
recapitulate the typical phenotypic findings in people with DS, such as microcephaly
[43]. Furthermore, Ts65Dn mice are trisomic for a segment of only half of the Hsa21
orthologous genes and are trisomic for a set of Mmul7 triplicated genes that are not
orthologous to Hsa21. The contribution of these genes to the Ts65Dn phenotypes remains
unknown [43].

Dp(16)1/Yey mice contain an elongation of the full Mmu16 orthologous region, which
theoretically represents the best model for DS [139]. However, the engineering of this
strain as an elongation and not a freely segregating chromosome (as is the case in humans
with DS) likely results in different phenotypic abnormalities than in individuals with DS.
Indeed, this model lacks gene expression and neurogenesis defects in the embryonic
brain, in contrast to what is observed in human fetuses with DS. The Ts1Cje mouse
model has a smaller segmental trisomy compared to Ts65Dn. Its milder phenotype may
be the result of its genotype (translocation instead of freely segregating chromosome)
and/or early neonatal mortality of the most severely affected pups [140].

Two research groups have attempted to generate trans—species mouse models, including
ES(#21)-10 and Tc1, that harbor the entire human chromosome 21 in addition to the
mouse diploid orthologous genes [141, 142]. Although they exhibit behavioral and
electrophysiological alterations, both mouse models exhibit varying degrees of
mosaicism between different mice and different organs (90-95% and 53% in the brains of
ES(#21)-10 and Tcl mice, respectively). Novel gene editing methods utilizing
CRISPER/Cas9 may improve generation of additional animal models such as rat or non-
human primate models [143]. These models may better reflect genetic and underlying
molecular mechanisms of DS and as more complex models, allow for better translation of
behavioral tasks to human cognitive performance.
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Highlights

Prenatal screening for Down syndrome (DS) creates unique opportunities for
antenatal treatments to optimize neurocognitive development of affected
individuals.

Ts65Dn mice have been used in preclinical drug studies despite carrying three
copies of genes that are non-orthologous to chromosome 21. Phenotypes in
Ts65Dn and other mouse models of DS are significantly different from one
another. Preclinical treatment studies have shown beneficial effects in Ts65Dn
mice, yet translation to human studies has been unsuccessful.

Primary human cells and pluripotent stem cells are important models for
understanding and validating mechanisms of DS, but are limited by ethical,
legal, and accessibility issues. Both primary cell types and iPSCs from
humans with DS are valuable tools that can be used long-term for large scale
drug screening to identify treatments for DS.
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Outstanding Questions

Fetuses with Down syndrome exhibit microcephaly, delayed neurogenesis and abnormal
synaptogenesis. Will prenatal treatment have a greater positive impact on cognition and
independent life skills than later intervention in childhood or adulthood?

What are the most relevant cellular and molecular endpoints that can be used to identify
and test the efficacy of therapeutics in vitro and in vivo?

Can the use of patient derived iPSCs and iPSC-derived neuronal and glial cells bridge the
translational gap and improve the success rate of human clinical trials?

Many segmental trisomic mouse models have been generated, however, none of these
mimic the human DS karyotype and phenotype. Which animal model recapitulates
genetic and phenotypic changes that occur in DS and accurately predicts response to
treatment or is there a need to explore other species such as rat and marmoset? If
alternative models are needed, what is the role of newer gene editing techniques for
improving animal models?

Preclinical mouse studies use conventional rodent behavioral tests to evaluate therapies.
Can we effectively translate the human CANTAB and ARIZONA cognitive batteries, and
use them to investigate cognitive delay and treatment efficacy instead of traditional rodent
behavioral paradigms?

Can standardization, reproducibility, and resource sharing across investigative groups be
improved through harmonization of preclinical and clinical research guidelines, study
design, data collection and data sharing?
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Figure 1: Challenges and Solutions to Improve Clinical Trial Research Success in Down

Syndrome (DS).

Schematic representation of the major challenges and specific solutions to increase the

Page 24

likelihood of success in human clinical trials to improve cognitive outcomes in individuals

with DS.
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Figure 2: The Human/Murine Multidisciplinary Translational Approach to Develop Successful
Therapeutics for Intellectual Disability in Down Syndrome (DS).

(A) Standardized outcome measures in human clinical studies must be applied throughout
the lifespan in individuals with DS to define the most affected brain regions and cognitive
domains that should be targeted for therapy. (B) The use of human /n vitro models, including
iPSCs and iPSC-derived neural stem cells and differentiated central nervous system cell
populations will provide valuable information on the cellular and molecular phenotypes
associated with DS. Human DS-specific molecular signatures should be the basis for
candidate drug selection and screening (C). (D) In parallel with /n vitro studies, in vivo
studies should prioritize the creation of rodent models that mimic the human DS karyotype
(free segregating extra-chromosome) and genotype (triplication of only Hsa21 orthologous
genes). To phenotype these models, the endpoint measures (molecular, neuroimaging and
behavioral) as well as area of phenotyping (target brain region and cognitive domains)
should be translated from the human studies in individuals with DS. (E) These outcome
measures can be then used to evaluate the efficacy of candidate therapeutic molecules
defined in the /n vitro drug screening phase. (F) During these /n vitroand /n vivo preclinical
studies, efficacy, toxicity, and safety profiles of the most potent drug candidates are
evaluated prior to starting human clinical trials in fetuses, newborns, or adults with DS (G).
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