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Live Birth in Sex-Reversed XY Mice 
Lacking the Nuclear Receptor Dax1
Isabel Fernandes-Freitas1,4, Alexandra Milona2,3,4, Kevin G. Murphy1, Waljit S. Dhillo1* & 
Bryn M. Owen1*

The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. 
However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific 
abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation 
in Sry mRNA-abundance would result in a spectrum of phenotypes even within-strain. We found that 
while all XY C57BL/6J mice lacking Dax1 presented as phenotypic females, there was a marked inter-
individual variability in measures of fertility. Indeed, we report rare occasions where sex-reversed mice 
had measures of fertility comparable to those in control females. On two occasions, these sex-reversed 
XY mice were able to give birth to live offspring following mating to stud-males. As such, this work 
documents within-strain variability in phenotypes of XY mice lacking Dax1, and reports for the first time 
a complete sex-reversal capable of achieving live birth in these mice.

Dax1 is an orphan member of the nuclear-receptor class of transcription factors1. Its gene, Nr0b1, is found 
on the X-Chromosome and encodes a 470 amino acid protein consisting of an N-terminal DNA-binding 
domain, and a C-terminal region containing a putative ligand-binding domain. Classically, Dax1 represses the 
transcriptional-activation function of nuclear receptors through protein-protein interactions2. However, it has 
also been reported to activate transcription, and have other functions through its ability to directly bind DNA3. In 
adults, Dax1 is expressed throughout the hypothalamic-pituitary-gonadal (HPG) axis4. It interacts with several 
steroidogenic receptors including those for estrogen and testosterone5. However, the role of Dax1 in the adult 
HPG axis is largely unknown.

During development, Dax1 is a testes-determining gene3,6,7. While XX Dax1-KO mice are overtly fertile, 
XY mice lacking Dax1 display a spectrum of sex-reversal phenotypes apparently depending on the animal’s 
background-strain. For example, XY 129 Sv/J mice lacking exon-2 of Dax1 have abnormal testicular devel-
opment resulting in smaller than normal adult testes8. By contrast, XY mice lacking Dax1 in a mixed genetic 
background, and containing the ‘weak’ Sry allele from the Mus domesticus poschiavinus Y-Chromosome, display 
complete sex-reversal6,7. Furthermore, ovary development in B6 mice lacking Dax1 can be prevented by the addi-
tion of multiple copies of the male-determining Sry allele from the 129-strain7. As such, it has been suggested 
that Dax1-deficiency can be bypassed by overexpression of Sry gene-transcripts. Importantly, developmental 
Sry-expression is also variable between individuals of the same strain7. It is therefore possible that a range of 
sex-reversal phenotypes may occur even within-strain in XY Dax1-KO mice. However, this has not previously 
been investigated.

We surveyed reproductive function in chromosomal-XY C57BL/6J mice lacking exon 2 of the Dax1 gene, 
henceforth referred to as Dax1−/Y. At weaning, all of these animals were phenotypically female. However, they 
displayed a spectrum of reproductive phenotypes and molecular measures of fertility. Many Dax1−/Y mice were 
completely infertile. However, a minority of sex-reversed chromosomal-XY Dax1−/Y mice had measures of fer-
tility comparable to those in control female mice. Indeed, two out of a total of 18 Dax1−/Y mice became pregnant 
and gave birth to live offspring after mating with stud-males. As such, this work demonstrates intra-strain vari-
ability in sex-reversal phenotypes of chromosomal-XY mice lacking Dax1. It also reports for the first time a live 
birth from a sex-reversed chromosomal-male mouse lacking this orphan nuclear receptor.
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Results
We generated C57BL/6J mice lacking exon 2 of the Dax1 (Nr0b1) gene, as described7. In accordance with previous 
findings, all of these Dax1−/Y mice presented as phenotypic females at weaning.

In a preliminary experiment to test fertility, we paired 10 Dax1−/Y mice with proven Dax1+/Y stud-males. 
Approximately two months after pairing, one Dax1−/Y mouse gave birth to a single offspring which was found 
dead in the home-cage (data not shown). To confirm this finding, we set up a second fertility experiment involv-
ing eight Dax1−/Y mice and four control (Dax1+/+) females. All of the control female mice mated with the 
stud-males (Fig. 1A). By contrast, only two out of eight Dax1−/Y mice mated with the stud-males during the 
10-day test period (Fig. 1A). One of these animals became pregnant and gave birth to an apparently healthy single 
offspring (Fig. 1B). For an undetermined reason, the pup did not survive beyond postnatal day two. Therefore, a 
minority of sex-reversed Dax1−/Y mice can give birth to live offspring.

The results of our mating-experiments were suggestive of intra-strain variability in the sex-reversal pheno-
type of Dax1−/Y mice. In order to investigate the spectrum of reproductive phenotypes in Dax1−/Y mice, we 
conducted experiments in an additional cohort of four control Dax1+/+ female mice and eight sex-reversed 
Dax1−/Y mice. We first assessed the timing of puberty by determining vaginal opening9. Control females under-
went vaginal opening at approximately 21 days of age (Fig. 2A). By contrast, four out of eight Dax1−/Y mice did 
not undergo vaginal opening at all during the 40-day test-period (Fig. 2A). Three Dax1−/Y mice underwent a 
delayed vaginal opening (between day-26 and day-35), and one Dax1−/Y mouse underwent normal vaginal 
opening on day-20 (Fig. 2A).

We next assessed the estrous cyclicity by vaginal cytology. As expected, control female mice underwent a 
4–6 day cycle and entered the post-ovulatory estrous-phase twice during the 11-day testing period (Fig. 2B). By 
contrast, over half (five out of eight) of the Dax1−/Y mice did not enter the ovulatory phase of the cycle at all 
during the testing-period (Fig. 2C). Two Dax1−/Y mice did enter the estrous-phase but did not cycle normally. 
One Dax1−/Y mouse cycled normally and entered the estrous-phase twice during the test-period. There was a 
clear connection between the Dax1−/Y individuals that underwent vaginal opening (Fig. 2A) and those that had 
evidence of estrous cyclicity (Fig. 2C). In addition, the gross morphology of the uterus and ovaries reflected the 
vaginal cytology data. Those animals displaying evidence of estrous cyclicity had larger ovaries and uteri than 
those that did not (Fig. 2C). Together, these data show clear intra-strain variability in the reproductive phenotype 
of C5BL/6J Dax1−/Y mice. A minority of sex-reversed Dax1−/Y mice are comparable to control females with 
regard to their time of puberty onset and estrous cyclicity.

In order to gain additional insight in to our observations on sex-reversal phenotypes, we conducted 
post-mortem analysis of plasma hormone levels, ovaries, and hypothalamic neuropeptide gene-expression. 
Plasma estrogen (E2), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were all significantly 
lower (p < 0.05) in Dax1−/Y mice than in control females. Indeed, these hormones were undetectable in at least 
half of the Dax1−/Y mice (Fig. 3A,B). However, E2, LH, and FSH were detectible in three Dax1−/Y mice and 
their levels were in a range that could be considered ‘normal’ (Fig. 3A,B). Examples of ovarian histology and 
steroidogenic gene-expression from a control female, an acyclic Dax1−/Y mouse, and a cyclic Dax1−/Y mouse 
are provided in Fig. 3C. The acyclic Dax1−/Y mouse had underdeveloped ovaries with few mature follicles or 
corpora lutea (Fig. 3C). It also had dramatically reduced expression of key steroidogenic genes (Cyp19a1, Hsd3b1, 

Figure 1.  Live-birth in a Dax1−/Y mouse. (A) Mating success of four WT (Dax1+/+) females presented as 
average +/− SEM and eight Dax1−/Y mice with proven stud-males. The Y axis shows the number of days that 
a test-mouse was mated with a stud-male before a vaginal plug was detected. (B) Photograph of a Dax1−/Y 
mouse with single live-offspring on post-natal day 1.
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Figure 2.  Intra-strain variability in reproductive phenotype of Dax1−/Y mice. (A) Age at first-day of puberty 
as measured by vaginal opening. WT (Dax1+/+) females are presented as average +/− SEM of four animals. 
(B) Representative estrous cycle and uterus/ovary morphology in a WT (Dax1+/+) female mouse. (C) 
Individual estrous cycles and uterus/ovary morphology in each Dax1−/Y mouse. C, observation of cornified 
cells by vaginal cytology. N observation of nucleated cells by vaginal cytology. L observation of leukocytes by 
vaginal cytology.

Figure 3.  Dax1−/Y mice respond to ovarian estrogen production. (A) plasma estradiol levels. (B) Plasma LH 
and FSH levels in four control females, presented as average +/−  SEM, and eight individual Dax1−/Y mice. 
(C) Representative ovarian histology and ovarian steroidogenic gene expression in four WT (Dax1+/+) female 
mice (gene expression presented as average +/− SEM), in an acyclic Dax1−/Y mouse (KO4), and in a cyclic 
Dax1−/Y mouse (KO7). (D) Kiss1 gene-expression in the arcuate and AVPV hypothalamus in four control 
females, presented as average +/− SEM, and eight individual Dax1−/Y mice.
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and Cyp17a1) (Fig. 3C). By contrast, the cyclic Dax1−/Y mouse had overtly normal ovaries and expression of 
Cyp19a1, Hsd3b1, and Cyp17a1 was comparable to controls (Fig. 3C).

Kisspeptin (Kiss1) is a neuropeptide that controls fertility by signalling to gonadotropin-releasing hormone 
(GnRH) neurons. In female mice, plasma gonadotropins (FSH and LH) are controlled by kiss1-neurons in the 
arcuate nucleus (Arc) and anteroventral periventricular nucleus (AVPV) of the hypothalamus respectively. 
Hypothalamic Kiss1 expression was broadly in concordance with plasma gonadotropins in Dax1−/Y mice. While 
the majority of these animals had lower Kiss1 expression than control mice, some had broadly normal Kiss1 gene 
expression in both the Arc and AVPV (Fig. 3D). Perturbations in Kiss1-expression in Dax1−/Y mice were more 
dramatic in AVPV than in the Arc (Fig. 3D). Furthermore, there is apparent concordance between plasma E2 lev-
els, plasma gonadotropins, and hypothalamic Kiss1-expression in individual Dax1−/Y mice (Fig. 3A,B,D). This 
suggests that the hypothalamus of Dax1−/Y mice is able to respond normally to ovarian sex steroids.

Taken together, these data provide the first evidence of dramatic intra-strain variation in markers of fertil-
ity in sex-reversed chromosomal-XY mice lacking the nuclear receptor Dax1. They also provide additional evi-
dence that the primary defect in these animals is ovarian. Finally, we show that a minority of these sex-reversed 
chromosomal-XY mice can undergo puberty, maintain pregnancy, and give birth to live offspring.

Discussion
Our results confirm that the C57BL/6J background is highly sensitive to male-to-female sex-reversal10. Dax1−/Y 
mice on this strain present at weaning as phenotypic females. However, there is marked inter-individual variation 
in reproductive phenotypes. Most Dax1−/Y mice are infertile but a minority can give birth to live offspring.

It has been suggested that differences in reproductive phenotype amongst different strains of Dax1−/Y mice is 
due to the relative ‘strength’ (amount of transcript) of the male-determining Sry allele6,7. Indeed, overexpression 
of Sry in a strain susceptible to sex-reversal prevents ovary formation in Dax1−/Y mice7. However, Sry mRNA 
expression has been shown to be variable even within-strain during the early events of testicular development7, 
and therefore provides a logical mechanistic explanation for the intra-strain variation in phenotypes observed 
here. Unfortunately, it is not currently possible to correlate early developmental expression of Sry in the tes-
tes to the degree of sex-reversal observed in adult Dax1−/Y mice. In addition, variability in sex-reversal has 
been observed on a number of other occasions in other models and possibly involves stochastic expression of 
pro-ovary genes11,12.

We found that most Dax1−/Y mice present with apparent hypothalamic hypogonadism. They have low 
plasma gonadotropins, and low estradiol levels. However, there was good concordance between plasma E2, hypo-
thalamic Kiss1-expression, and circulating gonadotropins amongst individual Dax1−/Y mice (Fig. 3). This sug-
gests that hypothalamic hypogonadism in these animals is secondary to ovarian dysfunction. In other words, 
individual Dax1−/Y mice that are able to produce ovarian E2 are able to respond to it appropriately. Furthermore, 
the fact that Kiss1-expression in the AVPV is more dramatically affected than Kiss1-expression in the Arc of 
Dax1−/Y mice is consistent with the hypothesis that the AVPV is a female-predominant nucleus which develops 
under the control of estrogen.

Although two out of a total of 18 Dax1−/Y mice gave birth, they each produced only one offspring, and nei-
ther animal survived beyond post-natal day two. As such, although a minority of Dax1−/Y mice have markers 
of fertility that are broadly in line with control females, they are still dramatically sub-fertile. The reasons for this 
are currently unclear but are probably due to a combination of factors that are likely a result of abnormal ovarian 
development. However, the mechanistic presence of a Y chromosome has also been suggested to inhibit meio-
sis in females13–15. Indeed, while we did detect DNA from the Y chromosome in an ovary from a sex reversed 
Dax1−/Y mouse that gave birth, this does not exclude the possibility that some ovarian cells in this animal may 
have lost the Y chromosome (XO).

This work demonstrates that a minority of Dax1−/Y mice can produce live offspring without any assisted fer-
tility treatment. It adds to the small number of reports of live-birth from sex-reversed XY mice (for example16–19). 
There are reports of fertility in mutant XY sex-reversed wood lemmings (Myopus shisticolor)20, and XY-female 
horses21. In addition, we are aware of one remarkable report of a fertile woman with normal ovaries and a pre-
dominantly XY karyotype22. As such, our observations in Dax1−/Y mice support the notion that XY sex-reversal 
is not formally incompatible with reproduction. However, our data also suggest that the inter-individual milieu 
of mechanical and development complications caused by the presence of the Y-chromosome makes successful 
reproduction highly unlikely.

Methods
Mice.  All procedures were conducted in accordance with the U.K Animals (Scientific Procedures) Act 1986, 
with ethical approval from the Institutional Animal Care and Welfare Committee at Imperial College London. 
Mice were housed under standard conditions under a 12 h light-dark cycle and with free access to water and soy-
free diet. C57BL/6J mice with deletion of Dax1 (Nr0b2) were generated essentially as described previously and 
had undergone between 8 and 12 back-crosses on the C57BL/6J line7.

Mating experiments.  Individual female Dax1+/+ mice, and Dax1 −/Y mice were housed with a proven 
stud-male. Mating-success was determined by the presence of a vaginal plug in the morning during a ten-day 
mating experiment.

Puberty onset and estrus cyclicity.  The day of vaginal opening (first day of puberty) and the stage of the 
estrous cycle were determined by cytology using standard methods.

Hormone analysis.  Plasma estradiol was determined by ELISA (R&D Systems). Plasma LH and FSH were 
determined by the University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core.
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Tissue collection and gene expression analysis.  Tissues were collected in diestrus and either 
snap-frozen in liquid nitrogen or placed in buffered formalin for later histological analysis. Ovaries were dehy-
drated in ethanol and mounted in paraffin blocks. Sections were mounted on glass slides and stained using 
haematoxylin and eosin by standard methods. Ovarian and hypothalamic gene expression were determined fol-
lowing RNA extraction (Ambion PureLink), cDNA synthesis (Invitrogen), SYBR-Green qPCR (Sigma-Aldrich) 
and expressed as relative expression after correcting for internal control. Cyclophilin was used as an internal 
control. Primer-sequences for gene expression are available on request.

Statistical analysis.  Statistical analysis were performed where appropriate by students t-test, with a p < 0.05 
being considered statistically significant.

Data availability
All data will be made available upon reasonable request.
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