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Fine-grained climate velocities 
reveal vulnerability of protected 
areas to climate change
Risto K. Heikkinen   1*, Niko Leikola1, Juha Aalto   2,3, Kaisu Aapala1, Saija Kuusela1, 
Miska Luoto   2 & Raimo Virkkala1

Climate change velocity is an increasingly used metric to assess the broad-scale climatic exposure and 
climate change induced risks to terrestrial and marine ecosystems. However, the utility of this metric 
in conservation planning can be enhanced by determining the velocities of multiple climatic drivers in 
real protected area (PA) networks on ecologically relevant scales. Here we investigate the velocities 
of three key bioclimatic variables across a nation-wide reserve network, and the consequences of 
including fine-grained topoclimatic data in velocity assessments. Using 50-m resolution data describing 
present-day and future topoclimates, we assessed the velocities of growing degree days, the mean 
January temperature and climatic water balance in the Natura 2000 PA network in Finland. The high-
velocity areas for the three climate variables differed drastically, indicating contrasting exposure risks 
in different PAs. The 50-m resolution climate data revealed more realistic estimates of climate velocities 
and more overlap between the present-day and future climate spaces in the PAs than the 1-km 
resolution data. Even so, the current temperature conditions were projected to disappear from almost 
all the studied PAs by the end of this century. Thus, in PA networks with only moderate topographic 
variation, far-reaching climate change induced ecological changes may be inevitable.

Measurements of the magnitude and geographic variation of climatic changes across the network of protected 
areas (PAs) provide relevant information for conservation planning, enabling the targeting of management in 
the PAs most at risk in the face of climate change1–6. One approach for assessing the climate-change-based risks 
is the climate change velocity, a metric which defines the speed and direction of climate shifts over a given area4. 
Although the majority of the climate velocity studies have been conducted in terrestrial environments, there is 
now an increasing amount of climate velocity research also addressing marine environments4,7,8.

Technically, climate velocity is a generic metric which nevertheless provides ecologically relevant information 
for climate-wise conservation planning2,4,9. Such information is particularly useful for identifying regions and 
PAs where climate conditions are changing most rapidly, exposing them to high rates of climate displacement3. 
Climate velocity has typically been used to assess the climatic risks for the persistence of species and populations9, 
but in cases where rapid changes in the climate affect ecological engineer and keystone species, profound impacts 
can be carried over to community structure and ecosystem functions2. Considering PAs as such, climate velocity 
assessments can be used to identify PAs which face substantial difficulties in retaining ecological conditions that 
promote present-day biodiversity. Moreover, climate velocity analyses are important in regions which would 
need new stepping-stone conservation areas to support species movements to complement the PA network, or 
conversely, to detect PAs with particularly low climate velocities which could provide potential climate refugia 
for local populations3,4,6,10.

However, different methodological aspects may markedly affect velocity measures and subsequent risk assess-
ments in the PAs. First, in previous studies climate velocity is often assessed using only one variable, particularly 
the mean annual air temperature on land11,12, and in marine environments the mean sea surface temperature of 
the ocean7,8. Such a focus on single variables provides a limited understanding of climate-based risks for bio-
diversity11,13,14. Velocity studies that include several variables have mainly used multivariate climate gradients 
constructed using a principal components analysis (PCA)6,9. However, while PCA-axes effectively describe the 
overall climate space, they may obscure the interpretation of impacts of separate key drivers1,4. An alternative 
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approach used in a few recent studies is to assess the climatic exposure of different regions using multiple indi-
vidual variables9,12,13; these studies have reported notable spatio-temporal variations between the velocities of 
different climate variables. However, these assessments have rarely been calculated for real regional and national 
reserve networks although they would enable the detection of potentially divergent future threats to biodiversity 
in different PAs9,12,13.

Second, earlier cross-scale studies have shown that velocity values tend to decrease towards finer resolutions9,11. 
However, these studies have been restricted to the domains of the mesoclimate (resolutions of 1–100 km) or mac-
roclimate (>100 km scales)2, and none of the velocity resolution comparisons in terrestrial environments have 
examined the impacts of truly fine-grained (<100 m) climatic conditions created by local variation in topography, 
i.e. the topoclimate2,9,11. The same predominance of meso- and macroclimates is evident also in single-scale veloc-
ity studies which – except for Liang et al.15 – have employed climate data at a resolution of 800 m or coarser2,4,9,16. 
This overlook of topoclimatic patterns in the velocity assessments of PAs may lead to biased exposure assessments 
especially in rugged terrain3,11,17, as well as a limited ability to detect sites decoupled from the regional climate18–20 
and insufficient understanding of the degree of the overlap between present-day and future climate conditions in 
PAs2. A similar strong bias towards meso- and broad-scale velocity studies is evident also in marine environments, 
although substantial fine-scale climate change impacts and spatio-temporal climate refuges exist in the oceans21.

Here, we apply a climate velocity approach to provide the first assessment of the climatic exposure risks across 
a national PA network based on very fine-grained velocities of three established drivers of high latitude terres-
trial biodiversity11,22, measured on a spatial scale which reflects the local impacts of topoclimate. Our variables 
describe the future topoclimatic patterns both for winter and summer air temperatures, as well as for the climatic 
water balance23. The study area stretches over 1,000 km from hemiboreal deciduous forests via boreal coniferous 
forests to treeless tundra, representing a region where climate change is faster than the global average5. Our study 
system is the 1,778 protected areas included in the Natura 2000 network and situated in the mainland Finland. 
From this PA network we dissected 5,068 physically separate Natura 2000 PA polygons (hereafter referred to as 
‘Natura PAs’ or simply ‘PAs’) for the purposes of this study using a number of selection criteria (see Methods). 
Natura 2000 network is a part of the largest network of systematically selected protected areas in the world cover-
ing the most valuable species and habitats in 28 European Union countries24,25.

Methods
General approach.  To produce fine-grain climate velocity measures, we modelled monthly temperature and 
precipitation data averaged for the period from 1981 to 2010 at a resolution of 50-m, incorporating the physio-
graphic effects of solar radiation and cold-air pooling. Based on these data, we calculated estimates for the annual 
temperature sum above 5 °C (growing degree days, GDD, °C), the mean January temperature (TJan, °C) and the 
annual climatic water balance (WAB, the difference between annual precipitation and potential evapotranspira-
tion; mm) for our 50-m grid system covering Finland and the adjacent areas (Supplementary Fig. 1S). To investi-
gate how the data resolution affected the velocity measures, 50-m resolution climate surfaces of the three variables 
were spatially mean-aggregated to a 1-km resolution. For both resolutions, similar future climate surfaces were 
produced using an ensemble of 23 global climate models from the CMIP5 archives for the years 2070–2099 and 
the three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5)26. Then using climate-analog approach3,4,9, we measured 
climate velocities for each of the 50-m and 1-km grid cells based on the distance between climatically similar 
cells under the baseline and the future climates. In the final step, velocity values were averaged for the focal 5,068 
Natura 2000 PA sites to examine their climatic exposure and to assess the overlap between the current and future 
range in topoclimatic conditions in the PAs.

High-resolution climate data.  We developed monthly average temperatures (1981–2010) over the study 
domain at a spatial resolution of 50 × 50 m by building topoclimatic models based on data sourced from 313 
meteorological stations (European Climate Assessment and Dataset [ECA&D])27. The station network and mod-
eling domain covered Finland with an additional 100 km buffer, but it was also extended to cover parts of north-
ern Sweden and Norway for areas >66.5°N (Supplementary Figs. 1S and 2S). This was done because under the 
current climate changes, future climate spaces similar to the present climate in Finland may be found outside the 
country borders. Capturing the analogical climate space in areas beyond the country borders is essential in order 
to avoid developing a large number of velocity values deemed as infinite or unknown. This is especially impor-
tant in the approach applied in the study, i.e. measuring climate change velocity with the climate-analog velocity 
approach4,9. In total, our modeling domain constitutes nearly 50 million grid cells.

The methodology to produce the average air temperature data is fully described in Aalto et al.18, and thus only 
briefly explained here. For temperature modelling we applied generalized additive modeling (GAM) as imple-
mented in the computer software R-package mgcv version 1.8–728,29, utilising variables of geographical location 
(latitude and longitude, included as an anisotropic interaction), topography (elevation, potential incoming solar 
radiation, relative elevation) and water cover (sea and lake proximity). A leave-one-out cross-validation sug-
gested that our modelled monthly average air temperatures agreed well with the observations, with the root mean 
squared error (RMSE) ranging from 0.37 °C (July) to 1.49 °C (January; Supplementary Fig. 3S).

To produce gridded average annual precipitation data (1981–2010), we used global kriging interpolation 
based on the data from 343 rain gauges obtained from the ECA&D dataset (Supplementary Fig. 2S), geographical 
location, topography (elevation and eastness index) and proximity to the sea. Kriging interpolation was done 
using R package gstat version 1.1–030. The eastness index was obtained from a sine-transforming aspect raster 
surface calculated from a 50 m × 50 m digital elevation model to capture the effect of westerly winds (the prevail-
ing wind direction in the region) on the accumulated precipitation on windward slopes in mountainous areas. To 
ease the computational burden of the kriging procedure, the gridding was run at a resolution of 500 × 500 m. This 
was also justified as we expected the annual average precipitation to mainly reflect large scale orographic features, 
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and thus not to significantly vary across short geographical distances. After this, the gridded annual precipita-
tion was bilinearly interpolated into the same 50 × 50 m resolution as the air temperature data. A leave-one-out 
cross-validation was conducted over the gauge data and indicated a reasonable agreement between the measured 
and interpolated average annual precipitation sum with an RMSE of ca. 93 mm (Supplementary Fig. 4S).

Bioclimatic variables.  Three bioclimatic variables: the annual temperature sum indicating the accumu-
lated warmth (growing degree days, GDD, °C); the mean January air temperature (TJan, °C); and the climatic 
water balance (WAB, mm) were calculated from the high-resolution gridded climate data (Fig. 1). We focused on 
these three bioclimatic variables because several earlier species – climate modelling studies have employed same 
variables and demonstrated their ecological relevance to a large number of habitats and species from different 
taxonomical groups inhabiting northern environments22,31–36. Taken together, these three variables effectively 
complement each other by providing estimations of winter cold, seasonal warmth and moisture availability which 
are among the key drivers of biodiversity in our study region. For example, GDD determines the reach of matu-
rity, blooming and completion of life cycle in plant species and the development threshold of insect larvae, the 
mean temperature of January affects the overwintering survival of species, and the climatic water balance deter-
mines the moisture availability for both plant and animal species and the level of drought stress.

GDD represents the effective temperature sum above the base temperature of 5 °C37:

∑= − − >GDD T T if T T5 ( ), 5i
n

i b i b

where Ti denotes the mean temperature at day i, Tb represents the base temperature, and n is the length of the 
summation period. Since the daily air temperature data was not available, we estimated the GDD using monthly 
data following Araújo and Luoto38. The WAB is the difference between the total annual precipitation sum and the 
potential evapotranspiration (PET), which was estimated from the monthly air temperatures following Skov and 
Svenning39:

= . × °PET T58 93 /12above C0

Coarse resolution climate data.  To investigate how the climate data resolution affects the derived climate 
velocity measures, the high-resolution (50 × 50 m) climate surfaces were spatially aggregated onto a 1 × 1 km 
resolution grid using an areal mean function. Additionally, although spatially comprehensive, our study domain 
does not cover parts of western Russia which are adjacent to NE Finland, and which could be a direction for 
the escaping climates in the future40. Because data and computational constraints prevented us from realisti-
cally expanding the topoclimate modeling domain further eastward from the 100 km buffer zone depicted in 
Supplementary Fig. 1S, the E-OBS data set (version 17.0; 25 km × 25 km)41 covering the areas of ca. 30–50°E were 
employed, where necessary, to complement the climate velocity analyses for TJan.

Global climate model data.  To develop data on future climates, we used the climate projections for the 
twenty-first century based on an ensemble of 23 global climate models (GCMs), as available from the Coupled 
Model Intercomparison Project phase 5 archives26. These data were processed to represent the predicted aver-
aged changes in mean temperature and precipitation (with respect to the baseline 1981–2010) over the period 
of 2070–2099, and three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5)42. The climate model data depicting the 
predicted change in mean temperatures and precipitation with respect to the baseline climate were bilinearly 
interpolated onto a matching resolution of 50 × 50 m, and the change predicted by the GCMs was added to the 
spatially detailed baseline climate data. After this, the bioclimatic variables were recalculated for each RCP sce-
nario to allow the subsequent calculation of climate change velocities and measuring the overlap of the current 
and future climate ranges within the PAs.

Climate velocity metrics.  We calculated the climate change velocities for the three studied bioclimatic 
variables, GDD, TJan and WAB, using the approach developed by Hamann et al.9, referred to as the distance-based 
velocity or climate-analog velocity4. In this approach, climate-velocity metrics are calculated by measuring the 
distance between present-day locations with certain climatic conditions and their future climate analogues, 
divided by the number of years between the two points in time4. We calculated the climate-analog velocities both 
for the 50-m resolution grid and the 1-km resolution grid climate data by measuring the distance between cli-
matically similar grid cells for the present and future climates determined by the three climate scenarios, RCP2.6, 
RCP4.5 and RCP8.5.

Following Hamann et al.9, we selected the boundary values for the classes of bioclimatic variables so that the 
climatically matching grid cells were defined by setting the within-class range to be as small as possible while, at 
the same time, avoiding artefactual extreme precision, which could produce unrealistic sporadic patterns in the 
velocity. To achieve this target, we tested 2–3 different settings for each of the three climate variables and carried 
out a literature search for earlier class definitions applied to corresponding climate variables. Based on this, the 
following within-class ranges were selected for the consequent climate velocity analysis: GDD, within-class range 
50 °C; TJan, within-class range 0.5 °C; WAB, within-class range 50 mm. The present-day and future climate sur-
faces of the three climate scenarios were then reclassified by assigning the continuous climate values in each of 
the 50-m grid cells in one of the 51 GDD, 60 TJan, and 55 WAB categories covering the overall current and future 
range in the climate space of these variables. This enabled the execution of the search of the minimum distances 
between grid cells with similar present-day and future GDD/TJan/WAB climates. In technical terms, the search 
was carried out using the ArcGIS software (Desktop 10.5.1.) by employing the Euclidean distance function. The 
recommendation by Hamann et al.9 on the “use of gridded data with as high resolution as is computationally 
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feasible and justifiable based on the precision of interpolated climate grids” was achieved in our study by building 
fine-grained 50-m resolution topoclimatic models, i.e. we used an approach whose methodology and accuracy 
had been tested in our previous work18.

The resulting measures of the climate velocities for the three climate variables were employed in a series of sub-
sequent analyses. The high-velocity areas (‘velocity hotspots’) of the three climate variables were visually compared 
with each other based on maps showing their 50-m resolution velocities across the whole of mainland Finland.

Figure 1.  The study area and geographic variation of five environmental variables. (a) Location of the study 
area in northern Europe. (b) Elevation (m a.s.l.), and three main topographic relief regions in mainland Finland 
(1 = flatlands; 2 = gently undulating hilly terrain; 3 = rugged terrain with notable variation in elevation), (c) 
lakes, (d) growing degree days (base temperature 5 °C; GDD), (e) mean January temperature (°C), (f) climatic 
water balance (mm, difference between annual precipitation sum and potential evapotranspiration). (d–f) 
Represent average conditions over 1981–2010, modelled at a resolution of 50 × 50 m.
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Exposure of the protected areas.  From the 1,778 protected areas included the Natura 2000 network in 
mainland Finland we selected 5,068 physically separate Natura 2000 sites (polygons) for this study. Following 
Nila and Hossein25, we refer to these 5,068 sites as ‘Natura 2000 PAs’, or simply as ‘PAs’. Throughout the European 
Union, the Natura 2000 network aims to cover the most valuable species and habitats in the 28 member countries 
(see https://ec.europa.eu/environment/nature/natura2000/index_en.htm). The selection of Natura 2000 PAs was 
done so that first we dissected each physically separate Natura 2000 PA (i.e. Natura 2000 polygons physically 
disconnected from other Natura 2000 polygons; e.g. a Natura 2000 area consisting of 5 separate polygons were 
treated as five individual PAs), then we measured the area of each PA and selected those with a cover of 2 hectares 
or more. Another selection rule was that from the islands situated close to the coastline of mainland Finland, only 
PAs on larger islands were included (to avoid the inclusion of smaller islands and islets abundantly surrounded 
by water areas). For the 5,068 Natura 2000 PAs, we defined the high-velocity PAs (velocity hotspots) as the top 
5% showing the highest velocity values. These top 5% high-velocity PAs consisted of 253 sites located in main-
land Finland with the highest velocities out of the total of 5,068 PAs. These were assessed separately for the three 
climate variables, GDD, TJan and WAB, by calculating the mean of the corresponding velocities in the 50-m grid 
cells included in a given Natura 2000 PA. Based on these data, we assessed in how many of the PAs the velocity 
hotspots overlapped for two or three variables in the three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5).

Comparison of 50-m and 1-km velocities.  The comparisons of the velocity values at the 50-m and the 
1-km resolutions were done using only data for the GDD. This was because the velocity patterns for the WAB 
were rather localised and complex, and because the disappearing climate space in the mean January temperatures 
would complicate the resolution comparisons in the PAs located in N Finland. The comparisons of the GDD 50-m 
vs. 1-km resolution velocities in the 5,068 PAs were done in two ways. First, we compared the absolute values of 
50-m and 1-km GDD velocity values in each of the 5,068 PAs. For these comparisons, mainland Finland was 
divided into three relief regions on the basis of the general elevational and topographic features of the terrain 
(Fig. 1): (i) Relief region 1: flatlands with mostly even terrain (in this region, 10 × 10 km grid squares typically 
show height differences below 50 m), (ii) Relief region 2: with hilly, undulating terrain varying in height (with typ-
ically 50–200 m height differences in 10 × 10 km squares), and (iii) Relief region 3: with rugged terrain and deep 
valleys or high steeply sloped fell areas (with typically over 200 m height differences in the 10 × 10 km squares). 
Per-PA comparisons of the absolute differences in the two velocity values were made to assess the number of cases 
where the 50-m resolution GDD velocity was higher than the 1-km resolution velocity, and vice versa, and to 
examine the significance of these differences using a paired t-test. These comparisons and tests were done sepa-
rately for each relief region and each of the three RCPs.

Second, we examined the relative differences between the 50-m and 1-km GDD velocities in the 5,068 PAs. 
This was done in order to take into account the fact that similar absolute differences in the two velocity values 
may have a different ecological importance when occurring at different overall levels (e.g. a difference of 0.2 in the 
velocities very likely matters more between 0.1 and 0.3 than between 2.1 and 2.3). Then, we determined the top 
5% of the PAs with largest relative differences between the 50-m resolution and the 1-km resolution velocities and 
examined how they were divided in the three main relief regions of Finland.

Next, we used generalized linear models (GLMs)43 to test the importance of the relief region, size of the Natura 
2000 PA, within-PA elevation range and climate change scenario in explaining the relative differences between 
the 50-m and 1-km GDD velocities. We fitted a full GLM model where all four explanatory variables were con-
sidered at the same time. In this model, relief region was treated as ordinal variables with three levels, the size of 
the Natura 2000 PA and within-PA elevation range both as log-transformed continuous variables, while the forth 
variable, climate scenario (RCP2.6, RCP4.5 and RCP8.5), was treated as a categorical factor. Our main interest 
was in the first three variables (the relief region, the size of the PA and the elevation range within the PA). For 
these variables, we calculated their effect sizes based on the range between their predicted minimum and maxi-
mum values in the observation data while controlling for the influence of other predictors by fixing them at their 
mean values44.

Overlapping of present-day and future climate spaces in Pas.  In addition to the climate velocity 
analysis, we also examined the degree of overlap between the present-day range and projected future range of the 
three climate variables in each of the 5,068 Natura 2000 PAs. In order to assess the impact of the data resolution, 
these analyses were carried out using both the 50-m and the 1-km resolution climate data. Here, we examined 
whether the fine-grained topoclimate data showed more overlapping between the present-day and the future 
ranges than the mesoscale 1-km climate data in the PAs. Moreover, in cases where there were not any overlapping 
parts in the climate spaces, we assessed whether the estimated size of the gap between the present-day and the 
future ranges depended on the resolution of the climate data. All these assessments were done three times by 
comparing the present-day within-PA climatic ranges with the projected ranges under the three climate scenar-
ios, RCP2.6, RCP4.5 and RCP8.5. It should be noted that the future within-PA ranges for the GDD and TJan were 
always either overlapping with the present-day range or located above it, but for the WAB values they overlapped 
with the present-day range or were located either above or below it (i.e. indicating locally varying, contrasting 
future changes).

Results
The three climate variables showed complex spatial patterns of fine-grained velocities with contrasting 
high-velocity areas (i.e. the top 5% areas with the highest velocities) and different rates of velocity (Fig. 2). For 
all climate variables, the velocities increased towards the most severe climate scenario, RCP8.5. On average, 
they were the lowest for the WAB values (Fig. 2g–i) and highest for the TJan values (Fig. 2d–f). For the GDD 
(Fig. 2a–c), the highest velocities occurred in Southwest Finland, while for TJan the highest velocities, and areas of 
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completely disappearing winter thermal conditions, occurred in North Finland (Fig. 2e,f). The spatial patterns of 
the WAB velocities are complex, with mainly low velocities accompanied by scattered regions of higher velocities. 
In our PAs, the three climate variables very rarely coincided in high-velocity areas, ranging from a 15.8% overlap 
between the GDD and WAB to zero overlap between GDD and TJan hotpots (Supplementary Table 1S).

Due to the localised patterns of the WAB velocity and disappearing climate space in TJan, we focused our 
comparisons on the GDD velocities from the 5,068 PAs (Fig. 3). A comparison of the absolute differences between 
the velocities from the two resolutions shows that the mean GDD velocities were consistently higher at the 1-km 
resolution in all relief regions and under all climate scenarios (Supplementary Table 2S). Moreover, the propor-
tion of PAs where the 1-km velocity was higher than 50-m velocity was >81% in all comparisons, and in the most 
topographically rugged relief region (region 3) it was >90%.

The largest relative differences between the 50-m and 1-km resolution velocities in the PAs also occurred 
systematically more often in region 3 (Fig. 3, Supplementary Table 3S) although within-region variation also 
exists (Fig. 3d). The full GLM model showed that all three key considered variables (the relief region, size of the 
PA and within-PA elevation range) contributed significantly (p < 0.001) to the variation in the relative differences 
between the two velocity values (Supplementary Table 4S). However, the t-values from the GLM model and the 
effect size of our three explanatory variables showed that the relief region and within-PA elevation range were the 
two most important, with their order of importance switching between the two test results. Considering the effect 
of climate scenarios, the relative differences between the 50-m and 1-km velocities were the highest in RCP2.6 
and lowest in RCP8.5 (Fig. 3), suggesting that the buffering potential of the topoclimate decreases with increased 
climate warming.

The 50-m resolution climate data suggests that present-day and future climate spaces overlap in the studied 
PAs more often than the 1-km data show (Supplementary Table 5S). The degree of climatic space overlap varies 
greatly between the climate variables (Fig. 4). Between 76 and 564 PAs at 1-km resolution, and 103 and 823 PAs 
at 50-m resolution, respectively, are projected to have partly similar water balance conditions as they do at the 
present, but there is very little overlap between the present-day and future ranges of GDD and TJan. Similarly, 
fine-grained topoclimate data on the TJan overlaps only in the climate scenario RCP2.6 (Supplementary Table 5S). 
The commonness of the overlap decreases with the increasing severity of the climate scenario, e.g. in GDD, over-
lap occurs under RCP8.5 in only one PA with an elevation range >1,000 m (Figs. 1b and 4). In PAs with no over-
lap, the gaps between the current and future conditions are on average larger at the 1-km than the 50-m resolution 
(Supplementary Table 6S) and increase towards RCP8.5 (Supplementary Figs. 5S–7S). In GDD and TJan, the future 
range is projected to mainly occur above the current range, whereas for WAB it overlaps with the current range, 
or, in most cases, occurs below it, suggesting a trend towards drier conditions (Supplementary Table 6S).

Discussion
Earlier studies have shown that velocity assessments based solely on one climate variable provide limited under-
standing of exposure risks11,13, and that velocities of annual and seasonal temperature and precipitation vari-
ables may differ considerably12,13,45. Here, we have shown that fine-grained topoclimate velocity patterns and 
high-velocity areas can also diverge drastically between moisture and temperature variables, as well as between 
summer and winter variables. In agreement with earlier findings13,15, the velocities for temperature variables are 
higher than for the water balance, peaking at >10 km/year for TJan (Fig. 2).

The fine-grained high-velocity areas of the three climate variables rarely coincided in our PAs, suggesting that 
ecologically different species may face climate change-induced exposure risks very differently. The velocity of 
GDD peaks in the flatland areas in Southwest Finland, where already modest warming can cause large geographic 
climate displacement25. These findings have alarming implications for conservation planning since this region is 
characterised by a mixture of high species richness, sparse PA networks and a human-modified matrix between 
the PAs. In addition, notable climate displacement in GDD takes place also in the PAs situated in larger islands 
on the SW coast of Finland, especially under RCP 4.5 and RCP8.5 projections (Fig. 2). This indicates that species 
populations occurring in these islands have very limited space to track changes in climate even though many 
of the islands show a greater variation in elevation than the coastal flatlands. Successful tracking of climatically 
suitable space by species is further restricted by the large water areas especially between outer archipelago PAs and 
the mainland, making the island populations highly vulnerable to climate change.

Equally importantly, under RCP4.5 and RCP8.5 projections, North Finland is widely projected to lose the 
coldest January climates, with potentially devastating impacts on species favouring cold winters45,46. In agreement 
with the findings from Australia12, these are not solely poleward patterns. Because winters are relatively warmer 
in coastal rather than continental areas, the coldest winter climates will move several hundreds of kilometres east-
wards, towards Siberia. In contrast to the temperature velocities, fine-grained water balance velocities are milder 
and spatially sporadic. This irregularity probably emerges partly from the impacts of the coastline and inland 
waterbodies on the local rainfall patterns47, and partly from the difficulties in accurate modeling of fine-grained 
precipitation-related variables48, calling for caution in their use in climate exposure assessments.

From the four ‘climate domains’, macroclimate (>10 km), mesoclimate (1–10 km), topoclimate (10m-1km) 
and microclimate (<50 m)2,20, velocity studies have heavily focused on the macroclimate4,5 and mesoclimate 
scales11,16. This overlook of the topoclimate and microclimate has hindered the detection of climatically poorly 
coupled localities2,18,20 which may provide potential holdouts for species to resist climate change4,10,17,19,49. Here, 
using 50-m resolution climate data, we were able to examine the impacts of the topoclimate, reflecting the var-
iation in incoming solar radiation and cold air drainage, on the climate velocity estimates. Similarly to broader 
scales9,11, the GDD velocities were regularly lower at finer resolutions (50-m) than on a coarser scale (1-km). 
Consequently, climatically similar locations occurred, depending on the climate scenario and local topography, 
on average 12–45 km nearer in the landscape than the 1-km climate data suggest. The largest relative differences 
between the 50-m and 1-km velocities occurred more often in the most topographically rugged regions including 
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Figure 2.  Fine-grained climate-analog velocities of three climate variables in Finland. (a–c) Growing degree 
days (GDD), (d–f) mean January temperature, (g–i) climatic water balance. The velocities are calculated as the 
minimum Euclidean distance between the closest climatically similar location in the current climate and in 
the three future climates (a,d,g – RCP2.6; b,e,h – RCP4.5; c,f,i – RCP8.5), divided by the time separating the 
two periods, 1981–2010 and 2070–2099. The velocities were measured for all 50 × 50 m grid cells occurring in 
mainland Finland by extending, where required, the search of climate analogues beyond country borders (see 
Supplementary Fig. 1S). Note that, despite this, (e,f) suggest disappearing climate conditions.
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gorges and high fells2,9,17. However, within-region variation also occurred, suggesting that the consideration of the 
topoclimate alters the velocity estimates most notably in PAs which are embedded in the lowlands of an otherwise 
topographically variable landscape (Fig. 3d).

Comparing the fine-grained current and projected future ranges of climate variables within the PAs enables 
the assessment of whether employing topoclimate data alters the broadscale estimates of the degree or the lack of 
overlap between the future coolest locations and the present-day warmest sites2. Our results show that the con-
temporary and future topoclimate ranges of both temperature and water balance variables indeed overlap more 
often in PAs than the 1-km climate data suggests. This indicates the potential for topoclimatically deviant sites 
to support species’ extended persistence4,10,17,49. Thus, the fine-grained topoclimate variation has the potential to 
provide significant buffering against climate change in topographically rugged PAs, which is not readily visible in 
mesoscale velocities2.

However, in our case, the potential for topoclimatic buffering appears to be limited. For summer and win-
ter temperature variables, the within-PA overlap is very modest, especially for January temperatures (Fig. 4d–
f). Thus, our results reveal similar, substantial, within-PA turnover of climate space, as the earlier global16 and 
regional2 velocity studies, where only the largest PAs were projected to experience temperatures which would 
be similar to today. Our finding that topoclimatic variation may have only a limited buffering potential has sig-
nificant implications for conservation planning in many of the European Natura 2000 areas with modest eleva-
tion ranges, especially in the lowlands of Europe. Moreover, PAs located in flatlands around the circumboreal 
region, e.g. in North Russia, face the same risks, further boosted by the strong changes in the climate. It should be 
acknowledged that gathering even finer resolution climate data (i.e. microclimate data) might reveal convergent 
environments which are not visible in the topoclimate data, such as shaded gorges and ravine forests with high 
canopy cover, which could maintain climatic microrefugia, and help species persistence under climate warm-
ing19,20,50. However, constructing comprehensive microclimatic data across a nation-wide PA network would be a 
technically very demanding exercise10,50,51, and is thus not yet feasible.

Examining fine-grained climate velocities and within-PA variability of multiple key variables increases the 
understanding of the potential threats to species which are differently sensitive to the climate11,13,45. Our analysis 
reveals a modest overlap between the current and future fine-grained temperature conditions even in the PAs 

Figure 3.  Relative difference between 50-m resolution and 1-km resolution GDD velocity values in the 
protected areas (PAs) included in the Natura 2000 network (n = 5,068). The results are shown for three relief 
regions (1 = flatlands; 2 = gently undulating hilly terrain; 3 = rugged terrain) and three climate scenarios; (a) 
RCP2.6; (b) RCP4.5; (c) RCP8.5. Relative differences in velocities larger than zero indicate PAs where 1-km 
resolution velocities are larger than 50-m resolution velocities, and values which are smaller than zero indicate 
PAs where the 50-m resolution velocities are larger than 1-km resolution velocities. (d) Shows a zoomed-in 
example area in topographically heterogeneous, rugged terrain in North Finland.
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Figure 4.  The gap between the present-day and projected future fine-grained ranges for three climate variables 
in 5,068 Natura 2000 PAs. (a–c) Growing degree days (GDD, °C); (d–f) mean January temperature (°C); (g–i) 
climatic water balance (mm). The fine-grained (50-m resolution) within-PA future ranges of climate variables 
are based on RCP2.6 (a,d,g), RCP4.5 (b,e,h) and RCP8.5 (c,f,i). For GDD and the January temperature, the 
future range either overlaps with the current range or is fully separated above it (indicating a trend towards 
warmer conditions), whereas for the climatic water balance, the future range overlaps with the current range, 
or is fully separated either above (positive values, indicating increasingly moist conditions) or below (negative 
values, indicating increasingly dry conditions) it.
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with large elevation ranges. Furthermore, the high velocities detected here re-emphasise the arguments that adap-
tive conservation management and preparing for ecological change are crucial directions for climate-wise conser-
vation planning1,52. Increasing attention needs to be paid to establishing well-connected groups of topographically 
heterogeneous PAs, and conserving habitats with deviant microclimates that provide holdouts for extended spe-
cies persistence, and stepping-stones for dispersal2,10. In the identification of such holdouts and stepping-stones, 
the long-neglected issue in climate velocity research, topoclimatic variation, can play an integral role.

Data availability
The data which support the findings of this study are available from the corresponding author upon request.
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