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Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS)
requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD),
a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated
pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and
sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images
collected from .3,300 maize roots and .1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87
TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes
were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are
known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown
to affect RSA and 51 (37% of RSA-associated genes) are themselves transe–quantitative trait locus for another RSA-associated gene.
Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the
conservation of regulation of morphology across taxa.

The spatial arrangements of root systems, i.e. root sys-
tem architecture (RSA; Lynch, 1995), play a critical role
in plant productivity and tolerance to environmental

stresses. In maize (Zea mays), the majority of the root
mass is found in the top 0.3m of soil (Amos andWalters,
2006). This mass of roots has been referred to as the “root
crown” (Trachsel et al., 2011), the “core root” (Grift et al.,
2011), or the “core root system” (Hauck et al., 2015). The
term core root system is used hereafter for two reasons.
First, the term root crown originally referred only to the
above-ground portion of the root system (Bray et al.,
1959; Schwarz, 1972). Only more recently has this term
been used to describe roots within the top 0.3 m of soil
(Trachsel et al., 2011). Second, this term is easily confused
with the term “crown roots,” which refers to postem-
bryonic shoot-borne roots (Kiesselbach, 1999).
The genetic regulation of root development has been

extensively studied in Arabidopsis (Arabidopsis thaliana;
Dolan et al., 1993; Birnbaum et al., 2003; Petricka et al.,
2012a, 2012b) resulting in an in-depth understanding of
the relevant genes and pathways. Despite similarities in
embryonic root systems and some shared mechanisms
of genetic regulation, there are major anatomical differ-
ences between the root systems of Arabidopsis and ce-
real crops. The adult Arabidopsis root system comprises
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a tap root, a basal root, hypocotyl roots, internodal
shoot-borne roots, and lateral roots (Zobel, 2016). By
contrast, the maize root system is composed of the
embryonic primary root and variable numbers of
seminal roots, as well as postembryonic shoot-borne
and lateral roots (Hochholdinger and Tuberosa, 2009).
Similar to maize, sorghum (Sorghum bicolor) develops
shoot-borne roots; however, sorghum lacks seminal
roots (Singh et al., 2010). Based on these fundamental
morphological differences, it is unlikely that a com-
plete understanding of the genetic regulation of RSA
in these species can be elucidated from Arabidopsis.

Whereas functional studies on qualitative mutants of
genes with large effect sizes have deepened our un-
derstanding of the genetic control and developmental
processes of the root systems of cereals, a comprehensive
understanding of the genes underlying quantitative
variation in RSA has not been achieved (Hochholdinger
et al., 2018).

Genome-wide associated study (GWAS) offers the
opportunity to identify genes affecting natural varia-
tion of quantitative traits via the association of markers
across the genome with phenotypic variation within
diversity panels (Xiao et al., 2017). With the ready
availability of large numbers of genetic markers, phe-
notyping has become the bottleneck for GWAS. Several
root phenotyping pipelines have been developed for
genetic mapping (Topp et al., 2013; Zurek et al., 2015).
Most of these studies were conducted on young plants
grown in microcosms and mesocosms (Topp, 2016).
However, it has been observed in multiple species that
RSA varies across development and environments
(Rauh et al., 2002; Magalhaes et al., 2004; Trachsel et al.,
2013) and that roots grown under controlled conditions
do not match those grown under field conditions
(Poorter et al., 2016). Hence, if we wish to understand
the genetic control of RSA as it relates to crop growth in
target environments, it is necessary to phenotype roots
grown under agronomically relevant field conditions.
However, the throughput of current pipelines for ana-
lyzing RSA is insufficient to satisfy the phenotyping
needs of large-scale GWAS. Hence, thus far, efforts to
characterize RSA have mainly focused on quantitative
trait locus (QTL) mapping using biparental populations
with limited genetic diversity, population size, and
mapping resolution (Thomson et al., 2003; Giuliani
et al., 2005; Li et al., 2005; Liang et al., 2010; Cai et al.,
2012; Atkinson et al., 2015; Richard et al., 2015; Guo
et al., 2018). To date, few of the genes underlying RSA
QTL in cereal crops have been cloned (Mai et al., 2014;
Hochholdinger et al., 2018).

Maize and sorghum are both important crops, ranked
first and fifth, respectively, in global cereal production
(http://faostat.fao.org/). Maize and sorghum diverged
from a common ancestor ;12 mya (Swigoňová et al.,
2004). Approximately 60% of annotated genes are syn-
tenically conserved between these two species, and this
syntenically conserved set of genes accounts for.90% of
all genes characterized by forward genetics in maize
(Schnable and Freeling, 2011; Schnable, 2015). Syntenic

orthologs are more likely to retain consistent patterns of
gene regulation and expression across related species
(Davidson et al., 2012), and may be more likely to retain
ancestral functional roles than nonsyntenic gene copies
(Dewey, 2011). However, to date, the conservation of
functional roles for syntenic orthologous gene pairs in
related species has not been widely tested.

We report the development of Core Root Excavation
using Compressed-air (CREAMD), a high-throughput
pipeline suitable for the excavation and cleaning of
field-grown roots, and Core Root Feature Extraction
(COFE), a semiautomated pipeline to extract features
from images of roots. CREAMD-COFE was used to phe-
notype roots from maize and sorghum diversity panels.
Comparative analyses of maize and sorghum GWAS re-
sults provided strong evidence for shared genetic control
of RSA in these two species and the conservation of
functional roles for syntenic orthologous gene pairs.

RESULTS

CREAMD-COFE Enables the Efficient Excavation,
Cleaning, and Phenotyping of Core Root Systems

Manual excavation and cleaning of field-grown roots
is labor intensive (Trachsel et al., 2011; Colombi et al.,
2015). To simplify the phenotyping of RSA from field-
grown plants and thereby enable large-scale genetic
studies under agronomic conditions, we developed
CREAMD, a pipeline for the rapid excavation and clean-
ing of roots. CREAMDuses compressed air to remove soil
from core root systems (see “Materials and Methods”;
Fig. 1; Supplemental Text S1).

Following excavation and cleaning, core root systems
were photographed (see “Materials and Methods”;
Fig. 1). COFE, a semiautomated pipeline, was used to
extract traits from the resulting images (Supplemental
Text S1). COFE is an adaptation of the ARIA software
(Pace et al., 2014), which had been developed for lab-
based phenotyping of immature root systems.

There are two major potential sources of error be-
tween auto-extracted trait values and ground truth: (1)
errors introduced via the projection of three-dimensional
(3D) traits onto a two-dimensional (2D) image; and (2)
errors in the extraction of trait values from2D images. To
distinguish between these two potential sources of error,
we compared COFE-extracted trait values to trait values
obtained by manually measuring 3D core root systems
(ground truth) and to trait values manually extracted
(using ImageJ) from 2D photos of the same core root
systems. These comparisons were performed for;5% of
all collected maize and sorghum core root systems
(“Materials and Methods”). The coefficient of determi-
nation (r2) between COFE’s auto-extraction trait values
andmanual measurements of maximumwidth and depth
from 3D core root systems are 0.54 and 0.46, respectively.
By contrast, the r2 for the same two traits between COFE’s
auto-extracted trait values and measurements obtained
using ImageJ from photos are 0.88 and 0.87, respectively
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Figure 1. Extraction of RSA traits from binary images of core root systems using COFE. Illustration of root cleaning (A) and
phenotyping of CREAMD pipeline (B) are shown. C, Illustration of four out of six traits extracted via COFE. D, Comparison of RSA
trait values from the inbred line B73 extracted by COFE from roots collected using CREAMD or water-based root cleaning. Data
are means6 SD; ns, not significant, Student’s t test; n 5 15. E, Heritabilities of RSA trait values obtained from the SAM Diversity
Panel via CREAMD-COFE; n 5 3,196 roots per view. See Table 1 for abbreviations.
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(see “Materials and Methods”; Supplemental Fig. S1).
These results demonstrate that COFE can accurately ex-
tract trait values from 2D images of core root systems
(Fig. 1) and that much of the difference between COFE-
extracted trait values and ground truth is due to the chal-
lenge of representing 3D core root systems in 2D images.

The air-based root cleaning pipeline, CREAMD, in-
creases the speed of root cleaning 6.5-fold as compared
with a previously described water-based root cleaning
pipeline previously described by Trachsel et al. (2011;
Supplemental Table S1), while yielding comparably
intact core root systems; trait values obtained from 15
plants of each of four maize genotypes via CREAMD-
COFE (“Materials and Methods”) are similar to those
obtained via the water-based root cleaning pipeline
(Fig. 1; Supplemental Fig. S2). In addition to being
substantially faster than the water-based root cleaning
pipeline without comprising root quality, CREAMD
can be conducted at remote field sites that lack access
to water.

Phenotypic Variation of RSA in Maize

Three biological replications of 369 inbred lines from
the SAM Diversity Panel (Leiboff et al., 2015) were
grown (“Materials and Methods”). Core root systems
from up to three competitive plants (“Materials and
Methods”) from each of the three replications were
excavated and cleaned using CREAMD. Each core root
system was first photographed using a camera angle
selected to obtain a view from a neighboring plant in
the row in which the plant under analysis was grown
(view 1) and then again after rotating the core root
system by 90° (clockwise when viewing from above),
resulting in view 2 (“Materials and Methods”). Trait
values of core root systems ofmaize from the two views
did not exhibit statistically significant differences
(Supplemental Table S2), suggesting maize plants
do not substantially alter their RSA in response to
neighbors, at least at the planting densities used here
(“Materials and Methods”). Even so, when viewed
from above core root systems do not exhibit radial
symmetry (see “Materials andMethods”; Supplemental
Fig. S3). Consequently, for subsequent analyses, we
classified the two images of each core root system as the
larger and smaller on a per trait basis (see “Materials and
Methods”; Supplemental Fig. S4; Supplemental Table S3).

COFE was used to extract the following six types of
traits from both images of each core root system (Fig. 1;
Table 1; Supplemental Text S2; Supplemental Figs.
S4–S6). Because we extracted traits from both images of
each root, a total of twelve traits were extracted. Max-
imum and median widths (designated smMaxWidth,
lgMaxWidth, smMedWidth, and lgMedWidth) served as
measures of the horizontal expansion of core root sys-
tems. The Adjusted Depth (smAdjDepth and lgAdj-
Depth), which is the root depth at which the ratio of root
pixels to total pixels exhibits the highest heritability
(Supplemental Fig. S5), was used as a measure of the
depth of the core root system. Convex hull (smConArea

and lgConArea), the minimum set of points that define a
polygon containing all the pixels of a core root in an
image, was used to describe the overall expansion of a
core root system. The penultimate trait was total root
area (smArea and lgArea), which is the total number of
pixels of roots in a photograph.

The final extracted trait was root angle. The scientific
literature does not offer a consistent definition of root
angle, particularly among, but even within, species
(Vitha et al., 2000; Li et al., 2005; Hargreaves et al., 2009;
Singh et al., 2010; Courtois et al., 2013; Richard et al.,
2015), among developmental stages (Omori and Mano,
2007; Fang et al., 2009; Trachsel et al., 2011; Pace et al.,
2014; Zurek et al., 2015), and across environments
(Topp et al., 2013; Uga et al., 2013; Huang et al., 2018).
Due to the low heritabilities (,0.2) of two previously
defined measures of root angle (CA) and top angle
(IAngRt; Trachsel et al., 2011; Colombi et al., 2015), we
defined a root angle trait based on width profiles
(smWPA and lgWPA). High values of WPA are associ-
ated with steep roots.WPA exhibits higher heritabilities
(0.50 for lgWPA and 0.52 for smWPA) than the two pre-
viously described root angle traits (Fig. 1; Supplemental
Fig. S6; Supplemental Text S2).

The heritabilities of the twelve traits ranged from 0.47
for smMaxWidth to 0.61 for smArea and lgArea, with the
exception of smAdjDepth and lgAdjDepth, which had the
lowest heritabilities (0.33 and 0.37; Fig. 1). For five of
the six types of root traits (Area, ConArea, MedWdith,
MaxWidth, Adjusted Depth) the two views (large and
small) were positively correlated. Correlations be-
tween larger and smaller views of the collected RSA
traits range from 0.92 for MaxWidth to 0.98 for Area
(Supplemental Table S4). The pairwise Pearson correlation
coefficients ranged from 0.45 (between smAdjustedDepth
and smMedWidth) to 0.97 (between smArea and smCo-
nArea). Both views ofWPA exhibited negative correlations
with all other RSA traits (Supplemental Table S5).

To determine correlations between RSA and above-
ground traits, we compared the 12 RSA traits with four
above-ground traits: plant height, plant ear height,
flowering time (days to anthesis), and node number
data from Leiboff et al. (2015). Even though the root and
above-ground traits were collected in different envi-
ronments, both views of five of the six types of root
traits (Area, ConArea, MedWdith, MaxWidth, Adjusted
Depth) were positively correlated with all four above-
ground traits. Pairwise Pearson correlation coefficients
ranged from 0.36 (between smMaxWidth and node
number) to 0.59 (between lgArea and plant ear height).

Table 1. Abbreviations of RSA Traits

Abbreviation Trait

Area Root area
ConArea Convex hull area
MedWidth Median width
MaxWidth Maximum width
WPA Width-profile angle
AdjDepth Adjusted depth
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Similarly, both views of WPA exhibited negative corre-
lations with all four above-ground traits (Supplemental
Table S5). These correlations between RSA and above-
ground traits support the hypothesis that by selecting for
the latter breeders may have inadvertently selected for
the former.

GWAS for RSA Traits

FarmCPU accounts for kinship and population struc-
ture in GWAS (Liu et al., 2016). An efficient imple-
mentation of FarmCPU termed FarmCPUpp (Kusmec
and Schnable, 2018) was used to perform GWAS on
the SAM Diversity Panel, which was previously geno-
typed with ;1.2 M SNPs (Leiboff et al., 2015). RSA trait
values were adjusted to account for field-based spatial
variation (“Materials andMethods”). The 107 significant
SNPs were associated with six types of RSA traits (each
of which has two views, resulting in a total of 12 traits)
using a false discovery rate (FDR) cutoff of ,0.05
(Supplemental Table S6; Benjamini andHochberg, 1995).
Only 20% (20/107) of these trait-associated SNPs (TASs)
were associated with both views of the same trait (i.e.
10 pairs of TASs), a result that is consistent with our
finding that roots do not exhibit radial symmetry
(Supplemental Fig. S3). In addition, ;6% (7/107) of
the TASs were associated with two or more traits, a
result consistent with the high correlations among

traits (Supplemental Table S4). For 77/87 of the TASs
(88%) it was possible to identify a candidate gene
(“SNP-genes”), which was defined as the gene nearest
a TAS within a 20-kb window centered on that TAS
(Supplemental Table S6).
A SNP located within GRMZM2G148937, Big embryo

1 (Bige1; Fig. 2), was associated with the trait smWPA.
Bige1, which encodes a MATE transporter, is one of
only eight clonedmaize genes with a known function in
root development (Hochholdinger et al., 2018). A loss-
of-function mutant of Bige1 displays increased number
of seminal roots and lateral organs during vegetative
development as compared with wild-type controls
(Suzuki et al., 2015). Within the SAM Diversity Panel,
inbred lines that carry the ALT (i.e. the non-B73) allele
of Bige1 have significantly higher mean values of
smWPA (P5 0.01) than those that carry the REF (i.e. the
B73) allele (Fig. 2). Based on published trait data
(Leiboff et al., 2015), inbred lines homozygous for the
ALT allele of bige1 were shorter and flowered earlier
than those homozygous for the REF allele, a result
consistent with those of Suzuki et al. (2015). Inbred
lines homozygous for the ALT allele of bige1 also
exhibit reduced ear height and plant height
(Supplemental Fig. S7). In addition, based on pub-
lished shoot apical meristem (SAM) phenotypic data
(Leiboff et al., 2015), inbred lines that carry the ALT
allele of Bige1 have SAMs with larger radii. This is
consistent with a previous report that SAM radius is

Figure 2. Association of Bige1 (GRMZM2G148937) with maize smWPA. A, Manhattan plot of SNP-based GWAS for smWPA;
genemodel with the position indicated of the RSA-associated SNPwithin the intron. B, Representative root images of inbred lines
homozygous for the ALT (non-B73) and REF (B73) alleles of the RSA-assocciated SNP within Bige1. Illustrated inbred lines are
LH52 (ALT allele) and LH57 (REF allele). C, Distribution of trait values of inbred lines homozygous for the ALT and REF alleles.
Student’s t test; ***P , 0.001.
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correlated with flowering time, ear height, and plant
height (Leiboff et al., 2015).

Homologs from other species for 10 of the remaining
76 SNP-genes (13%) are known to influence RSA
(Supplemental Table S7). For example,GRMZM2G143756,
a maize homolog of an Arabidopsis ABCG transporter,
was associated with lgArea. Members of a clade of five
Arabidopsis ABCG transporters are required for the syn-
thesis of an effective suberin barrier in roots, and seedlings
of the abcg2 abcg6 and abcg20 triple mutant of Arabidopsis
exhibit fewer lateral root primordia and fewer lateral
roots thanwild-type controls (Yadav et al., 2014). In potato
(Solanum tuberosum), ABCG1-RNA interference plants
exhibit reduced suberin content in root exodermis cells
and tuber periderm cells. The lower suberin content
leads to reduced root volume (Landgraf et al., 2014).
GRMZM2G013128, a maize homolog of the Arabi-
dopsis SMXL3 gene, was associated with variation in
both the smMaxWidth and lgMedWidth traits. In Arabi-
dopsis, SMXL3 is highly expressed in root vasculature;
double mutants of smxl3;smxl4 and smxl3;smxl5 exhibit
reduced primary root lengths as compared with wild-
type controls (Wallner et al., 2017). GRMZM2G013324,
a maize homolog of Arabidopsis SHV3, was associated
with variation in the trait lgMaxWidth. SHV3 encodes a
glycerophosphoryl diester phosphodiesterase–like pro-
tein. A mutant of shv3 exhibits a defective root hair phe-
notype (Jones et al., 2006). GRMZM2G400907, a maize
homolog of GTE4 in Arabidopsis, was associated with
variation in smMedWidth. GTE4 is a Bromodomain and
Extra Terminal domain factor, which functions in the
maintenance of the mitotic cell cycle. An Arabidopsis
mutant of gte4 exhibits significant shorter primary roots
and defective lateral roots (Airoldi et al., 2010).

eRD-GWAS of Maize RSA

Conventional GWAS uses SNPs as the explanatory
variable. By contrast, eRD-GWAS uses gene expression
levels as the explanatory variables to associate genes
with phenotypic variation (Lin et al., 2017). Because
eRD-GWAS has been shown to identify gene/trait as-
sociations that are complementary to those identified
via SNP-based GWAS (Lin et al., 2017), we also con-
ducted eRD-GWAS.

RNA sequencing (RNA-seq) data from 2-cm tips of
germinating seedling roots are available for a subset
(n 5 246) of the SAM Diversity Panel (Kremling et al.,
2018). eRD-GWAS was conducted on this subset of the
SAM Diversity Panel, resulting in the identification of
62 gene-trait associations (Supplemental Table S8).
Thirty-four percent (21/62) of “eRD-genes” are associ-
atedwithmore than twoRSA traits, whereas 42% (26/62)
are associated with the two views of the same RSA traits.
For example, GRMZM2G021410, which encodes a pu-
tative a/b-hydrolase superfamily protein, is associated
with all six root traits. Twelve of the 62 unique eRD-
genes (19%) have homologs in Arabidopsis or Medicago
truncatula with known functions in root development

(Supplemental Table S9). For example, Arabidopsis ho-
mologs of four eRD-genes associated with variation in
the smaller view of root area (smArea) of maize (Fig. 3)
have been associated with root development in Arabi-
dopsis. An Arabidopsis mutant, sgt1b (a homolog of
GRMZM2G105019), exhibits auxin-resistant root growth
under low concentrations of auxin (Gray et al., 2003). An
RNA interference mutant of wpp2 (a homolog of
GRMZM2G309970) exhibits delayed root development,
reduced root length, and fewer lateral roots as compared
with wild-type controls (Patel et al., 2004). SCN1 (a ho-
molog of GRMZM2G012814) encodes a RhoGTPase
GDP dissociation inhibitor (RhoGDI) that restricts the
initiation of root hairs to trichoblasts (Carol et al., 2005).

Network Analyses of RSA-Associated Genes

Expression quantitative trait loci (eQTL) mapping is
used to identify DNA polymorphisms associated with
variation in gene regulation (Gilad et al., 2008). 110 of
the RSA-candidate genes were expressed in at least half
of the 246 genotypes used for eRD-GWAS. eQTL
analyses were conducted for each of the 66/77 qualified
SNP-genes and each of the 44/62 eRD-genes that
passed this expression profile criterion (“Materials and
Methods”). At an FDR cutoff of ,0.05, 601 eQTL were
identified for 58/66 (88%) of the SNP-genes and 39/44
(89%) of the eRD-genes (Supplemental Table S10). In cis
and trans, 69/601 (11.5%) and 447/511 (88.5%) of these
eQTL acted, respectively (Supplemental Table S11;
“Materials and Methods”). For at least one of the other
61 genes, 36 of the 97 (5 58 13 9; 37%) SNP-genes and
eRD-genes are themselves transeQTL. This level of
enrichment is statistically significant (P 5 2.2e-16,
“Materials and Methods”), and suggests the existence
of a regulatory network involving both SNP-genes and
eRD-genes.

To further explore the existence of a regulatory net-
work, a Gaussian Graphical model (GGM) was used to
construct a GGM-based coexpression network for the
246 genotypes using the RNA-seq data from root tips
that had been used in the eQTL analyses, and thereby
identify putative regulatory relationships among the
139 RSA-associated genes (77 SNP-genes and 62 eRD-
genes) and the nine root-related genes (eight cloned
maize root-related genes, plus rum1-like1, a homeolog
of rum1; “Materials and Methods”; Hochholdinger
et al., 2018). In total, 26 unique RSA-associated genes
(16/77 SNP-genes and 10/62 eRD-genes) are coex-
pressed with one or more cloned maize root-related
genes. For example, 17 root candidate genes (nine
SNP-genes and eight eRD-genes) were included in the
GGM-based coexpression network that contains rth1,
rum1, rul1, and bige1 (Fig. 4). The rth1 gene encodes the
SEC3 subunit (Wen et al., 2005) of the exocyst complex
(Hála et al., 2008) that controls the exocytotic growth of
root hair tip. The rum1 gene encodes an AUX/IAA
protein and plays key roles in lateral and seminal root
formation (Woll et al., 2005; Zhang et al., 2016), whereas
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rul1 is a homeolog of rum1 that exhibits 92% sequence
identity and shares the canonical features of AUX/IAA
protein (von Behrens et al., 2011). In another module of
the GGM-based coexpression network, nine root can-
didate genes (seven SNP-genes and two eRD-genes)
were coexpressed with rth3, rth5, and rth6 (Fig. 4). Rth5
and rth6 play important roles in cellulose biosynthesis
and are involved in root hair elongation (Nestler et al.,
2014; Li et al., 2016), whereas rth3 is a member of CO-
BRA gene family that is required for root hair elonga-
tion and contributes to grain yield (Wen and Schnable,
1994; Hochholdinger et al., 2008).

Comparative GWAS for RSA of Maize and Sorghum

Core root systems of up to five competitive plants were
also collected and phenotyped using the CREAMD-
COFE pipeline for a subset (n 5 294) of the Sorghum As-
sociation Panel (SAP; Casa et al., 2008), which will be
designated the SAP-RSA (Supplemental Table S12). The
SAP-RSA was grown in Mead, NE (“Materials and
Methods”), and phenotyped using CREAMD-COFE for
the same RSA traits as was done for maize. The heri-
tabilities and pairwise correlations of these traits in
sorghum were similar to maize (Supplemental Fig. S8).
GWAS for the SAP-RSA was conducted using 205k
SNPs from published Genotyping by Sequencing (GBS)
data (Morris et al., 2013). In total, 132 TASs (comprising
115 unique TASs) were detected for the RSA traits
with FDR ,0.05 (Supplemental Table S13). Among the
132 sorghum TASs, 9% (12/132) were associated with

multiple RSA traits or two views of the same RSA trait.
Whereas the minor allele frequencies of sorghum TASs
are similar to those of themaize, the effect sizes of TASs,
which is an estimate of the contribution of each SNP to
the total genetic variance (Park et al., 2011), from sor-
ghum are significantly larger than those from maize
(P , 0.01; Supplemental Fig. S9), presumably reflecting
the greater statistical power of themaizeGWAS, resulting
in a greater ability to detect smaller effect loci.
The similarities ofmaize and sorghumRSAs (Yamauchi

et al., 1987), in addition to the syntenic relationship of their
genomes (Schnable et al., 2011, 2012), led us to hypoth-
esize that these species have conserved genetic control
for RSA. To test this hypothesis, a comparison was
conducted between the unique TASs from GWAS for
RSA for maize and sorghum. Syntenic genes were
identified within 20-kb windows centered on maize
TASs and 500-kb windows centered on sorghum TASs
(“Materials and Methods”). These window sizes were
selected based on average linkage disequilibrium (LD)
values of 10 kb and 250 kb for the SAM diversity and
SAP-RSA panels, respectively (“Materials and Methods”).
With use of an FDR cutoff of,0.05 for both species, seven
pairs of syntenic geneswere identified (Supplemental Table
S14). Based on a permutation test, this is more overlap than
would be expected by chance (P 5 1e-04, “Materials and
Methods”). For example, GRMZM2G028521, annotated as
maize citrate transporter 1 (citt1), was identified via SNP-
based GWAS for smArea and lgMaxWidth. Its sorghum
homolog Sb01g047080 was 138 kb away from the sor-
ghum TAS associatedwith both smArea and lgMaxWidth
(Fig. 5). Although some syntenic gene pairs were not

Figure 3. Expression levels of three maize ho-
mologs of Arabidopsis root-related genes were
associated with smArea via eRD-GWAS. A,
Manhattan plot of eRD-GWAS for smArea. Three
homologsofArabidopsis root-relatedgenes—ZmSGT1
(GRMZM2G105019),ZmSCN1 (GRMZM2G012814),
and zmWPP2 (GRMZM2G309970) —were detected.
Correlation coeffecients (r) of expression levels
and trait values of smArea for the three genes are
20.23, 0.25, and 0.22, respectively. P, 0.01 for
all correlations. B to D, Representative root im-
ages of inbred lines having extremely low and
extremely high expression levels of the three
candidate genes.
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associated with the same RSA traits in maize and sor-
ghum, the associated traits exhibited high correlations.

This is also more overlap than we detected in two
pairs of intraspecific GWAS for above-ground traits
conducted as controls. First, we conducted GWAS for
multiple traits using mostly previously published data
from two genetically distinct maize diversity panels
grown in separate environments. The Yan panel, which
consists of 368 inbred lines, was grown in China (Li
et al., 2013; Yang et al., 2014), whereas the SAM Di-
versity Panel (Leiboff et al., 2015) was grown in the
United States (“Materials and Methods”). These panels
do not include any shared inbred lines. Both panels
were phenotyped for four traits: plant height, plant ear
height, flowering time, and ear length. Data for the Yan
and SAM Diversity Panels were obtained from Yang
et al. (2014) and Leiboff et al. (2015), respectively (ex-
cept for EL of the SAM Diversity Panel, which is pre-
viously unpublished data, see “Materials andMethods”).
Through GWAS conducted using an FDR cutoff of,0.05
for both panels, 24 and 18TASswere detected from theYan
and SAM Diversity Panels, respectively (Supplemental
Table S15). With use of methodology similar to that de-
scribed for the comparative interspecific GWAS for RSA
(“Materials and Methods”), no overlapping TASs were
identified between the two maize panels, even using
window sizes as large as 100 kb. Next, we conducted
another pair of intraspecific GWAS on two diversity
panels that consisted of the same inbred lines and that
were genotypedwith the same set of SNPs, but thatwere
grown in different environments and phenotyped by
different groups. Ninety-seven percent (273/282) of the
members of the Maize 282 association panel (Peiffer
et al., 2014) are a subset of the SAM panel. This subset
of 273 inbred lines will be referred to as the “Maize273”
and “SAM273” panels. Both panels were phenotyped
for four traits: plant height, plant ear height, flowering

time, and ear length (“Materials and Methods”).
Detected from the Maize273 and SAM273 panels were
15 and 13 TASs, respectively (Supplemental Table S16).
Even though presumably genetically identical inbred
lines were analyzed with the same genotyping data,
only two overlapping TASwere identified. The number
of shared candidates did not increase even when using
window sizes up to 100 kb. The absence of shared sig-
nals identified via GWAS conducted within a single
species and the very small number of overlapping sig-
nals within a single diversity panel provides further
evidence that the multiple pairs of RSA-associated
syntenic genes detected between the two species is
significant.

DISCUSSION

Accurate phenotyping is an essential component of
GWAS. Phenotyping RSA, i.e. the topology and distri-
bution of roots (Lynch, 1995), is challenging due to
tradeoffs between throughput and intactness (Topp
et al., 2016). To enable high-throughput excavation
and cleaning of core root systems, thereby making
feasible GWAS for RSA, we developed the CREAMD
pipeline, which offers a 6X speed advantage in root
cleaning as compared with conventional water-based
methods (Trachsel et al., 2011; Colombi et al., 2015),
while yielding comparably intact core root systems. In
addition, the towable air-compressor, which is the key
component of the CREAMD pipeline, simplifies the
phenotyping of RSA in multiple environments, even
when a nearby water source is not available. This
promises to make the study of genotype-environment
interactions of RSA feasible.

Another phenotyping challenge is the complicated
topology and structure of RSA, particularly of adult

Figure 4. Gaussian Graphical model–based coexpression networks. Two clusters illustrating putative regulatory relationships
among RSA-associated genes (A) and cloned root genes (B) are shown. Yellow dots indicate cloned root-related genes, green dots
indicate genes identified via eRD GWAS, and purple dots indicate genes identified via SNP-based GWAS.
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plants. Like others (Trachsel et al., 2011; Topp et al.,
2013; Pace et al., 2014), we used multiple 2D images
in an effort to capture more of the 3D complexity of
RSA. To convert these images to trait values we de-
veloped the COFE software, which offers several ad-
vantages relative to alternative software packages such
as GiA Roots (Galkovskyi et al., 2012) and DIRT (Das
et al., 2015). The accuracy and flexibility of the
CREAMD-COFE pipeline is supported both by com-
parisons to ground truth data and the relatively high
heritabilities observed across highly diverse germ-
plasm that exhibits highly divergent RSA phenotypes.
Because the density cutoffs used for the AdjDepth traits
were selected to maximize heritabilities (Supplemental
Fig. S5) and these cutoffs are likely to be affected by
factors such as soil type, crop management, excavation

date, and weather, we recommend determining the
optimal cutoffs for each independent project.
The availability of the CREAMD-COFE pipeline en-

abledus to conduct high-throughput phenotyping of RSA
traits in diversity panels of adult, field-grown maize, and
sorghum plants. After collecting phenotypic data, we
used two complementary GWAS approaches to identify
RSA-associated maize genes. Conventional SNP-based
GWAS associate variation in SNP genotypes across a di-
versity panelwith phenotypic variation. By contrast, eRD-
GWAS uses expression levels of genes as the explanatory
variable for GWAS (Lin et al., 2017). The robustness of
eRD-GWAS is demonstrated by the fact that even though
read counts obtained from RNA-seq data from root tips
excised from germinating seedlings were used as the
explanatory variable for the RSA of adult field-grown

Figure 5. Comparative GWAS between maize and sorghum for smArea. A, Manhattan plots of Chromosome 1 from SNP-based
GWAS for smArea of maize (top) and sorghum (botttom) identified a pair of RSA-associated syntentic genes; homologous se-
quences are indicated in pink. B, Genomic positions of the syntenic gene pair from (A). C, Inbred lines of maize (left pair; LH150
and A188) and sorghum (right pair; White Kafir and D940Y) fixed for ALTand REF alleles of the SNPs associated with smArea. D,
Distribution of trait values of maize (left) and sorghum (right) inbred lines homozygous for the ALT and REF alleles of the SNPs
associated with smArea. Student’s t test; ***P , 0.001.
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plants, it was still possible to identify strongly supported
candidate genes. Consistent with Lin et al. (2017), few
RSA-associated genes were detected by both GWAS
approaches, providing further evidence that the two
approaches are complementary.

The ability of our pipeline to detect true positives is
supported by the finding that homologs of 16% (22/
139) of the RSA-associated maize genes are known to
affect RSA in other species, one of the highest confir-
mation rates reported in crops (Xiao et al., 2017). In
addition, 26 RSA-associated genes are coregulated with
genes previously shown to affect RSA and 37% of RSA-
associated genes are themselves transeQTL for at least
one other qualified RSA-associated gene (again, sig-
nificantly more than would be expected by chance).
Finally, we detected substantially more pairs of RSA-
associated syntenic genes in maize and sorghum than
would be expected by chance. In combination, these
results provide strong support for the accuracies of our
gene/trait associations and demonstrate that the
CREAMD-COFE pipeline is sufficiently accurate for
use in GWAS.

We photographed each core root system from two
directions. Initially, we were surprised that there was
little overlap between the SNPs or genes associated
with a given trait from the two views. However, in
contrast with published reports (Colombi et al., 2015),
we showed that core root systems are not radially
symmetrical. As a consequence of this asymmetry, the
two 2D images we captured of a given core root system
typically exhibited different trait values. It is therefore
not surprising that we often identified different genes as
being associated with the same nominal “trait” from the
smaller and larger views of the same core root system.

Seven pairs of syntenic maize and sorghum genes are
associated with RSA traits, which is significantly more
overlap than would be expected by chance. Chen et al.
(2016) used a comparative GWAS approach to identify
shared genetic control among maize and rice homo-
logs for biochemical composition of grain and leaves.
Their analysis relied upon conservation of biochemical
pathways across taxa. It was not obvious that the reg-
ulation of morphology would be shared across taxa as
has been demonstrated by this study.

There is substantial overlap among the RSA-
associated genes detected in maize and sorghum that
were grown in different environments but phenotyped
by the same group using the samemethodology. This is
in line with the observation that overall gene expression
profiles of maize roots are substantially more influ-
enced by genotype than by environmental stress factors
such as drought (Marcon et al., 2017). By contrast, we
found no overlap among trait-associated genes from
the same panel of maize inbred lines that had been
genotyped with the same markers, but were grown in
different environments and phenotyped by different
groups. Although these two groups were nominally
measuring the same traits, the lack of overlap among
trait-associated genes suggests that differences in
phenotyping methodologies and hence trait values

may be a major contributor to differences in GWAS
results among experiments.

Given its fast rate of LD decay, GWAS in maize re-
sults in single-gene or near single-gene resolution. By
contrast, as a consequence of its slower rate LD decay as
compared with maize (Morris et al., 2013), GWAS in
sorghum does not (Li et al., 2015). However, due to the
syntenic relationship between maize and sorghum
(Schnable et al., 2011, 2012), our data indicate that
GWAS in maize has the potential to identify candidate
genes in that control quantitative traits within large
chromosomal windows of sorghum.

More generally, our results suggest that comparative
multispecies GWAS has the potential to enhance our
understanding of within-species genetic architecture.
Indeed, some RSA-associated genes detected in maize
but not sorghum may be false-negative associations
(and vice-versa). This is because within a given species
it may not be possible to detect an association between a
gene and a relevant trait as a consequence of (among
other factors) low minor allele frequencies, small effect
sizes and/or evolutionary histories (Lai et al., 2018).
Hence, just as phenotypes of qualitative mutants identi-
fied in one species can inform our understanding of gene
function in related species (Lin et al., 2012; Huang et al.,
2017; Wang et al., 2018), GWAS results from one species
have the potential to identify candidate genes in related
species that are not detectable via single-species GWAS.

CONCLUSION

We report on a high-throughput phenotyping pipeline
that uses compressed air to harvest and clean roots,
thereby overcoming current throughput limitations. We
used this approach to phenotype RSA in both maize and
sorghum diversity panels and then conducted GWAS.
Thefinding that homologs of 16% (22/139) of the detected
RSA-associated maize genes are known to affect RSA in
other species (one of the highest confirmation rates
reported in any crop) demonstrates the accuracy of our
phenotyping and analysis pipeline and suggests that the
RSA-associated genes detected in this study areworthy of
further investigation and exploration for use in crop im-
provement. Comparisons between high-confidence, RSA-
associated genes identified from maize and sorghum via
GWAS revealed conserved functional roles of syntenic
orthologs in regulating quantitative variation. Our find-
ings suggest that GWAS results from one species have the
potential to identify candidate genes in related species
that are not detectable in that second species as a conse-
quence of, for example, low minor allele frequencies,
small effect sizes, and/or differing evolutionary histories.

MATERIALS AND METHODS

Germplasm for GWAS

Three fully randomized replications of 380 maize (Zea mays) inbred lines were
grown at the Iowa State University’s Curtiss Research Farm in Ames, IA with a
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planting date of May 9, 2017 and an interrow spacing of 88.9 cm and an average
within row plant-to-plant spacing of 25.4 cm. Only phenotypic data from the 369
lines in the SAM Diversity Panel (Leiboff et al., 2015) were used for GWAS.

For sorghum (Sorghum bicolor), a subset of the SAP (Casa et al., 2008) was
grown at the Agronomy Farm of University of Nebraska-Lincoln (UNL), Mead,
NE with a planting date of May 15, 2017 and a planting density an interrow
spacing of 72 cm and an average within row plant-to-plant spacing of 7.7 cm.
Phenotypic data from 294 accessions of the SAP, referred to as the SAP-RSA,
were used for GWAS.

CREAMD - Collection and Phenotyping of Core
Root Systems

Core root systems, each with ;0.3-m3 volume (Hauck et al., 2015), of typi-
cally three competitive plants (i.e. plants that are not the terminal plant at the
beginning or end of a row nor adjacent to amissing plant within a row) within a
row were excavated and cleaned on site using a towable commercial air com-
pressor and an AirSpade device (Supplemental Text S2). Up to three maize
roots were collected from up to three biological replications (i.e. plants grow in
three different one-row plots) for a total of up to nine roots per genotype. Roots
of each genotype were collected within 1 week of the end of flowering for that
genotype. For the SAP-RSA, typically five competitive sorghum plants within
each row were excavated and cleaned between October 12 and 18 (2017) fol-
lowing the same protocol. In most cases for both species it was possible to
harvest competitive plants. Harvested plants that were noncompetitive (i.e.
adjacent to amissing plant, or that were a border plant) or that had lodgedwere
recorded for subsequent statistical modeling (see “Materials and Methods”).

Cleaned core root systems were imaged on a customized board (40.6 cm 3
50.8 cm) covered with blue fabric. Core root systems were positioned on the
center of the imaging board and a dimmable 45.7 cm-diameter light ring
(Neewer Technology Co.) was placed directly beneath the camera lens to pro-
vide evenly distributed lighting to reduce shadows. A round orange marker (ø
5 5.1 cm) and a tag containing an ID number for each plant were placed on the
imaging platform next to the corresponding core root system. All images were
capturedusing an EOS 5DMark III camerawith an EF 24-105mm f/4L ISUSM lens
(Canon), positioned 125 cm above the imaging board surface using an adjustable
mount. The camera was controlled using a laptop computer (Latitude 3550, Dell)
running EOS Utility 3 software (Version 3.6.30.0) to capture images. Two images
from two orthogonal views (North and West) of the core root system were taken
based on the spray-painted identifier. Images were stored using JPEG file format.

Forboth themaizeandsorghumdiversitypanels, a random5%ofall collected
core root systems (149 maize roots and 56 sorghum roots) were chosen for
ground truthmeasurement. Themaximumwidth and depth of core root system
were manually measured for both of the two orthogonal views (Supplemental
Fig. S2). In addition, ImageJ (Schneider et al., 2012) was used to measure
maximum width and depth from the images of the same sets of roots.

To determine whether core root systems exhibit radial symmetry, we col-
lected four to sixplants of the inbred linesB73andMo17 fromthree locationsnear
Ames, Iowa on September 23, 2018: Curtiss Farm (GPS: GPS: 42°00’N, 93°39’W,
planting date: May 31, 2018, planting density:;36 cmwithin row, 3 m between
rows), Marsden Farm (GPS: 42°00’N, 93°47’W, planting date: May 23, 2018,
planting density:;36 cm within row, 3 m between rows), and South Woodruff
Farm (GPS: 41°58’N, 93°41’W, planting date: June 15, 2018; planting density:
;25 cm within row, 75 cm between rows; Supplemental Fig. S3).

COFE - Image Analysis and Feature Extraction

For image analysis, we used MATLAB (The Mathworks) to develop an in-
teractive software, Core Root Feature Extraction (COFE). Captured imageswere
analyzed via a two-phase process: preprocessing and trait extraction
(Supplemental Text S1). During preprocessing, the first visible node above the
soil line of a core root system is identified by the user. Then, the software au-
tomatically generates a binary image of the root according to user-defined
settings. During automated trait extraction the software uses a blurring and
thresholding algorithm to prune roots that aberrantly stick out from the core
root system and then extracts traits from the core root system.

Comparison of CREAMD vs. Water-Based Root Cleaning

The inbred lines B73, LH185, and PHN46 and the commercial hybrid Hoe-
gemeyer 7089, grownduring the summer of 2017 at the Curtiss Farm,were used

to compare CREAMD versus a water-based root cleaning pipeline (Trachsel
et al., 2011). For each method, 15 competitive plants of each genotype were
processed at the time of grain harvest on October 24, 2017. The cleaning of roots
with pressurized air is described in the CREAMD protocol (“Materials and
Methods”; Supplemental Text S1). For the water-based root cleaning, the exca-
vated core root system was soaked in water for ;1 h and then water washed as
described (Trachsel et al., 2011; Colombi et al., 2015). Traits were extracted using
COFE from images of core root systems excavated and cleaned by bothmethods.

Comparative GWAS between Maize and Sorghum

For theanalysis ofmaizeRSAphenotypes, thebest linearunbiasedprediction
of traits extracted fromCOFEwere calculated by treating genotype andplanting
row as random effects, and lodging and border status as fixed effects using R
package ‘lme4’ v1.1-21 (Bates et al., 2015; Supplemental Table S17). Broad sense
heritability was calculated for all RSA traits for both maize and sorghum (Cai
et al., 2012). For the analysis of sorghum RSA phenotypes, means of extracted
trait values of all plants having the same genotype were calculated, after re-
moving extreme values, i.e. those that were 1.53 larger than the 3rd quartile
(Supplemental Table S18).

To conduct GWAS on the maize SAM diversity and sorghum SAP-RSA
panels, we used 1.2M (Leiboff et al., 2015) and 205k (Morris et al., 2013) SNPs,
respectively, without filtering for minor allele frequencies (Bomba et al., 2017).
GWAS for both species were conducted using a C11 implementation of
FarmCPU (Liu et al., 2016), termed FarmCPUpp (Kusmec and Schnable, 2018).
Based on simulation studies, for moderately complex traits, FarmCPU has been
reported to have the best metrics for both the detection of gene-trait associations
and false-positive metrics (Miao et al., 2018). The first three principle compo-
nents calculated using TASSEL 5.0 were used as covariates to control for
population structure (Bradbury et al., 2007). LD values of both panels were
calculated using PLINK v1.90 (Purcell et al., 2007). Based on the average rates of
LD in the diversity panels, 20- and 500-kb windows centered on TASs were
used to identify candidate genes in maize and sorghum, respectively. Maize
AGPv2 genes models (Schnable et al., 2009) and sorghum V1.14 genes models
(Paterson et al., 2009) that overlapped with the defined windows for each
species using the BEDtools software (V2.23.0; Quinlan and Hall, 2010) were
considered to be candidate genes.

In addition to SNP-based GWAS, eRD-GWAS (Lin et al., 2017) was con-
ducted on a subset of the SAM Diversity Panel (n5 246 inbred lines) for which
RNA-seq data from seedling root tissue were available (Kremling et al., 2018).
Genes with model frequencies over an arbitrary cutoff of 0.05 were designated
as candidate genes (eRD-genes).

Maize and sorghum syntenic geneswere identified following themethods of
Zhang et al. (2017) using the reference genomes RefGen V2 for maize and Sbi1.4
for sorghum (Supplemental Table S19). The permutation test was conducted by
shuffling the maize-sorghum table 10,000 times and counting the number of
pairs of syntenic genes obtained from each trial (Supplemental Table S19).

eQTL and Coexpression Network

eQTL analyses were conducted on the same 246 maize inbred lines as were
used for eRD-GWAS, and using the same GWAS method (i.e. FarmCPU) and
SNPs as were used for the maize RSA GWAS (see above), with the gene ex-
pression values as phenotypes and the SNPs as explanatory variables. Only
those maize RSA candidate genes expressed in at least 50% of the 246 lines were
included in this analysis. An eQTL was defined as acting in cis if it was within a
window that extends 500 kb upstream and 500 kb downstream of the gene it
regulates; eQTL outside this 1-Mb window were defined as acting in trans.
Ratios of cis- and transeQTL were relatively stable with window sizes ranging
from 50 kb to 2 Mb (Supplemental Table S10). The eQTL with the smallest
p-value within each 50-kb window was selected for further analyses. The en-
richment test of RSA-associated genes and transeQTL was performed using the
“fisher.test ()” function in R.

Graphical Gaussian model–based coexpression networks were constructed
using the R package ‘bnlearn’ v4.4.1 (Scutari, 2010) with 5,000 bootstraps
implemented with the constraint-based learning algorithm max-min parents
and children (mmpc).

Comparative Intraspecific GWAS

Both phenotypic and genotypic data of the Yan panel were retrieved from
MaizeGo (http://www.maizego.org/Resources.html). SNP data for the Yan
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panel were generated by Li et al. (2013) from RNA-seq and MaizeSNP50
BeadChip. Phenotypic data of the Maize 282 panel were retrieved from Panzea
(http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category5
Phenotypes). Phenotypic data of plant height, plant ear height, and flowering
time of the SAMDiversity Panel were from Leiboff et al. (2015). Ear length data
were collected from two fully randomized replications of 369maize inbred lines
from the SAM Diversity Panel (Leiboff et al., 2015) in October 2016, at Iowa
State University’s Curtiss Research Farm (42°00’N, 93°39’W) in Ames, Iowa
(Supplemental Table S20). Genotypic data for both the Maize273 and SAM273
panels is a subset of the data used for the root-GWAS of the SAM Diversity
Panel. GWAS was conducted with the same protocol as in comparative GWAS
between maize and sorghum (see above section), except an arbitrarily relaxed
window of 100 kb, centered on the TAS was used here.

COFE Software is available at https://bitbucket.org/baskargroup/cofe/
src/master/.

Accession Numbers

The maize sequence data from this article can be found in the GenBank/
EMBL data libraries under accession numbers SRP055871. The sorghum SNP
data were downloaded from https://www.morrislab.org/data.

Supplemental Data

The following supplemental materials are available.

Supplemental Text S1. CREAMD-COFE protocols.

Supplemental Text S2. Definition of Width-Profile Angle (WPA).

Supplemental Figure S1. Ground truth validation for trait values extracted
from COFE. 298 images from 149 maize plants were analyzed.

Supplemental Figure S2. Comparisons of trait values extracted using
COFE from roots of three genotypes.

Supplemental Figure S3. Maize core root systems grown in three environ-
ments (Curtiss, Marsden, and South Woodruff farms) exhibit a lack of
radial symmetry.

Supplemental Figure S4. Classification of images taken from two angles
(North and West) into larger and smaller view on a per trait basis.

Supplemental Figure S5. Illustration of algorithm for determining root
depth (AdjDepth) trait values.

Supplemental Figure S6.Width-Profile Angle (WPA) was used to measure
root angle.

Supplemental Figure S7. Above-ground trait values of inbred lines homo-
zygous for the ALT and REF alleles of bige1.

Supplemental Figure S8. Correlations among RSA traits for 294 sorghum
inbred lines.

Supplemental Figure S9. Minor allele frequency (MAF) and the absolute
value of effect sizes of maize and sorghum TAS.

Supplemental Table S1. Time required to process 60 core root systems via
CREAMD and water-based root cleaning.

Supplemental Table S2. RSA traits do not exhibit statistically different
values between two orthogonal views (North and West) of the maize
SAM Diversity Panel.

Supplemental Table S3. Classification of trait values of root area (Area)
from two angles (North and West) into larger and smaller views on a per
trait basis.

Supplemental Table S4. Correlation coefficients between larger and
smaller views of RSA traits in the maize SAM diversity and sorghum
(SAP-RSA) panels.

Supplemental Table S5. Correlations among RSA traits and above-ground
traits in maize.

Supplemental Table S6. Maize TAS and SNP-genes at FDR , 0.05.

Supplemental Table S7. Arabidopsis homologs with known root-related
functions of maize SNP-genes

Supplemental Table S8. List of eRD-genes.

Supplemental Table S9. Arabidopsis and Medicago homologs with known
root-related functions of maize eRD-genes.

Supplemental Table S10. List of cis- and transeQTL.

Supplemental Table S11. Percentage of cis- and transeQTL for qualified
maize RSA-associated genes using different window sizes.

Supplemental Table S12. List of inbred lines in used in GWAS for maize
(SAM Diversity Panel) and sorghum (SAP-RSA).

Supplemental Table S13. Sorghum TAS at FDR , 0.05.

Supplemental Table S14. Syntenic maize-sorghum gene pairs detected via
comparative GWAS.

Supplemental Table S15. List of Yan panel and SAM Diversity Panel TAS
for four traits (PH, PEH, DTA, EL).

Supplemental Table S16. List of TAS for four traits (PH, PEH, DTA, EL)
identified via GWAS conducted on the maize273 and SAM273 panels.

Supplemental Table S17. RSA trait values (BLUP) of maize SAM Diversity
Panel.

Supplemental Table S18. RSA trait values of sorghum SAP-RSA panel.

Supplemental Table S19. List of syntenic genes.

Supplemental Table S20. Ear length trait values (BLUP) of maize SAM
Diversity Panel.
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