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Abstract

Aims: Vascular calcification (VC) is a hallmark feature of cardiovascular disease and a significant risk factor for
morbidity and mortality. Salusin-b exerts cardiovascular regulating effects in hypertension, atherosclerosis, and
diabetes. The present study was designed to examine the roles of salusin-b in the progression of VC and its
downstream signaling mechanisms.
Results: Salusin-b expression in both the aortas of VC rats induced by vitamin D3 and nicotine and vascular
smooth muscle cells (VSMCs) incubated with calcifying media was increased. Salusin-b knockdown re-
markably reduced VC, whereas overexpression of salusin-b exacerbated VC both in vitro and in vivo. Over-
expression of salusin-b promoted the VSMC osteochondrogenic transition, decreased Klotho protein levels,
enhanced Ras-related C3 botulinum toxin substrate 1 (Rac1) activity and the translocation of p47phox to the
membrane, increased the expression of nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase
subunits and the production of reactive oxygen species (ROS) with or without calcifying media; however,
salusin-b deficiency played the opposite roles. The calcification and downregulated Klotho protein levels
induced by salusin-b were restored by ROS scavenger N-acetyl-l-cysteine, diphenyleneiodonium chloride [an
inhibitor of flavin-containing enzyme, including NAD(P)H oxidase], or gene knockdown of NAD(P)H oxidase
(NOX)-2, p22phox, or p47phox but were not affected by NOX-1 and NOX-4 knockdown. Klotho knockdown
attenuated the protective effect of salusin-b deficiency on VSMC calcification. By contrast, exogenous Klotho
ameliorated the development of VC and ROS generation induced by salusin-b overexpression.
Innovation: Salusin-b is a critical modulator in VC.
Conclusion: Salusin-b regulates VC through activation of NAD(P)H/ROS-mediated Klotho down-
regulation, suggesting that salusin-b may be a novel target for treatment of VC. Antioxid. Redox Signal. 31,
1352–1370.
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Introduction

Vascular calcification (VC) is a prevalent vascular
pathophenotype that is highly associated with athero-

thrombotic cardiovascular diseases, diabetes mellitus, aging,
and chronic kidney disease (57). It is also a well-recognized
independent predictor for increased cardiovascular disease
mortality (53). Vascular smooth muscle cells (VSMCs) are
major cellular components of blood vessels and play a vital
role in the regulation of vascular tension and blood pressure
(19). Recent studies have demonstrated that VC is a highly
active process of osteoblastic differentiation of VSMCs,
much like bone formation (27). In the process of VC, VSMCs
transforming into osteoblast-like cells is a core event (6).
Under the pathological conditions such as oxidative stress,
high phosphate levels, or high parathyroid hormone frag-
ments, VSMCs undergo phenotypic changes that induce the
expressions of mineralization regulating proteins such as
alkaline phosphatase (ALP), osteopontin, and osteocalcin
(38), which can be detected as indicators of the degree of VC.
The complicated mechanisms underlying VC have yet to be
fully elucidated; thus, the aim of this study was designed to
identify novel regulatory factors in VC.

Salusins are characterized as two related peptides: salusin-a
and salusin-b, with 28 and 20 amino acids, respectively (40). In
contrast to salusin-a, salusin-b performs more cardiovascular
regulation and accelerates the development of atherosclerosis
(34). Compared with healthy controls, plasma salusin-b levels
in patients with diabetes mellitus, coronary artery disease, and
cerebrovascular disease are distinctly higher (8). It has been
reported that salusin-b regulates blood pressure (36), activates
sympathetic outflow (47), promotes the proliferation, migra-
tion, and foam cell formation of VSMCs (45, 48, 49), induces

endothelial dysfunction (44), among additional roles. The
dominance of salusin-b in VSMCs and fibroblasts was ob-
served in human coronary atherosclerotic plaques (55). Fur-
thermore, salusin-b increased intracellular concentration of
Ca2+ in VSMCs of rats (40), thus providing a possibility that
salusin-b is involved in the process of VC.

The pathogenesis of VC is multifactorial and complex and
may involve oxidative stress due to its reported role as a
critical regulator of arterial calcification (31). Oxidative
stress can trigger bone morphogenetic protein 2/4 (BMP-2/4)
signaling and matrix remodeling in the vasculature, which are
crucial events in the development of VC (39). In light of
oxidative stress, salusin-b is widely accepted as an oxidation
inducer in cardiac tissues, VSMCs, and endothelial cells in
multiple disease scenarios (44). The Klotho gene is a well-
known anti-aging protein that protects cells from inflamma-
tion and oxidative stress (17). Klotho treatment protects the
heart from hyperglycemia-induced injury by inactivating
reactive oxygen species (ROS) signaling pathway (11). In
particular, oxidative stress is an important regulator for
Klotho gene expression, and the association of oxidative
stress with Klotho plays a central role in the process of VC
(32). It has been demonstrated that Klotho is a potential en-
dogenous anticalcification factor (24). Although direct evi-
dence linking salusin-b and Klotho is lacking, they might
target the same oxidative stress signaling pathway. Based on
this uncertainty, we sought to determine whether salusin-b
was involved in the VC process and osteogenic differen-
tiation of VSMCs both in vitro and in vivo, as well as to
determine whether Klotho and ROS were implicated in salusin-
b-mediated VC.

Results

Expressions of salusin-b in calcified VSMCs
and aortas of rats

VC rats were induced by vitamin D3 combined with nic-
otine in vivo, and calcification of VSMCs of rats was induced
by calcifying media containing of b-glycerophosphate (b-GP)
with Ca2+in vitro. During VSMC calcification, the messenger
RNA (mRNA) and the level of salusin-b progressively in-
creased compared with controls (Fig. 1A, B); this was also
confirmed by immunofluorescent staining (Fig. 1E). Fur-
thermore, we observed that the protein expression of salusin-b
was upregulated in the calcified VSMCs (Fig. 1C, D), sug-
gesting that calcification is a stimulator for salusin-b expres-
sion in VSMCs. Compared with control rats, salusin-b level in
plasma of VC rats was increased (Fig. 1F), which was par-
alleled by increases in both protein level and mRNA expres-
sions of salusin-b in the aortas of VC rats (Fig. 1G, H).

‰

FIG. 1. The level of salusin-b in calcifying VSMCs and the aortas of rats. (A) Protein levels of salusin-b determined by
ELISA, (B) mRNA levels of salusin-b, and (C, D) salusin-b protein expression in VSMCs stimulated by calcification
medium at days 0, 3, 7, 10, and 14. Full blot is shown in Supplementary Figure S16. (E) Immunofluorescence staining of
salusin-b in VSMCs at day 14 of stimulation. (F) Salusin-b levels in plasma, (G) mRNA level of salusin-b, and (H) protein
level of salusin-b in the aortas of VC rats. (I) Immunohistochemistry staining of salusin-b in the aortas of VC rats. ( J)
Immunofluorescence double staining showed smooth muscle marker a-SMA (green) and salusin-b (red). Nuclei were
stained by DAPI (blue). (K) Immunofluorescence double staining showed endothelial cell marker CD31 (green) and
salusin-b (red). Nuclei were stained by DAPI (blue). Values are expressed as mean – SE. *p < 0.05 versus 0 day, {p < 0.05
versus Control. n = 4–6 for each group. a-SMA, alpha smooth muscle actin; ELISA, enzyme-linked immunosorbent assay;
mRNA, messenger RNA; SE, standard error; VC, vascular calcification; VSMCs, vascular smooth muscle cells. Color
images are available online.

Innovation

Vascular calcification (VC) is a critical feature of
chronic kidney disease, diabetes, hypertension, and ath-
erosclerosis, which is also a significant risk factor for car-
diovascular morbidity and mortality. Salusin-b was a critical
modulator in hypertension, atherosclerosis, and diabetes.
Our results in this study innovatively highlight the essential
role of salusin-b in the osteoblastic differentiation of vas-
cular smooth muscle cells (VSMCs) and pathological ar-
terial calcification. The downregulation of Klotho and
excessive reactive oxygen species generation are driving
factors for salusin-b to facilitate VC and osteochondro-
genic transition of VSMCs. This study suggests that
salusin-b is a potential therapeutic target for VC.
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Immunohistochemistry demonstrated the elevated salusin-b
levels in the aortas of VC rats (Fig. 1I). Immunofluorescence
double staining showed that salusin-b protein expression was
markedly upregulated in the vascular media layer of VC rats
(Fig. 1J), but not in the endothelium (Fig. 1K).

Roles of salusin-b in VSMC calcification

To investigate the potential role of salusin-b in VSMC cal-
cification, adenoviral vectors encoding salusin-b small hairpin
RNA (shRNA) or lentivirus expressing salusin-b were used in
calcifying medium to knock down or overexpress salusin-b.
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FIG. 2. Roles of salusin-b
in VSMC calcification. (A)
Alizarin-red S staining, (B)
ALP activity, and (C) calcium
content of calcified VSMCs
after salusin-b knockdown.
(D) Alizarin-red S staining, (E)
ALP activity, and (F) calcium
content of calcified VSMCs
after salusin-b overexpression.
Values are expressed as
mean – SE. *p < 0.05 versus
Control, {p < 0.05 versus Ve-
hicle (Veh), {p < 0.05 versus
Control (Con) shRNA or Vec-
tor. n = 4–6 for each group.
ALP, alkaline phosphatase;
shRNA, small hairpin RNA.
Color images are available
online.
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Specific knockdown or overexpression of salusin-b in VSMCs
was verified at the mRNA and protein expressions (Supple-
mentary Figs. S1 and S19). As expected, silencing of salusin-b
alleviated calcium deposition in VSMCs, as evidenced from
Alizarin Red S staining (Fig. 2A), ALP activity (Fig. 2B), and
calcium content (Fig. 2C). Detected biochemically and histo-
logically, overexpression of salusin-b not only greatly further
exacerbated calcium deposition of calcified VSMCs compared
with control cells but also induced spontaneous calcification
even without calcifying stimulation (Fig. 2D–F).

Roles of salusin-b in VSMC phenotype switching

The phenotypic transition of VSMCs from a contractile
phenotype to an osteogenic phenotype is a key event during
pathological VC (6); therefore, we investigated the roles of
salusin-b in VSMC phenotype switching. Incubation of
VSMCs with calcification medium remarkably reduced the
expression of contractile markers, including alpha smooth
muscle actin (a-SMA) and smooth muscle 22 alpha (SM22a)
but enhanced the expression of osteogenic switching mark-
ers, including runt-related transcription factor 2 (Runx2) and
BMP-2 of VSMCs. These phenotypic changes were antago-
nized by salusin-b shRNA treatment (Fig. 3A, B), but further
deteriorated by ectopic overexpression of salusin-b (Fig. 3C,
D). Additionally, salusin-b overexpression led to spontane-
ous osteogenic conversion of VSMCs (Fig. 3C, D).

Effects of salusin-b on Klotho levels in calcified VSMCs

Previous studies revealed that Klotho attenuates VC, and
overexpression of Klotho suppresses calcification in VSMCs
(16, 24). We sought to investigate whether Klotho signaling was

involved in salusin-b-mediated VC. The Klotho protein level
showed a persistent decline in calcified VSMCs during the
14 days of calcified medium stimulation (Fig. 4A). Alizarin Red
S staining (Fig. 4B), ALP activity results (Fig. 4C), and calcium
content assay (Fig. 4D) showed that treatment with exogenous
Klotho dramatically diminished calcium deposition in calcified
medium-incubated VSMCs, suggesting that Klotho antago-
nizes VSMC calcification. The reduced Klotho protein (Fig. 4E)
and mRNA levels (Supplementary Fig. S2A) in calcified
VSMCs were restored by salusin-b silencing but was intensified
in salusin-b-overexpressed VSMCs (Fig. 4F and Supplemen-
tary Fig. S2B). Interestingly, gene knockdown of salusin-b had
no effect on the mRNA and protein levels of Klotho without
calcified stimulation, whereas overexpression of salusin-b
alone in VSMCs also remarkably decreased Klotho protein and
mRNA levels (Fig. 4E, F, and Supplementary Fig. S2A, B). To
further investigate the role of Klotho in salusin-b-mediated VC,
we knocked down Klotho using small interfering RNA (siR-
NA). In cultured VSMCs, the protein expression of Klotho was
substantially reduced by Klotho-targeting siRNA (Supple-
mentary Fig. S3). In calcified VSMCs, the increased calcium
content and ALP activity were significantly inhibited by si-
lencing of salusin-b, but these protective effects were dimin-
ished by Klotho-targeting siRNA (Fig. 4G–I).

Effects of salusin-b on oxidative stress
in calcified VSMCs

It is known that oxidative stress is a requisite event in
the shift to osteoblastic behavior and calcification of VSMCs
(4). We investigated whether ROS were involved in salusin-
b-mediated VC. Protein levels of the nicotinamide adenine

FIG. 3. Roles of salusin-b in VSMC phenotype switching. (A, B) Contractile markers a-SMA and SM22a and oste-
ogenic switching markers BMP-2 and Runx2 proteins expression of VSMCs after salusin-b knockdown. Full blot is shown
in Supplementary Figure S16. (C, D) a-SMA, SM22a, BMP-2, and Runx2 proteins expression of VSMCs after salusin-b
overexpression. Full blot is shown in Supplementary Figure S16. Values are expressed as mean – SE. *p < 0.05 versus
Control, {p < 0.05 versus Veh, {p < 0.05 versus Control (Con) shRNA or Vector. n = 4 for each group. BMP-2, bone
morphogenetic protein 2; Runx2, runt-related transcription factor 2; SM22a, smooth muscle 22 alpha.
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dinucleotide phosphate [NAD(P)H] oxidase subunits p22phox,
p47phox, and NAD(P)H oxidase (NOX)-2 in VSMCs were
upregulated gradually across the calcification induction
process (Fig. 5A). In line with expressions of NOX-2,
p22phox, and p47phox, fluorescence staining also showed that

ROS levels were progressively increased from day 0 to day
14 (Fig. 5B, C). Malondialdehyde (MDA), a well-studied
marker of lipid peroxidation, and hydrogen peroxide (H2O2)
are proposed as biological markers of oxidative stress in
cardiovascular disease (14). The levels of MDA and H2O2

FIG. 4. Effects of salusin-b on Klotho protein level in calcifying VSMCs. (A) Klotho protein level of VSMCs during VC
induction by calcification medium at days 0, 3, 7, 10, and 14. Full blot is shown in Supplementary Figure S17. (B) Alizarin-red S
staining, (C) ALP activity, and (D) calcium content of VSMCs pretreated with Klotho (0.4 lg/mL) for 6 h followed by stimulation
with calcification medium. (E) Klotho protein level of calcifying VSMCs after salusin-b knockdown. Full blot is shown in
Supplementary Figure S17. (F) Klotho protein level of calcifying VSMCs after salusin-b overexpression. Full blot is shown in
Supplementary Figure S17. (G) Alizarin-red S staining, (H) ALP activity, and (I) calcium content of calcifying VSMCs transfected
with Klotho siRNA (100 nM) with or without salusin-b knockdown. Values are expressed as mean – SE. *p < 0.05 versus 0 day or
Control or Control (Con) siRNA, {p < 0.05 versus Veh, {p < 0.05 versus Con shRNA, Vector, or Calcification+Con shRNA. n = 4–6
for each group. siRNA, small interfering RNA. Color images are available online.
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content were markedly enhanced in VSMCs after calcifica-
tion induction (Fig. 5D, E). Next, we investigated if the
blockade of NAD(P)H oxidase-derived ROS ameliorated the
development of VC. Pretreating VSMCs with diphenyle-
neiodonium chloride [DPI, an inhibitor of flavin-containing
enzyme, including NAD(P)H oxidase] or N-acetyl-l-cysteine,

(NAC, an ROS scavenger) enormously reduced ROS pro-
duction in a calcification environment, as observed by dihy-
droethidium (DHE) staining, MDA content, and H2O2 formation
(Supplementary Fig. S4A–D). Furthermore, treatment with
both DPI and NAC blocked the calcified medium-induced
VSMC calcification (Fig. 5F–H).

FIG. 5. Roles of NAD(P)H oxidase-derived ROS in VC. (A) Expression of the p22phox, p47phox, and NOX-2 proteins of
VSMCs during stimulation by calcification medium for 0, 3, 7, 10, and 14 days. Full blot is shown in Supplementary
Figure S17. (B, C) ROS levels in calcifying VSMCs detected by DHE staining, (D) MDA content, and (E) H2O2 levels. (F)
Alizarin-red S staining, (G) ALP activity, and (H) calcium content of VSMCs that were pretreated with NAC (1 mM) or DPI
(10 lM) for 30 min and then challenged with calcification medium. (I) The ALP activity and (J) calcium content in VSMCs
responses to calcification medium after p22phox, p47phox, and NOX-2 knockdown. Values are expressed as mean – SE.
*p < 0.05 versus 0 day or Control, {p < 0.05 versus Veh or Control (Con) shRNA. n = 4–6 for each group. DHE, dihy-
droethidium; DPI, diphenyleneiodonium chloride; H2O2, hydrogen peroxide; MDA, malondialdehyde; NAC, N-acetyl-l-
cysteine; NAD(P)H, nicotinamide adenine dinucleotide phosphate; NOX, NAD(P)H oxidase; ROS, reactive oxygen species.
Color images are available online.
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To investigate the exact role of NAD(P)H oxidase subunits
in the VC, VSMCs were transfected with shRNA targeting
NOX-2, p22phox, or p47phox to knockdown these NAD(P)H
oxidase subunits. The interference effectiveness of the
shRNAs was ascertained by the downregulations of targeted
protein expressions (Supplementary Fig. S5). As expected,
gene deficiency of NOX-2, p22phox, or p47phox impeded
VSMC calcification induced by calcification medium, as
evidenced by reduced ALP activity and calcium content

(Fig. 5I, J). These results confirmed the critical role of
NAD(P)H oxidases-derived ROS in VSMC calcification.

The upregulated NAD(P)H oxidase subunits p22phox,
p47phox, and NOX-2 protein levels in calcified VSMCs were
obstructed by deficiency of salusin-b (Fig. 6A, B) but were
further raised by salusin-b overexpression (Fig. 6C, D).
Moreover, salusin-b overexpression independent of calcified
medium increased p22phox, p47phox, and NOX-2 protein
levels (Fig. 6C, D) and ROS generation (Supplementary

FIG. 6. Effects of salusin-b on oxidative stress in calcifying VSMCs. (A, B) Protein levels of the p22phox, p47phox, and
NOX-2 of calcifying VSMCs after salusin-b knockdown. Full blot is shown in Supplementary Figure S17. (C, D) Protein
levels of p22phox, p47phox, and NOX-2 of calcifying VSMCs after salusin-b overexpression. Full blot is shown in Sup-
plementary Figure S17. (E) The ALP activity and (F) calcium content in VSMCs pretreated with NAC (1 mM) or DPI
(10 lM) 30 min before salusin-b overexpression. (G) The ALP activity and (H) calcium content in VSMCs responses to
salusin-b overexpression after p22phox, p47phox, and NOX-2 knockdown. Values are expressed as mean – SE. *p < 0.05
versus Control (Con), {p < 0.05 versus Veh, {p < 0.05 versus Con shRNA or Vector. n = 4–6 for each group.
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Fig. S4E–H) of VSMCs directly. Consistently, salusin-b-
induced ROS generation was almost abolished by NAC and
DPI (Supplementary Fig. S4E–H). Furthermore, NAC and
DPI relieved both aberrant ALP activity (Fig. 6E) and cal-
cium content (Fig. 6F) induced by salusin-b overexpression.
Elevated ALP activity and calcium content in salusin-b-
overexpressed VSMCs were dramatically normalized by
gene deletion of NOX-2, p22phox, or p47phox (Fig. 6G, H),
suggesting that NAD(P)H oxidase subtypes and derived ROS
were involved in salusin-b-mediated VC.

Activation of NOX-2 requires the translocation of p47phox

from the cytosol to the membrane (2). We found that after
stimulating VSMCs with calcification medium, p47phox was
observed to translocate from the cytosol to the membrane, as
manifested by increased membrane p47phox expression and
decreased cytoplasmic p47phox (Supplementary Fig. S6). As
expected, silencing of salusin-b in VSMCs (Supplementary
Fig. S6A, B) blocked the translocation of p47phox, whereas
overexpression of salusin-b (Supplementary Fig. S6C, D)
enhanced the translocation of p47phox to the membrane under
the calcification medium.

Ras-related C3 botulinum toxin substrate 1 (Rac1, a small
GTPase protein) is an important subunit of NAD(P)H oxidase
that is required for the assembly and activation of NAD(P)H
oxidase and the production of ROS (1). However, whether
Rac1 is involved in salusin-b-elicited NAD(P)H oxidase
activation and ROS production has not yet been fully eluci-
dated. We found that treatment of VSMCs with the Rac1
peptide inhibitor W56 remarkably relieved the increased
ALP activity and calcium content in calcified medium-
incubated VSMCs (Supplementary Figs. S7A, B and S20).
Importantly enough, the active form of Rac1, Rac1-GTP, was
obviously upregulated in VSMCs induced by calcified me-
dium, whereas salusin-b silencing markedly reduced the
Rac1-GTP level (Supplementary Fig. S7C). Conversely, the
level of Rac1-GTP was elevated in VSMCs with salusin-b
overexpression (Supplementary Fig. S7D).

The NOX family of NAD(P)H oxidases is composed of five
members (NOX1 to NOX5) and the Duox family contains two
(Duox1 and Duox2), which are believed to be responsible for
ROS production in diverse tissues (9). NOX-1, NOX-2, and
NOX-4 are observed in VSMCs, with NOX-1 and NOX-4
being the most abundant (13, 21). Besides NOX-2, we also
observed whether NOX-1 and NOX-4 were involved in the
effect of salusin-b on oxidative stress in calcified VSMCs. In
parallel to NOX-2, calcification medium increased expression
levels of both NOX-1 and NOX-4 in VSMCs (Supplementary
Fig. S8A) in a time-dependent manner. When compared with
control shRNA, the protein levels of NOX-1 or NOX-4 were
largely reduced by their targeted shRNAs (Supplementary
Fig. S8B). Not surprisingly, silencing of either NOX-1 or
NOX-4 prevented the increased ALP activity and calcium
deposition in VSMCs upon exposure of calcification medium
(Supplementary Fig. S8C, D). However, the salusin-b-triggered
VSMC calcification was not altered by knockdown of NOX-1
and NOX-4 (Supplementary Fig. S8E, F). In accordance with
this, neither salusin-b knockdown nor salusin-b overexpression
affected the expressions of NOX-1 and NOX-4 in the absence or
presence of calcification stimulants (Supplementary Fig. S8G,
H). These results suggest that NOX-1 and NOX-4 are crucial
players in VSMC calcification, whereas neither is required for
salusin-b-mediated oxidative stress in VSMCs.

Interplay of oxidative stress and Klotho
responses to salusin-b

It has been reported that oxidative stress is an important
regulator for Klotho gene expression, and the link between
oxidative stress and Klotho plays a central role in the process of
VC (32). We wanted to determine the mechanisms of ROS and
Klotho in the downstream signaling pathway of salusin-b in
respect to VC. Both DPI (Fig. 7A) and NAC (Fig. 7B) were able
to rescue the downregulated Klotho protein expression in cal-
cified medium-incubated VSMCs. Additionally, the reduced
Klotho protein levels in VSMCs post-salusin-b challenge were
also reversed by DPI (Fig. 7C) and NAC (Fig. 7D). Similarly,
deficiency of NOX-2 was also capable of restoring the decreased
protein level of Klotho in either calcified medium-challenged
VSMCs (Fig. 7E) or salusin-b-overexpressing VSMCs
(Fig. 7F), further confirming the involvement of NOX-2 in the
regulation of Klotho level responses to calcified stimulation or
salusin-b. Furthermore, salusin-b protein expression in the
VSMCs was not affected by the pretreatment with DPI and NAC
with or without calcification medium (Supplementary Fig. S9).
These results suggested that ROS was responsible for salusin-b-
mediated Klotho downregulation, but not for the upregulation of
salusin-b in the calcified medium-incubated VSMCs.

It appears that the Klotho gene might exhibit antioxidant
properties (32, 35). Therefore, we investigated whether
salusin-b-elicited oxidative stress can be altered by the ad-
dition of Klotho. We found that administration of exogenous
Klotho prevented the overproduction of superoxide anions,
MDA, and H2O2 induced by calcified medium (Supplemen-
tary Fig. S10A–C). In agreement with these findings, the
excessive oxidative stress in VSMCs with salusin-b over-
expression was dampened by the treatment of Klotho (Sup-
plementary Fig. S10D–F).

Roles of salusin-b on VC in rat aortas

To further investigate the potential role of salusin-b in
arterial calcification, rats were given intravenous injection of
adenoviral vectors encoding salusin-b shRNA or lentivirus
vector expressing salusin-b to either knock down or over-
express salusin-b, respectively. Real-time polymerase chain
reaction (PCR) results demonstrated increased mRNA levels
of salusin-b in calcified aortas of rats, which were blocked by
salusin-b shRNA (Supplementary Fig. S11A), but further
elevated by overexpression of salusin-b (Supplementary
Fig. S11B). Von Kossa staining showed that salusin-b
knockdown decreased calcium-phosphate salt deposition
(Fig. 8A), as well as reduced the ALP activity and calcium
content in the aortas of VC rats (Fig. 8B, C). Conversely, the
overexpression of salusin-b led to increased calcium phos-
phate salt deposition (Fig. 8D), ALP activity (Fig. 8E), and
calcium content (Fig. 8F) in both control and calcified aortas.

Effect of salusin-b on NAD(P)H/ROS/Klotho signaling
in the aortas of VC rats

Compared with control rats, VC rats demonstrated higher
expression levels of NAD(P)H oxidase subunits p22phox,
p47phox, and NOX-2, but lower Klotho protein expression in
the aortas, which were significantly circumvented by
salusin-b deficiency (Fig. 9A, C). Interestingly, salusin-b
overexpression aggravated the abnormal expressions of
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NAD(P)H oxidase subunits p22phox, p47phox, and NOX-2 as
well as Klotho in calcified aortas (Fig. 9B, D). Moreover,
knockdown of salusin-b (Fig. 9E, F) eradicated, whereas
overexpression of salusin-b (Fig. 9G, H) intensified the
overproduction of MDA and H2O2 in calcified aortas.

Because the importance of Klotho in salusin-b-induced
VC changes is currently unknown, we explored whether
Klotho overexpression could reverse salusin-b-induced

VC and ROS in the aortas of rats in vivo. After tail vein
injection of lentivirus expressing salusin-b, rats underwent
intraperitoneal injection of Klotho at 0.01 g/kg per 48 h for 4
weeks as described in previous report (26). As expected, the
effects of salusin-b overexpression on the development of
VC and NAD(P)H oxidase-derived ROS production of aortas
were largely ameliorated by chronic application of Klotho,
indicated by the ALP activity and calcium content

FIG. 7. Effects of oxida-
tive stress on Klotho
downregulation. (A, B)
Klotho protein levels of
VSMCs that were pretreated
with DPI (10 lM) or NAC
(1 mM) for 30 min before
calcification medium stimu-
lation. (C, D) Klotho protein
levels of VSMCs pretreated
with DPI or NAC before
salusin-b overexpression. (E)
Klotho protein levels of
VSMCs pretreated with NOX-
2 shRNA before calcification
medium stimulation. (F) Klo-
tho protein levels of VSMCs
pretreated with NOX-2
shRNA before salusin-b over-
expression. Full blot is shown
in Supplementary Figure S18.
Values are expressed as
mean – SE. *p < 0.05 versus
Control, {p < 0.05 versus PBS,
{p < 0.05 versus Veh. n = 4 for
each group. PBS, phosphate-
buffered solution.
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(Supplementary Fig. S12A, B), and NAD(P)H oxidase ac-
tivity and ROS level (Supplementary Fig. S12C, D).

Discussion

VC is established as a complex and active process, rather
than an inevitable, passive, and degenerative course (18). To
date, substantive research has demonstrated that high calcium
phosphate products, oxidative stress, BMPs, cell apoptosis, and
inflammation are all critical contributors to osteochondrogenic
transition of VSMCs and VC (54). However, the molecular and
cellular mechanisms of VC are still not fully elucidated. Our
study demonstrates that salusin-b may act as a novel endoge-

nous inducer of VC through oxidative stress-mediated Klotho
suppression. These findings suggest that intervention of
salusin-b may be a therapeutic strategy for managing VC.

VC rats induced by vitamin D3 combined with nicotine
in vivo and calcification of VSMCs induced by combination
of b-GP with Ca2+ in vitro have been taken as classical
models of VC (30). The degree of VC can be assessed by
increased ALP activity, calcium deposition, and pathological
changes. In this study, we found that salusin-b levels were
upregulated in both the aortas of VC rats and cultured
VSMCs exposed to calcification medium stimulation. Dys-
regulated ALP activity, calcium deposition, and pathological
changes in calcified aortic tissues and VSMCs were rescued

FIG. 8. Roles of salusin-b in the
calcification of the aortas in rats.
(A–C) The von Kossa staining, ALP
activity, and calcium content of the
aortas of rats after salusin-b knock-
down. (D–F) The von Kossa staining,
ALP activity, and calcium content of
the aortas of rats after salusin-b
overexpression. Values are expressed
as mean – SE. *p < 0.05 versus Con-
trol, {p < 0.05 versus Veh, {p < 0.05
versus Control (Con) shRNA or Vec-
tor. n = 4–6 for each group. Color
images are available online.
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by salusin-b knockdown but exacerbated by overexpres-
sion of salusin-b. Both in vivo and in vitro studies verified that
the salusin-b gene played critical roles in the development of
VC. Notably, salusin-b overexpression stimulated calcium
deposition and ALP activity in aortic tissues in vivo and in
VSMCs in vitro even in the absence of a calcifying envi-

ronment. This suggests that calcification-prone conditions
are not necessary for the direct action of salusin-b on VC,
rather, salusin-b can induce VC directly. Future studies will
investigate the abnormal expression of salusin-b in some
conditions such as oxidative stress, cell apoptosis, and in-
flammation as a key event in the induction of VC.

FIG. 9. Effects of salusin-bon oxidative stress and Klotho protein expression of the aortas of VC rats. (A, C) Protein levels of
the p22phox, p47phox, NOX-2, and Klotho of the aortas in rats with salusin-b knockdown. Full blot is shown in Supplementary
Figure S18. (B, D) Protein levels of the p22phox, p47phox, NOX-2, and Klotho of the aortas in rats with salusin-b overexpression. Full
blot is shown in Supplementary Figure S18. (E, F) MDA and H2O2 levels of the aortas in response to salusin-b knockdown. (G, H)
MDA and H2O2 levels of the aortas in response to salusin-b overexpression. Values are expressed as mean – SE. *p < 0.05 versus
Control, {p < 0.05 versus Veh, {p < 0.05 versus Control (Con) shRNA or Vector. n = 4–6 for each group.
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Unlike most cell types with terminal differentiation char-
acteristics, VSMCs retain substantial phenotypic plasticity,
even in response to detrimental stimuli, including calcification
environment (51). VC is also reflected by osteochondrogenic
differentiation markers, including Runx2 and BMP-2, and
inhibition of smooth muscle cell lineage markers a-SMA and
SM22a (5). Our results showed that the protein levels of
contractile phenotype markers (SM22a and a-SMA) were
significantly lower, but osteoblast-like phenotype markers
(Runx2 and BMP-2) were significantly higher in calcifying
VSMCs, which is a critical step for VSMC transformation
from a contractile phenotype into an osteoblast-like pheno-
type, as well as calcification (7). We additionally found that
salusin-b knockdown inhibited gene expressions responsible
for the osteoblast-like transformation of VSMCs, whereas
overexpression of salusin-b had the reverse effect. These
results suggest that salusin-b is responsible for VC associated
with osteoblast-like differentiation of VSMCs.

A growing body of evidence has shown that mice lacking
Klotho (an endogenous anticalcification factor) develop VC,
whereas Klotho transgenic mice exhibit less calcification
compared with wild-type mice with chronic kidney disease
(16, 24). Klotho protein is downregulated in the early stage of
chronic kidney disease (41) and acts as a circulating or res-
ident protein, playing a protective role in vascular pathology
including VC (15). Restoration of native vascular Klotho
expression is suggested as a therapeutic objective for the
prevention or treatment of VC (24). The existing evidence
drove us to explore whether Klotho signaling was implicated
in salusin-b-mediated VC. Our results showed that the pro-
tein expression of Klotho was decreased in calcified VSMCs
and aortas, and Klotho pretreatment suppressed VSMC cal-
cification. The downregulated Klotho protein expression in-
duced by calcification was reversed by salusin-b shRNA but
was further decreased by salusin-b overexpression in vivo
and in vitro, suggesting that Klotho may be a targeted gene of
salusin-b. More importantly, the protective effect of salusin-
b knockdown on VC was attenuated by Klotho siRNA. These
results imply that salusin-b reduces Klotho protein levels to
trigger calcification. We also found that the Klotho mRNA
level in calcified VSMCs was also reduced and restored by
salusin-b silence, but the reduction was intensified in salusin-
b-overexpressed VSMCs. Furthermore, overexpression of
salusin-b alone in VSMCs directly decreased Klotho both
protein and mRNA levels. These results indicated that
salusin-b might induce Klotho protein downregulation
through inhibiting its gene expression. In addition, chronic
application of exogenous Klotho largely mitigated that
salusin-b overexpression induced the development of VC in
the aortas of rats, which suggest that Klotho has the ability to
fight with salusin-b to play the anticalcification role.

It is known that oxidative stress is a major driver of calcifi-
cation in atherosclerosis and chronic kidney disease (12). Some
studies have suggested that the role of oxidative stress in VC
deserves careful consideration, since it may be a target for the
treatment of VC (4). Advanced glycation end products have
been shown to promote the phenotypic switch of VSMCs to
osteoblast-like cells and VC through the activation of NAD(P)H
oxidase-derived ROS production (20). NAD(P)H is a cofactor
required to reduce glutathione and promote ROS production
(10), and the subunits of NOX-2, p22phox, and p47phox are major
sources of ROS in the vascular wall (44). In this study, VSMC

calcification was prevented by either NAC (a ROS scavenger)
or DPI [an inhibitor of flavin-containing enzyme, including
NAD(P)H oxidase], indicating that oxidative stress is a major
mediator in VSMC calcification. We also found that expres-
sions of NAD(P)H oxidase subunits (including NOX-2,
p22phox, and p47phox) and ROS generation were increased in
both calcified VSMCs and aortas; this was suppressed by
shRNA-mediated salusin-b silencing but was enhanced by
overexpression of salusin-b. In addition, overexpression of
salusin-b alone in VSMCs directly increased NOX-2, p22phox,
and p47phox expressions and ROS generation. Administration of
either NAC or DPI attenuated the salusin-b-induced increases
of ALP activity and calcium deposition in VSMCs. Gene
knockdown of NOX-2, p22phox, or p47phox obviously impeded
calcification medium or salusin-b overexpression-induced
VSMC calcification. These results suggested that NAD(P)H
oxidase-derived ROS mediated the effect of salusin-b on cal-
cification, and the subunits of NAD(P)H oxidase (NOX-2,
p22phox, and p47phox) were involved.

It has been reported that the translocation of p47phox from
cytosol to the membrane is required for the activation of NOX-
2 (2), and the activity of NOX-2 is positively associated with
the membrane translocation level of p47phox (56). In this study,
we found that the translocation of p47phox from cytosol to the
membrane of VSMCs increased under calcification medium
stimulation, and silencing of salusin-b inhibited, whereas
overexpression of salusin-b enhanced it. These results suggest
that salusin-b may induce the translocation of p47phox to the
membrane to activate NOX-2 and then trigger the over-
whelming formation of ROS and subsequent VC.

In addition, Rac1 is also an important subunit of NAD(P)H
oxidase, which is critical for the assembly and activation of
NAD(P)H oxidase and the production of ROS (1). In this study,
we also found that Rac1 peptide inhibitor W56 remarkably
relieved the degree of calcification in calcified medium-
incubated VSMCs. Rac1-GTP, the active form of Rac1, was
obviously upregulated in calcified VSMCs, which was reduced
by salusin-b silencing markedly and further elevated by salusin-
b overexpression. These results suggested that Rac1 activation
was also involved in the effects of salusin-b on NAD(P)H ox-
idase activation and ROS production and VSMC calcification.

In the present study, we found that besides NOX-2, the
protein levels of both NOX-1 and NOX-4 in calcified VSMCs
were also increased time-dependently. Silencing of either
NOX-1 or NOX-4 prevented the development of calcification
in VSMCs induced by calcified medium, but not the one
induced by salusin-b overexpression. In accordance with this,
neither salusin-b knockdown nor salusin-b overexpression
affected the expressions of NOX-1 and NOX-4 with or
without calcification stimulants. These results suggested that
although both NOX-1 and NOX-4 genes are player in VSMC
calcification, whereas both of which were not required for
salusin-b-mediated oxidative stress and VC in VSMCs.

Taken together, these results suggest that salusin-b acti-
vates NAD(P)H oxidase-ROS signaling to elicit VSMC cal-
cification. The membrane translocation of p47phox, NOX-2
activation, Rac 1 activation, and p22phox are involved in the
NAD(P)H oxidase activation mechanism induced by salusin-
b. However, NOX-1 and NOX-4 were not necessary in
salusin-b-mediated VC.

It is reported that Klotho is modulated by a wide range of
triggers, including inflammation, oxidative stress, tumor
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necrosis factor, intermedin, rosiglitazone, resveratrol, and
angiotensin II (5, 25, 33, 52, 58, 59). Among these, oxidative
stress is an important regulator for Klotho gene expression.
The association of oxidative stress and Klotho plays a central
role in the process of VC (32). H2O2 downregulates the ex-
pression of Klotho in cultured proximal tubule epithelial cells
(29). Soluble Klotho directly protects cells against a variety
of affronts, including oxidative stress (35). Klotho has been
indicated to decrease oxidative stress to maintain the con-
tractile SMC phenotype and reduce VSMC calcification (32).
We explored ROS mediation in the downregulation of Klotho
induced by salusin-b-mediated VC. In this study, we found
that the downregulation of Klotho induced by calcification
medium was rectified by NAC or DPI. Moreover, the direct
suppressive effect of salusin-b on Klotho protein was also
impeded by NAC and DPI. Thus, we demonstrated that ROS
is responsible for Klotho downregulation, contributing to
salusin-b-mediated VC. By inference, salusin-b activates
NAD(P)H oxidase to produce ROS, which then antagonizes
Klotho signaling to boost VSMC calcification. However, we
found that the administration of exogenous Klotho prevented
the overproduction of superoxide anions, MDA, and H2O2 in
VSMCs induced by calcified medium or salusin-b over-
expression. In vivo, the increased NAD(P)H oxidase activity
and ROS level of the aortas of rats with salusin-b over-
expression were largely ameliorated by chronic application
of Klotho. These results suggested that Klotho gene in re-
verse exhibits antioxidant properties and antagonism effect
on salusin-b-induced ROS elevation.

In conclusion, our results highlight the essential role of
salusin-b in the osteoblastic differentiation of VSMCs and
pathological arterial calcification. The excessive ROS genera-
tion and downregulation of Klotho are responsible for salusin-b
to facilitate VC and osteochondrogenic transition of VSMCs (A
summary flow diagram of mechanisms of salusin-b is shown in
Supplementary Fig. S13). However, we cannot exclude the
possibility that other mechanisms, such as impaired mito-
chondrial function (22), increased inflammation response (3),
endoplasmic reticulum stress (37), or VSMC apoptosis (42),
may account for salusin-b-mediated VC. Future studies will be
needed to fully determine the validity of these possibilities.
Collectively, targeting the salusin-b/ROS/Klotho pathway may
pave the way for the prevention and treatment of VC.

Materials and Methods

Animals and reagents

Experiments were carried out in male Sprague–Dawley rats
(Vital River Biological, Beijing, China). Rats were housed
under standard temperature and humidity condition on 12:12-h
light–dark cycle and given standard rodent chow and water
freely. All experiments conformed to the rules and regulations
of the Experimental Animal Care and Use Committee of
Nanjing Medical University. All procedures were complied
with the Guide for the Care and Use of Laboratory Animal
published by the U.S. National Institutes of Health (34a).
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bo-
vine serum (FBS) were obtained from Gibco BRL (Carlsbad,
CA). Antibodies against Runx2, BMP-2, NOX-1, NOX-2,
NOX-4, p22phox, p47phox, Klotho, and goat anti-rabbit IgG
H&L (Alexa Fluor� 488) were purchased from Abcam
(Cambridge, MA). Antibodies against salusin-b were pur-

chased from Bachem (Bubendorf, Switzerland). Antibodies
against a-SMA, SM22a, CD31, GAPDH, and horseradish
peroxidase-conjugated secondary antibodies were purchased
from Proteintech Group, Inc. (Wuhan, China). The specific
primers and siRNA sequences were synthesized by Sangon
Biotech Co., Ltd. (Shanghai, China). Immunohistochemistry
kit and diaminobenzidine (DAB) were obtained from Boster
Biological Technology Co., Ltd. (Wuhan, China). The re-
combinant rat Klotho protein was obtained from USCN
Business Co., Ltd. (RPH757Ra02, Wuhan, China). DPI, b-GP,
and DHE were purchased from Sigma (St. Louis, MO). NAC
was obtained from Beyotime Institute of Biotechnology
(Shanghai, China). Rac1 peptide inhibitor W56 was procured
from TOCRIS Bioscience (Bristol, United Kingdom). Ade-
noviral constructs carrying shRNA against salusin-b and a
control shRNA (a negative control) were constructed by
Genomeditech Co. (Shanghai, China) according to our previ-
ous reports (49). The NOX-1 shRNA plasmids, NOX-2
shRNA plasmids, NOX-4 shRNA plasmids, p22phox shRNA
plasmids, p47phox shRNA plasmids, and control shRNA
plasmids, as well as Na+/K+ ATPase a1 antibody were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA).
Recombinant lentivirus vector expressing salusin-b was de-
signed and identified by Invitrogen (Life Tech, Shanghai,
China) as previously described (45).

In vivo rat model of VC

Sprague–Dawley rats weighing between 180 and 200 g
were used to induce VC by application of vitamin D3 plus
nicotine as previously described (23). In short, rats were gi-
ven intramuscular injection with vitamin D3 (300,000 IU/kg)
simultaneously with an intragastric dose of nicotine (25 mg/
kg in 5 mL peanut oil) at 9:00 a.m. on the first day. Nicotine
was given again at 19:00 p.m. on the same day. After 14 days,
rats were re-treated with vitamin D3. Rats in the control
group received normal saline intramuscularly and two ga-
vages of peanut oil without nicotine (5 mL/kg). For silencing
of salusin-b in vivo, gene transfer of salusin-b shRNA was
performed 3 days after induction of VC. The rats received
intravenous injection of phosphate-buffered solution (PBS),
adenoviral vectors encoding control shRNA (2.0 · 1010

plaque-forming units), or adenoviral vectors encoding
salusin-b shRNA (2.0 · 1010 plaque-forming units) via tail
vein, respectively. For overexpression of salusin-b in vivo,
the rats were randomly subjected to injection of PBS, lenti-
virus vector, or lentivirus expressing salusin-b (1 · 107

transduction unit) via tail vein 3 days after induction of VC.
The intravenous injections were repeated 2 weeks after the
first administration to ensure the adequate downregulation or
upregulation of salusin-b in arteries of rats. After 4 weeks of
VC induction, rats were euthanized with a pentobarbital over-
dose (150 mg/kg, intravenously) to collect plasma for salusin-
b level measurement and aortas for calcium deposition assay,
von Kossa staining, protein, or RNA extraction. Schematic
diagram indicating the timeline of the above experiments in
rats is shown in Supplementary Figure S14.

Cell culture and VSMC calcification model

Primary VSMCs were isolated from the thoracic aortic
arteries of Sprague–Dawley rats (150–180 g) using enzy-
matic digestion as previously described (46). VSMCs at
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passages 5 to 8 were used for the experiments. VSMCs were
cultured in DMEM containing 10% FBS, 100 U/mL peni-
cillin, and 100 mg/mL streptomycin at 37�C in an incubator
containing 95% air and 5% CO2. To induce calcification,
confluent VSMCs were incubated in medium containing
b-GP (5 mM) and Ca2+ (2.5 mM) for two consecutive weeks
as previously described (5). The medium was refreshed once
every 2 days. Cells were harvested at the required time points.
For silencing of salusin-b in vitro, VSMCs were first trans-
fected with adenovirus-mediated shRNA against salusin-b or
control shRNA (multiplicity of infection [MOI] = 100) for
48 h and then used to induce calcification. For overexpression
of salusin-b in vitro, VSMCs were transfected with lentivirus
expressing salusin-b or lentiviral vector (MOI = 100) and
grown in 5% CO2 incubator at 37�C for 48 h before admin-
istration of b-GP and Ca2+ to induce VC.

siRNA or shRNA transfection

For siRNA transfection experiment, the VSMCs were
cultured (30%–40% confluent) and transfected for siRNA
klotho (klotho siRNA, 100 nM, sense, 5¢-CCGAAAGUCUU
UACUGGCUUUCAUA-3¢; antisense, 5¢-UAUGAAAGCC
AGUAAAGACUUUCGG-3¢) and nonsilencing control siRNA
(Qiagen, Valencia, CA) by using lipofectamine 2000 transfec-
tion reagent (Invitrogen, Carlsbad, CA) according to the man-
ufacturer’s recommendations as described previously (62).

For shRNA plasmid transfection experiment, the VSMCs (at
30%–40% confluence) were cultured in antibiotic-free normal
growth medium supplemented with FBS. Then, the VSMCs
were transfected with negative control shRNA or targeted
shRNA (1 lg) using shRNA plasmid transfection reagent (Santa
Cruz Biotechnology) following the manufacturer’s protocols.
The targeted gene-knockdown cells were then treated with
calcification medium and subsequently harvested for analysis
via Western blotting, real-time PCR, and other experiments.

Western blotting

Each sample was lysed in an RIPA buffer with protease
inhibitor and phosphatase inhibitor cocktail, and the super-
natant was obtained by centrifugation at 4�C. The protein
levels of each sample were determined by a modified bi-
cinchoninic acid (BCA) protein assay (Beyotime Biotechnol-
ogy, Shanghai, China). The samples were separated by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis using
electrophoresis and blotting apparatus (Bio-Rad) and trans-
ferred to nitrocellulose membranes. Blocking was carried out
at room temperature with 5% nonfat milk powder prepared in
Tris-buffered saline containing 0.1% Tween 20. Then, the
membranes were incubated with the primary antibodies at
4�C overnight. Protein loading was normalized by probing all
Western blots with GAPDH antibody. The results were
quantified using the ImageJ densitometric analysis software
(NIH, Bethesda, MD) by comparing the gray value (area
multiplied by the mean gray value) between target protein
and GAPDH.

Real-time quantitative PCR

Total RNA was extracted from each sample using a Trizol
reagent (Life Technologies, Gaithersburg, MD) according to
the manufacturer’s protocols. RNA concentrations and purity

were assessed by the measurement of optical density at 260 and
280 nm. Equal RNA levels (0.5 lg) were reversed transcribed
into complementary DNA (cDNA) using HiScriptQ RT Su-
perMix for quantitative PCR (Vazyme, Nanjing, China). The
sequences of primers for salusin-b: 5¢-TCACTTCTCTCCTA
TCATCCACTCC-3¢ (forward); 5¢-GGCAGCTTGTCCATCT
CATCG-3¢ (reverse); Klotho: 5¢-ACTTTCTTCTGCCCTAT
TTCACG-3¢ (forward); 5¢-CCAGGTAATCGTTGTATTTTA
TCGG-3¢ (reverse); GAPDH: 5¢-GGAAAGCTGTGGCGTG
AT-3¢ (forward); 5¢-AAGGTGGAAGAATGGGAGTT-3¢
(reverse). The expression of targeted mRNA was calculated
by subtracting cycle threshold (Ct) values of target genes
from Ct values of GAPDH.

Enzyme-linked immunosorbent assay

The levels of salusin-b were quantified using commer-
cially available rat enzyme-linked immunosorbent assay
(ELISA) kits (USCN Life Science, Houston, TX) according
to the manufacturer’s instructions (49). In brief, the standards
or sample diluent were added and incubated in the appro-
priate wells of a precoated ELISA plate. Finally, the optical
density was determined using a microplate reader (SY-
NERGY H4; BioTek).

Immunohistochemistry and immunofluorescence
staining

For immunohistochemistry, the rats were perfused through
the left ventricle first with 0.01 M PBS at pH 7.4 and then with
4% paraformaldehyde. The fixed aortas were dehydrated and
embedded in paraffin, then cut into 5-lm sections and
mounted on slides. The slides were washed three times with
0.1 M PBS after deparaffinization, and then incubated in 3%
H2O2 for 15 min to quench the endogenous peroxidase. The
sections were blocked in 10% goat serum for 60 min at room
temperature, followed by incubation with the primary anti-
body against salusin-b for 24 h at 4�C. The sections were
treated with 3,3-DAB to develop the positive cells in arteries.
Sections were counterstained with hematoxylin, and the im-
ages were captured using a light microscope (Zeiss, Jena,
Germany).

For immunohistochemistry, control IgG was used to con-
firm the specificity of the antibody against salusin-b. As ex-
pected, the immunopositive signal was only detected by the
antibody against salusin-b, not control IgG or PBS (Supple-
mentary Fig. S15). Stimulated cells were fixed in 4% form-
aldehyde and permeabilized with 0.1% Triton X-100 in PBS
for 15 min. The cells were blocked with 10% goat serum for
30 min and incubated with the primary salusin-b antibody
overnight at 4�C. The fixed cells were then incubated with
Alexa Fluor 488-conjugated anti-rabbit secondary antibody
for 30 min. Nuclei were stained with DAPI. Immuno-
fluorescence signals were visualized on a fluorescence mi-
croscope (80i; Nikon).

Detection of ALP activity and calcium content

The ALP assay kit was purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). The ALP activity
was measured according to the manufacturer’s instructions
(60). The absorbance was determined at 520 nm, and the results
were normalized to the protein content in each sample. The
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content of calcium was measured via o-cresolphthalein color-
imetric methods as previously described (30). The calcium
levels in stimulated cells and aortic samples were normalized to
the protein content, as determined by the BCA method (43, 61).
ALP activity assays were performed after VSMCs treated with
calcifying media for 3 days, and calcium content was measured
at the 14th day after b-GP and Ca2+ stimulation.

Alizarin Red S staining in cultured VSMCs

The culture medium of cells in 6-well plates was removed,
and cells were washed in PBS three times and fixed in 4%
neutral formalin for 30 min, followed by incubation with 1%
Alizarin Red (1 mL/well) for 30 min. After the staining, cell
preparations were washed three times with PBS to eliminate
nonspecific staining. The formation of mineralized nodules
was captured using a light microscope (Zeiss) (30).

Von Kossa staining

The aorta sections were subjected to von Kossa staining for
morphometric assay after deparaffinization and rehydration
as previously described (28). The photographs were exam-
ined under a light microscope (Zeiss).

Measurement of ROS generation, MDA, H2O2,
NAD(P)H oxidase activity, and superoxide anions level

The intracellular ROS in VSMCs were determined with
fluorescent probe DHE as previously described (48). The
collected VSMCs were fixed and incubated in DHE (10 lM)
for 30 min in a light-protected humidified chamber. The
fluorescence signals were captured and quantified with the
IMAGE-PRO PLUS 6.0 (version 6.0; Media Cybernetics,
Bethesda, MD). For quantitation detection of oxidative stress
markers, the levels of MDA and H2O2 were measured by
using commercially available assay kits (MDA Assay Kit,
TBA method, Item No. A003-1-2; CAT Assay Kit, Visible
light method, Item No. A007-1-1; Jiancheng Bioengineering
Institute) in accordance with the manufacturer’s recommen-
dations as our previous reports (50). NAD(P)H oxidase ac-
tivity and superoxide anion levels of arteries were measured
by enhanced lucigenin-derived chemiluminescence as pre-
viously described (36, 47).

Statistical analyses

All data are expressed as mean – standard error. Statistical
analyses were performed using the SPSS 17.0 Statistical
Software by IBM (Armonk, NY). Comparisons within two
groups were made by Student’s t-test. Statistical analyses
involved one-way analyses of variance for multiple com-
parisons, then Tukey–Kramer post hoc testing. A value of
p < 0.05 was considered statistically significant.
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Abbreviations Used

a-SMA¼ alpha smooth muscle actin
b-GP¼b-glycerophosphate
ALP¼ alkaline phosphatase
BMP¼ bone morphogenetic protein

Ct¼ cycle threshold
DAB¼ diaminobenzidine
DHE¼ dihydroethidium

DMEM¼Dulbecco’s modified Eagle’s medium
DPI¼ diphenyleneiodonium chloride

ELISA¼ enzyme-linked immunosorbent assay
FBS¼ fetal bovine serum

H2O2¼ hydrogen peroxide
MDA¼malondialdehyde

mRNA¼messenger RNA
NAC¼N-acetyl-l-cysteine

NAD(P)H¼ nicotinamide adenine dinucleotide phosphate
NIH¼National Institutes of Health

NOX¼NAD(P)H oxidase
PCR¼ polymerase chain reaction
PBS¼ phosphate-buffered solution
Rac1¼Ras-related C3 botulinum toxin substrate 1
ROS¼ reactive oxygen species

Runx2¼ runt-related transcription factor 2
shRNA¼ small hairpin RNA
siRNA¼ small interfering RNA
SM22a¼ smooth muscle 22 alpha

VC¼ vascular calcification
VSMCs¼ vascular smooth muscle cells
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