TABLE IV.
The comparison below shows the accuracy rates of testing datasets obtained from various machine learning algorithms to distinguish between three major categories of adult brains.
| Reference | Modality | Method | AD/MCI/NC | AD+MCI/NC | AD/NC | AD/MCI | NC/MCI |
|---|---|---|---|---|---|---|---|
| Liu et al. [32] | MRI,PET | AE+SVM | - | - | 87.76 | - | 76.92 |
| Suk et al. [33] | MRI,PET | LLF+SAEF+SVM | - | - | 95.9 | - | 85 |
| Suk et al. [34] | MRI,PET | Patch+DBM | - | - | 95.35 | - | 85.67 |
| Suk et al. [35] | MRI,PET | SAE+SVM | - | - | 85.7 | 64.5 | 70.6 |
| Basaia et al. [38] | MRI | DNN | - | 86 | - | - | 98 |
| Senanayake et al. [39] | MRI | SAE | - | - | - | - | 88.72 |
| Payan et al. [40] | MRI | CNN | 85.53 | - | 95.39 | 82.24 | 90.13 |
| Liu et al. [43] | MRI | CNN | 88.37 | - | 95.01 | 91.82 | 88.73 |
| Qiu et al. [49] | MRI | MMSE+CNN | - | - | - | 90.9 | |
| Lin et al. [50] | MRI | CNN | - | - | 88.79 | - | - |
| Srinivasan et al. [53] | MRI | SYMLET+SVM | - | - | 89.7 | - | - |
| Hosseini et al. [58] | MRI | CNN | 89.1 | 90.3 | 97.6 | 95.18 | 90.81 |
| Sarraf et al. [56] | fMRI | CNN | - | - | 96.8 | - | - |
| MCADNNet | fMRI | CNN | 97.43 | - | 97.5 | 98.3 | 97.59 |
| MCADNNet | MRI | CNN | 100 | - | 99.9 | 99.7 | 100 |