Skip to main content
. Author manuscript; available in PMC: 2020 Feb 4.
Published in final edited form as: IEEE Access. 2019 Oct 25;7:155584–155600. doi: 10.1109/ACCESS.2019.2949577

TABLE IV.

The comparison below shows the accuracy rates of testing datasets obtained from various machine learning algorithms to distinguish between three major categories of adult brains.

Reference Modality Method AD/MCI/NC AD+MCI/NC AD/NC AD/MCI NC/MCI
Liu et al. [32] MRI,PET AE+SVM - - 87.76 - 76.92
Suk et al. [33] MRI,PET LLF+SAEF+SVM - - 95.9 - 85
Suk et al. [34] MRI,PET Patch+DBM - - 95.35 - 85.67
Suk et al. [35] MRI,PET SAE+SVM - - 85.7 64.5 70.6
Basaia et al. [38] MRI DNN - 86 - - 98
Senanayake et al. [39] MRI SAE - - - - 88.72
Payan et al. [40] MRI CNN 85.53 - 95.39 82.24 90.13
Liu et al. [43] MRI CNN 88.37 - 95.01 91.82 88.73
Qiu et al. [49] MRI MMSE+CNN - - - 90.9
Lin et al. [50] MRI CNN - - 88.79 - -
Srinivasan et al. [53] MRI SYMLET+SVM - - 89.7 - -
Hosseini et al. [58] MRI CNN 89.1 90.3 97.6 95.18 90.81
Sarraf et al. [56] fMRI CNN - - 96.8 - -
MCADNNet fMRI CNN 97.43 - 97.5 98.3 97.59
MCADNNet MRI CNN 100 - 99.9 99.7 100