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Intensified design of experiments for upstream
bioreactors

Statistical Design of Experiments (DoE) is a widely adopted methodology in up-
stream bioprocess development (and generally across industries) to obtain experi-
mental data from which the impact of independent variables (factors) on the process
response can be inferred. In this work, a method is proposed that reduces the to-
tal number of experiments suggested by a traditional DoE. The method allows the
evaluation of several DoE combinations to be compressed into a reduced number
of experiments, which is referred to as intensified Design of Experiments (iDoE).
In this paper, the iDoE is used to develop a dynamic hybrid model (consisting of
differential equations and a feedforward artificial neural network) for data gener-
ated from a simulated Escherichia coli fermentation. For the case study presented,
the results suggest that the total number of experiments could be reduced by about
40% when compared to traditional DoE. An additional benefit is the simultaneous
development of an appropriate dynamic model which can be used in both, process
optimization and control studies.
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1 Introduction

The understanding of how factors (design/control parameters)
impact on the response of a (bio)process is of critical impor-
tance for the effective manipulation of the system [1, 2]. Gener-
ally one differentiates between controllable and uncontrollable
factors [1]. Design of Experiments (DoE) is a methodology that
varies the controllable factors in a systematic way such that the
impact of the factors (as well as the impact of their interactions)
on the response variable can be distinguished (to some degree)
with the help of multivariate data analysis methods [1–3]. The
affect of the uncontrollable factors is typically accounted for by
replication, randomization and/or blocking. The degree to which
the contribution of each controllable factor and/or interaction of
factors can be distinguished, i.e. the resolution, depends on the
number of levels incorporated for each factor and combinations
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accounted for. However, for an increasing number of control-
lable factors and levels, there can be a significant increase in the
respective number of experiments, up to an exponential increase
depending on the chosen design and specified resolution.

In upstream bioprocess development there exist a number
of process parameters (factors) that require investigation de-
pending on the product and production host, i.e. E.coli, CHO,
etc [4, 5]. In light of the Process Analytical Technology initia-
tive and the promoted Quality by Design paradigm it is of
critical importance to show that the impact of all the process
parameters (factors) on the process are understood [4,6]. High-
throughput platforms and single-use equipment have found in-
creasing application in recent years allowing parallel studies of
entire DoEs [5,7–9], which has the potential to reduce process de-
velopment / optimization timelines significantly. The data that
results from DoE are typically investigated using multivariate
data analysis methods, in particular Response Surface Models are
popular [2,3,5]. These approaches work well in the vicinity of the
process optimum since the solution surface can be approximated
by quadratic functions, but the time-course of every experiment
is typically reduced to a static representation. Recently, it was
shown that the combination of process knowledge with a data-
driven approach to dynamic hybrid model development could
make efficient use of time-course data obtained from DoE exper-
iments, allowing decisions to be made about the end or induc-
tion time without performing additional experiments [10] . This
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approach also allowed the assessment of the impact of temporal
deviations in the factors on process performance. Optimal de-
sign of experiment approaches exploit the process dynamics and
time-course of the experiments. This can be used to discrimi-
nate between competing model structures [11], to improve the
parameter estimates [11, 12] or to explore the process operation
space in a better way [13]. Cruz Bournazou and coworkers [14]
proposed a methodology that makes use of the time course and
parallel experiments to infer the parameters of a mechanistic
model while the fermentations are running, re-optimizing the
excitation in the factors using an adaptive optimal experimen-
tal design approach. However, this approach, and more gener-
ally optimal design of experiment approaches [11, 12], require
a model structure, which a priori typically is unknown. Geor-
gakis [15] proposed a design of dynamic experiments method,
in which factors that are changing (or have to change) during
the experiment are added to the typically static factors that re-
main constant throughout the experiment. The approach does
not require a model, however the addition of factors will re-
sult in an increase in the number of experiments. Von Stosch
and coworkers [16] proposed varying the factors according to
a classical DoE for a fixed number of stages during each ex-
periment, referring to this as intensified experiments. In their
approach, the planning of the experiments does not require a
model, however the analysis of the data requires the adoption
of advanced modeling techniques. Therefore, a dynamic model
was developed on the basis of the intensified experiments. This
model could accurately describe experiments carried out at static
conditions within the explored region. The general findings are
in agreement with those that have performed excitation in the
feeding rate to elucidate the impact on the process [17–19].
However, to date no methodology for the systematic planning
of the iDoE has been proposed, this is because an iDoE strategy
is difficult to establish for an increasing numbers of factors and
levels. In what follows a methodology for the optimal planning
of iDoEs is proposed in parallel with the estimation of a dynamic
model, which is used to evaluate the impact of the varying factors
on the response. Thus, instead of performing experiments with
constant process conditions, the conditions are changed during
an experiment and therefore altogether less experiments can be
performed. The methodology is applied to a simulated E. coli
fermentation.

2 Methods

2.1 Bioreactor system

The common backbone of bioreactor models is the material
balances which, assuming ideally mixed conditions, are the set
of coupled ordinary differential equations.

dc · V

dt
= r (c, uI ) · V + uD (1)

c a vector of concentrations (g/l), V the reactor volume (l), r a
vector of reaction rates(g/l/h), uD is a vector which comprises
a set of factors that directly (linearly) impact on the material

balances (e.g. substrate feeding)1 (g/h) and uI a set of factors
that might have an indirect impact on the material balances
(e.g. temperature or pH). The initial conditions, i.e. the initial
concentrations c0 = c(t0), can have an impact on the time evo-
lution of the concentrations and can constitute an additional set
of factors c0,s .

DoE studies of this system typically focus on the impact of
the set of factors u = {c0,s , uI , uD } on the response of the sys-
tem for one concentration at some specified moment in time
csp ec (tsp ec ) [2, 20, 21]. The values of c0,s can obviously only be
chosen once per experiment, but also the values of the fac-
tors uI and uD are typically kept constant throughout each ex-
periment. The idea behind the iDoE methodology is to vary
the level of the uI and uD values according to a classic DoE
at a number of specified time intervals during each experi-
ment, referred to as stages. How many variations/stages can
be tested per experiment depends on the response time of the
cultures, i.e. the time required for the entire response to the
varied conditions to be observed. In E. coli this time was ob-
served to be in the magnitude of hours [16] for mammalian
cells it is expected to be days. Typical process operation re-
sults in three to four stages per experiment. In the follow-
ing, the experiments with intra-experiment variations in the
levels of the uI and uD are referred to as intensified experi-
ments as opposed to DoE experiments, in which the levels of
the uI and uD are constant/static throughout the experiments.
The methodology, which is introduced in the following sec-
tion of the paper, provides an optimal sequence in which DoE
combinations should be performed for any of the intensified
experiments.

2.2 Planning of intensified design of experiments

The objectives of the iDoE approach are: 1) to reduce the num-
ber of experiments that are required to characterize the in-
put/output behavior of a system for a desired resolution; and
2) to gain insights into the dynamic behavior of the process,
which can alongside process optimization be used for process
control. The planning of the iDoE can be formulated as a binary
optimization problem, the basis of which constitutes a classical
DoE with the desired resolution. The DoE contains a number
of nDoE combinations of factors. Each intensified experiment
contains a number of nExpRun sequential stages (process phases).
Therefore, the dimension of the optimization problem is de-
fined by the number of combinations covered by the classical
DoE (nDoE ), the number of DoE combinations that are gath-
ered into every intensified experiment (nExpRun) and the number
of experimental runs in the planned iDoEs (niDoE ). The prob-
lem can be represented by a (nE xp Run × nDoE × niDoE ) cube
of elements, see Fig. 1, where each element can either take the
value 1 – if the experiment should be executed - or the value 0
otherwise.

1Whether and to which extend uD is a degree of freedom depends on
the operation regime, i.e. batch, fed-batch or continuous.
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Figure 1. Representation of the
entire search space (left) and the
affect of summing in one dimen-
sion (right).

2.3 Objective function

The minimum number of experiments that can be obtained with
the iDoE is given by the number of combinations of the classi-
cal DoE divided by the number of stages that are considered in
every experimental run. However, the minimum number of ex-
periments might increase with the introduction of constraints.2

Hence, the minimal number of experiments might a priori be
unknown and the initial guess of niDoE set slightly higher than
the theoretical lower limit. Therefore, the aim is a minimization
of the number of intensified experiments such that all constraints
are satisfied, i.e. we want to minimize the dimension of the cube
along the niDoE axis. Instead of minimizing niDoE which would
change the dimension of the problem, binary variables are used
for every element of the cube, which take the value 1 if the ex-
periment at position i, j , k is executed and 0 otherwise. Thus,
for the experiments that are not required as part of the iDoE the
respective plane in the cube is comprised of binary variables that
are all zeros. The number of intensified experiments is such given
by the number of planes in niDoE direction that contain elements
different from zero. This can be implemented by minimizing the
following cost function:

min
{∑niDoE

i=1

∑nDoE

j = 1

∑nE xp Run

k = 1
wi,j ,k · xi,j ,k

}
(2)

consisting of the binary variables xi,j ,k and an increasing cost
factor (weighting) for an increase in the number of iDoE, i

wi,j ,k =
(

i

nDoE + 1

)
3 . (3)

2The addition of constraints can reduce the solution space of the opti-
mization problem. However, the reduction of the solution space might
exclude solutions that until the addition of the constraint have been
optimal in the sense of the optimization objective. Therefore the min-
imum number of experiments might increase with the introduction of
constraints.

The fraction in the bracket will typically result in a number
that is lower than one (iff niDoE ≤ nDoE , which would nor-
mally be expected, however if a greater number of experiments
is required in order to fulfill the constraints then this might not
necessarily be the case, though the objective function still works),
but this increases for an increase in the number of intensified
experiments required to fulfill the constraints, i.e. there will be
an increasing cost when plane nE xp Run × nDoE × i of the cube
contains at least one element with a one. The increase in the
cost is further amplified using an exponent of three. The costing
could have been established in several other ways (e.g. using an
exponent of two or four), but the employed function proved
computationally efficient.

2.4 Constraints

The need for several constraints becomes apparent when looking
at the cube and elements shown in Fig. 1. For instance, at the
first stage of the first intensified experiment physically only one
DoE combination can be evaluated. Other additional constraints
may also be introduced; the nature of these constraints (and their
need) is discussed in this section of the paper.

Constraint 1 (C1) is an operational constraint, that allows
for only one experimental condition to be tested at every stage
of any of the intensified experiments, i.e.:∑nDoE

j = 1
xi,j ,k ≤ 1 ∀ i = 1... niDoE , k = 1...nE xp Run. (4)

Referring to Fig. 1 the sum in this constraint effectively com-
presses the dimension along the axis of nDoE into the plane
spanned by niDoE and nE xp Run.

Constraint 2 (C2) limits the repetition of any DoE combina-
tion for the different stages of the intensified experiments. This
constraint has a direct impact on the use of the DoE combi-
nations in the intensified experiments and the overall number
of intensified experiments. In order to optimize the intensified
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Figure 2. An example of C6 on a two factor to
level design for an experiment with four stages.

experiments, each DoE combination should only appear once at
every position across all intensified experiments:∑niDoE

i = 1
xi,j ,k ≤ 1 ∀ j = 1... nDoE , k = 1...nE xp Run. (5)

Constraint 3 (C3) restricts the number of repetitions of any
DoE combination through any of the intensified experiments.
Though, the DoE combinations might be repeated during an-
other stage in any of the intensified experiments (to fulfill con-
straint C6 to C8), the number of repetitions of the same DoE
combination in the same intensified experiment should be re-
pressed. This constraint ensures that the stages are explored
throughout the entire iDoE and providing grounds for a bet-
ter consideration of impacts from uncontrolled factors. A max-
imum of two repetitions per experiment were chosen in this
study:∑nE xp Run

k = 1
xi,j ,k ≤ 2 ∀ j = 1... nDoE , i = 1...niDoE . (6)

Constraint 4 (C4) controls the overall number of every DoE
combination that can be repeated within the iDoE. This limit
might be varied depending on the number of stages involved in
each intensified experiment as well as with the choice of config-
uration in C6 to C8. For two to five stages a twofold repetition of
the DoE combinations in the iDoE plan seems to be an appro-
priate upper limit:

∑niDoE

i = 1

∑nE xp Run

k = 1
xi,j ,k ≤ 2 ∀ j = 1... nDoE . (7)

Constraint 5 (C5) ensures that every DoE combination is
included within the iDoE, i.e.:∑niDoE

i = 1

∑nE xp Run

k = 1
xi,j ,k ≥ 1 ∀ j = 1... nDoE . (8)

Constraint 6 (C6) provides the user with the opportunity
to manage at which stages the DoE combination should be re-
peated across all intensified experiments. The repetition of the
DoE combination at another process stage can be important to
account for changes in uncontrolled factors, which might impact
on the system’s response. Consider for instance the term r(c, uI )
within Eq. (1). The response of this term will depend on both
uI and c . Thus by repeating the combination at another stage
it is likely that changes in c can be accounted for. For each of
the stages a summation factor is introduced, sk, and a minimum

total score is defined for each of the DoE combinations, tj . The
constraint can then be defined as:

∑niDoE

i = 1

∑nE xp Run

k = 1
sk · xi,j ,k ≥ tj ∀ j = 1... nDoE . (9)

Both, sk and tj , can be chosen by the user. For instance,
consider the example shown in Figure 2 with nE xp Run = 4 (four
stages). We want every experiment to be repeated twice but at
different phases of the process. We choose a summation factor
for every stage of the process, s = [3, 1, 2, 4] and by choosing
tj = 5 ∀j = 1..nDoE we impose that every combination must be
repeated at least twice. By the choice of the summation factors
we also can direct at which stages the combination should be
repeated, e.g. stage 1 with stage 3 or 4. For three stages s =
[1, 1, 1] and tj = 2 ∀j = 1..nDoE provided a good option. If
the center-point experiment is repeated a couple of times in the
original DoE then a low value for tj for these DoE combinations
provides some flexibility for the optimization. This constraint
introduces some complexity into the planning that could have
been thus far easily achieved manually.

Constraint 7 (C7) delimits the variation in a specified fac-
tor between DoE combinations of two sequential stages. This
constraint is important to account, for instance for limita-
tions in the process equipment, to avoid metabolic shifts that
are triggered by drastic changes to the cellular environmen-
tal, etc. An upper limit is defined, �f max,l , for the difference
in the values of factor l at experiment i,j between the two se-
quential stages k and k + 1 (f i,j ,k,l is the value in the j com-
bination of the classical DoE of factor l). The constraint is
therefore, ∣∣f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1

∣∣ ≤ �f max,l (10)

∀ i = 1... niDoE , j = 1... nDoE , k = 1...nE xp Run − 1.

Since the constraint in the present form cannot be used in
standard binary optimization methods it is reformulated into
two complementary constraints (which represent the logical
“AND” function):

f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1 ≤ �f max,l (11)

− f i,j ,k,l · xi,j ,k + f i,j ,k+1,l · xi,j ,k+1 ≤ �f max,l (12)
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Constraint 8 (C8) originates from considerations regarding
the best manner to explore the space spanned by the factors
of the DoEs. By enforcing some variation in a set of factors in
every intensified experiment, the iDoE plan spans and crosses
the experimental space more efficiently. In essence C8 is very
similar to C7, only that a lower limit for the overall differences
in the values of factor l for an entire intensified experiment i is
defined, �f min,l . The constraint is,

∑nE xp Run−1

k=1

∣∣f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1

∣∣
≥ �f min,l ∀ i = 1... niDoE , j = 1... nDoE . (13)

The reformulation of this constraint for use in standard opti-
mization methods follows the formulation of logical “OR” con-
straints (known as big M method [22]). For k = 1 the set of
constraints are,

f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1

+M · zi,l +
∑nE xp Run−1

m = k
L · qm,i,l ≥ �f min,l (14)

f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1 − M · zi,l

+
∑nE xp Run−1

m = k
L · qm,i,l ≥ �f min,l − M (15)

and ∀k = 2..nE xp Run − 1:

f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1 + M · zi,l − L · qk−1,i,l

+
∑nE xp Run−1

m = k
L · qm,i,l ≥ �f min,l − L (16)

f i,j ,k,l · xi,j ,k − f i,j ,k+1,l · xi,j ,k+1 − M · zi,l − L · qk−1,i,l

+
∑nE xp Run−1

m = k
L · qm,i,l ≥ �f min,l − M − L (17)

The coefficients M and L are large but not identical values.
The variables zi,l and qk,i,l are additional binary decision variables
that need to be added to the objective function, but at zero cost.

2.5 Implementation

The optimization problem was implemented in MATLAB and
solved with the bintprog function. It should be note that the
solution is not generally unique, and there may exist a number
of variants. These variants could be computed by excluding prior
solutions from the search space, see e.g. [23]. The constraints C6
to C8 were introduced to reduce the number of variants to those
of interest.

3 Results and discussion

3.1 E. coli simulation case study

The production of viral capsid protein production by E. coli
was simulated adopting the model proposed by [24] in order
to provide a platform to investigate the iDoE concept (see ap-
pendix for equations). The process comprises two phases, a

growth and production phase. The factors - process parame-
ters of the production phase, which can be varied, are tem-
perature and the substrate feeding rate. The substrate feeding
rate is typically ramped up during the fermentation to meet
the increased demand for biomass growth and maintenance.
This is accounted for by using an exponential profile in which
a set-point for the specific biomass growth is introduced, μset,
(see appendix for details), which is then used as a factor in the
DoE instead of the substrate feeding rate. The response vari-
ables are the product and biomass concentrations. Critical to
capturing the dynamic response characteristics of these vari-
ables is the sufficient (frequent) measurement of the concentra-
tions (which are typically measured off-line) throughout each
experiment.

3.2 Intensified design of experiments plan

The basis for this study is a two-factor Doehlert-design, con-
taining three levels for temperature and five levels for specific
biomass growth set-point, μset, as well as three repetitions for
the center-point (a total of nine experiments). In Fig. 3 the im-
pact of the constraints on the iDoE plan can be observed. When
only constraints C1 to C5 are used, none of the experiments
are repeated. This was expected because it is the least expen-
sive to use every DoE combination only once. The additional
use of constraint C6 with s = [1, 1, 1], tj = 1 ∀j = 1...3
and tj = 2 ∀j = 4...9 resulted, also as expected, in the repe-
tition of the DoE combinations during the different stages of
the intensified experiments (apart from the central points be-
cause of t1..3 = 1). However, it can be seen that the variation
between the experimental conditions in an intensified experi-
ment can be large, e.g. for intensified experiment 4, sequence
8→ 8→ 9, passes directly from the lowest temperature (8: 29°C)
to the highest temperature (9: 33°C). By introducing maximum
stage-to-stage variations for the factors, i.e. constraint C7 with
�f max = [�μset, �T] = [1 1], significant variation in the val-
ues of the factors between sequential stages can be avoided. The
introduction of a minimum variation in each factor for each
intensified experiment, C8, can also help to avoid combinations
like 6 – 2 – 4 with no variation in temperature. The idea be-
hind enforcing variation in all factors within every intensified
experiment is that interactions of the factors are captured more
efficiently. Also the changes between combinations are more ap-
propriately bridged and the search space is explored in a more
homogenous way. While for the presented Doehlert design this
constraint does not have too much impact on the solution space
–in fact only combinations of 2 – 4 – 6 would violate the con-
straint (which for Doehlert designs of greater factors is also true
due to their shell nature [25]) in the case of other designs this
constraint might have a greater impact. The iDoE plan with con-
straints C1 to C8 was used for the generation of simulation data
using the model developed in the Appendix.

3.3 Analysis of dynamic model performance

Two data based hybrid dynamic models, HMiDoE and HMDoE

were developed using data obtained from the iDoE and DoE
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Figure 3. Four intensified designs obtained for the 2-factor Doehlert design using different subsets of constraints as indicated by the
title. The legend on the right side of each figure shows the sequence of experimental conditions (obtained from the Doehlert design and
enumerated 1 to 9 referring to the positions shown in the figure) that are contained within each intensified experiment (which each comprise
three stages).

Figure 4. Biomass and product
concentration profiles over time
for the iDoE plan (the sequence
for each experiment is shown in
the plot). The training, validation
and test set were used to de-
velop the HMiDoE model. (black
squares – simulated experimen-
tal data (5% white noise), blue
dashed line - HMiDoE model es-
timations/predictions, red con-
tinuous line predictions of the
HMDoE model).

experiments (for details of the hybrid modelling approach see
the Appendix). The HMiDoE model was developed using data ob-
tained from the five intensified experiments, whereas the HMDoE

model was developed using nine experiments carried out accord-
ing to the 2 factor-Doehlert design with constant set-points for
each experiment. Having developed the models their prediction
capabilities were tested on the data that were used to develop the
other model, the idea being to investigate whether the model can
predict well over the entire range of process conditions covered in

the DoE, including the dynamic behavior for the iDoE. In Fig. 4
the HMiDoE and HMDoE estimation and prediction performance
are compared using the iDoE experimental data. It can be seen
that the HMiDoE describes the iDoE experimental data excellently
across the training, validation and test partitions. The prediction
performance of the HMDoE model also is very good, only over-
predicting during the last stage of the second experiment in the
HMiDoE‘s training data set. In this experiment, the feeding rate
increased from the second to the third stage. With this increase
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Figure 5. Biomass and prod-
uct concentration profiles over
time for the 2-factor Doehlert-
design (number in the plots
correspond to the DoE). The
training, validation and test set
were used to develop the HMDoE

model. (black squares – sim-
ulated experimental data (5%
white noise), blue dashed line -
HMiDoE model predictions, red
continuous line predictions of
the HMDoE model).

in the feeding rate, while the specific biomass growth rate in-
creases (due to the increase in the substrate concentration) there
is an adverse effect on the product formation, which appears
not to be captured by the HMDoE model. In addition, the pre-
diction of biomass concentration by the HMDoE model appears
to be less sensitive to variations in the factors than the HMiDoE

model, as the changes from stage to stage observed for the time
profiles obtained with the HMDoE are less distinct. However,
generally the HMDoE model, which was developed using the
“static” experimental data can effectively describe the process
dynamics. This result corroborates the findings in von Stosch
et al. [16] where real wet-lab E. coli fermentations had been
modeled.

The estimations and predictions of the HMiDoE and HMDoE

models obtained from the static experiments can be seen in Fig.
5. It can be seen that the HMDoE model describes the DoE ex-
perimental data very well across the training, validation and test
partitions. Only in the second experiment of the validation par-
tition the product concentration is slightly over-predicted. This
experiment was executed at the lowest feeding rate of all ex-
periments and the model inputs are therefore different to those
on which the model was developed. Again the HMDoE model
seems to be less sensitive to the changes in the factors, which can
in particular be seen for the switch from growth to production
phase at 2.6(h). The HMiDoE model predicts both concentration
profiles very well across the investigated conditions, only in case
of the product concentration for the 4th DoE experiment a slight
under-prediction is observed towards the end of the experiment.
The biomass concentration is greater than those concentrations

experienced during the training of the HMiDoE model and the
conditions are somewhat similar to those captured in the iDoE
data that were used in the test set, where the product forma-
tion stopped. Overall the model developed using the intensified
experiments can predict the static DoE data accurately. This ob-
servation is in line with the findings in von Stosch et al [16],
where a dynamic hybrid model developed on a set of intensified
wet-lab experiments could accurately describe several fermenta-
tions executed at distinct conditions, but in the standard static
way.

3.4 Analysis of the covered process operation space

The analysis of the process region covered by each of the model
requires studying 1) the model inputs in the domain covered by
the DoE; and 2) the surface of the response variable of interest
at a specified process time (since DoEs are typically used for
optimization studies), e.g. product concentration at the end of
the process (final product titer).

The process region investigated in the DoE defines the bound-
aries in which the model can be expected to accurately predict. In
the present case, this region translates into and shapes the input
domain of the neural networks (which are an inherent part of
the hybrid models). The input domain comprises the predicted
biomass concentration, the measured feeding rate and the mea-
sured temperature and is shown for each of the models in Fig. 6.
The different process conditions (the changes in temperature and
feeding rate, which are caused by the changes in μset) at which the
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Figure 6. Input Domain of the HMiDoE

(continuous-lines with circles) and HMDoE

(continuous lines) model. The training
data are shown in red, the validation data in
blue and the test data are shown in green.

experiments were executed can clearly be observed and also the
intensified and regular experiments can be distinguished well.
The intensified experiments span the process region in a similar
manner to the regular experiments, apart from a region of high
feeding rate (though not high μset), high biomass concentration
and high temperatures. This region is not explored due to the
varying nature of the intensified experiments, which limits the
achievable biomass concentrations and such inherently higher
feeding rate values. The reduced coverage of this region in the
present case is not critical since the HMiDoE model can predict the
experiments that were carried out at these conditions very well,
as observed before. Generally, and bearing the particular focus
of DoE studies in mind, the region would most likely be explored
by subsequent experiments. A model (that captures the behavior
of the experiments up to a certain value of biomass/feeding rate)
when interrogated via optimization methods would direct fur-
ther studies towards this region, if the optimum was to be found
in there.

It can be seen in Fig. 7 that the surface of final product con-
centration values predicted by the HMiDoE model is similar to
the true response surface (note that any process time could be
chosen, since the model is dynamic and can therefore produce a
response surface at any desired time). In particular, the nonlinear
impact of the feeding rate seems to be described more accurately
than with the HMDoE model, which is in agreement with the
results from above. This may be because the systems inherent
nonlinearity has not been sufficiently captured by the HMDoE

model (which could be a result of the underlying neural network
being too simple – despite the fact that the chosen neural network
structure yielded the best performance). The intra-experiment
variation can be expected to yield a more varied measured re-
sponse (dynamically more rich), which can only be modeled if
the impact of the factors is accounted for. The application of
C6 and the resulting repetition of every DoE combination at a
different stage, in addition seems to have enhanced the learning
process of the neural network in that the repeated DoE combi-

nations provide different values of biomass concentrations and
feeding rates, which enabled the network to learn the nonlin-
ear system better. Thus the iDoE data appear to differentiate
between the impact of the factors on the process dynamics and
overall process response. Given that advanced process control
is expected to reduce process variation ultimately allowing for
closed-loop product quality control [26] and that advanced pro-
cess control relies on dynamic predictive models [27], the iDoE
also provides an opportunity to integrate process development
and process control activities.

3.5 General validity of the iDoE strategy

The results obtained in this study suggest that the number
of experiments required in a traditional DoE can be reduced
significantly with the proposed iDoE procedure. The presented
case study, a simulated E. coli fed-batch fermentation, is sim-
ilar to the experimental case previously studied [16] and the
results obtained in this work agree very well, with the previ-
ously published results. This suggests that the iDoE methodol-
ogy will generally work for E. coli fermentations (at least) as well
as the classical DoE. However, in previous work it was hypoth-
esized that the iDoE could be more likely to cause metabolic
shifts, because many of the influences of the factors such as
the temperature and the feeding rate are interconnected [28]
and simultaneous excitations might trigger a shift. While this
has not been observed in the experimental study, it should be
kept in mind for the analysis of future data. Also the possibility
of obtaining different responses to the same cellular environ-
ment due to the dependence of response on the intracellular
state (which depends on the exposure of the cell to the prior
environment) should be borne in mind. Further experimental
studies could reveal to which degree these cellular behaviors
are more prone to occur in case of iDoE than normal DoE
conditions. However, since the range of the values is typically
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Figure 7. End-time product
concentrations over μset and
T (referred to in the fig-
ure as response surface) for
the true simulation system,
the HMiDoE model, the HMDoE

model and the simulated exper-
imental data.

relatively small (such that quadratic functions can be fitted to
the data for the optimization) we expect that the occurrence
of these phenomena in optimization studies will be relatively
rare.

Another point to consider is that the history of the microor-
ganism might be important (i.e. time-sensitive behavior). While
the dynamic model explicitly captures the history dependence
of the modelled compounds, other un-modelled inherent com-
pounds might have an impact on the trajectory. Due to constraint
6, with which the user can enforce the repetition of process con-
ditions in other stages and experiments, the sensitivity of the
process with respect to changes in the magnitude and direction
of set-point changes can be assessed, see also [16]. This addi-
tional information in principle allows to detect and repair model
inconsistencies during the model development life-cycle. Lag-
phases, such as those observed during substrate replacements,
may impact on the response time and therefore they need to be
considered (e.g. by increasing the length of each stage) if their
occurrence can be expected.

The application of the iDoE framework for the optimiza-
tion/development of cultivations of other cell types such as in-
sect, yeast or mammalian cells should yield similar results, but
needs investigation since the behavior of these cells is more com-
plex. Though the iDoE approach was studied for fed-batch op-
eration, its application in batch or continuous operation would
be straight-forward.

4 Concluding remarks

A method is proposed to compress a DoE into a smaller set of
intensified experiments, referred to as iDoE. The intensification

is obtained by evaluating a given number of DoE combinations in
every experiment. Due to the transient nature of the experiment
a dynamic model is adopted for the analysis of the time course
of the response variables.

The method was applied to plan an iDoE, which was em-
ployed to generate data using simulated E. coli fermentations.
The resulting data was analyzed using a dynamic hybrid model
and the results were contrasted with a hybrid model developed
on data obtained using traditional DoE. It was observed that
the model developed on the intensified experiments was capable
of predicting across the entire region explored by the DoE and
could describe the transient behavior of the processes, which
agrees with previous findings [16]. In the presented case study
the number of experiments could be reduced from 9 to 5 using
the iDoE plan in combination with a dynamic hybrid model, a re-
duction of >40% in the number of experiments. We expect that
similar reduction in the number of experiments can generally
be achieved for the development of E. coli processes, potentially
also for the development of processes of other cell types and in
general for systems that can be described by a set of ODEs which
form is similar to that of Eq. (1). Whether, the approach also
works for other types of systems that e.g. require the investiga-
tion of spacial co-ordinates (partial differential equations) is at
this stage not clear (but would be an interesting area of future
research). While the theoretical minimum number of intensi-
fied experiments is known, the actual number is determined by
the constrained optimization and as such cannot be predicted
ahead of the application. Generally, the total number of experi-
ments will not be greater than that predicted by the traditional
DoE, however if the applied constraints are used to e.g. repair
model deficiencies then additional experiments might become
necessary.
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It is suggested that the iDoE method could help to integrate
process development and process control activities, as process
dynamics seem to be captured more faithfully. This would be
interesting for the optimization and control of continuous pro-
cesses, as it would facilitate the understanding of the transient
behavior between steady state operations.

Appendix

Simulation case study

The production of viral capsid protein production by E. coli
was simulated adopting the model proposed by [24] to act as
the ‘process’ by which the approaches discussed in this paper are
applied. The model comprises the material balances for biomass,
substrate, and product concentration as well as the overall mass
balance, i.e.:

dX

dt
= μ · X − D · X ,

dS

dt
= −vS · X − D · (

S − Sf

)
,

dP

dt
= vP · X − D · P,

dW

dt
= uF ,

With μ, vS and vP the specific rates of biomass growth (1/h), sub-
strate uptake (1/h) and product formation (U/g/h), X , S and P
the biomass (g/kg), substrate (g/kg) and product concentrations
(U/kg), D = uF /W (1/h) the dilution rate and uF the feed-
ing rate (kg/h). The initial values are X (t0) = 4(g/kg), S (t0) =
0(g/kg), P (t0) = 0 (U/kg) and W (t0) = 5(kg).

The specific biomass growth rate was modeled using the
expression:

μ = μmax · S

S + K S
· K i

S + K i
· exp

(
α · (

T − Tref

))
,

where μmax= 0.737 (1/h), K S= 0.00333 (g/kg), K i = 93.8
(g/kg), α = 0.0495 (1/C), Tref = 37 (C) and T the temper-
ature of the culture broth.

The specific substrate uptake rate is modeled via:

vS = 1

YX S
· μ + m,

with YX S = 0.46 (g/g) and m = 0.0242 (g/g/h).
The specific product formation rate is modeled by:

vP = ID

TPX
·
(

vP,max,T · μ · km

kμ + μ + μ2/kiμ
− p X

)
,

with

vP,max,T =
5 · 1010 · exp

( −Aeng

Rc ·(T+273.15)

)

1 + 3 · 1093 · exp
( −Reng

Rc ·(T+273.15)

) ,

where A eng = 62 (J/mol), Reng = 551 (J/mol), Rc = 8.3144
(J/mol/K), TPX = 1.495(h), p X = 50(U/g), kμ = 0.61(1/h),
km = 751(U/g), kiμ = 0.0174 (1/h) and the induction param-
eter ID = 0 before induction and ID = 1 afterwards.

For the feeding rate and exponential profile was adopted to
match a desired constant specific biomass growth, μset, i.e.:

uF = 1

Sf · YX S
· μset · X 0 · W0 · exp (μset · (t − t0)) ,

where X 0 = X (t0) (g/kg) is the initial biomass concentration
and W0 = W(t0) (kg) is the initial weight of the culture broth.

The process was divided into two phases, a growth and a pro-
duction phase. During the growth phase μset = 0.51(1/h) and
T = 27 (C). The duration of the growth phase is 2.6(h). For the
production phase the levels of μset and T, were investigated using
the classic 2-factor Doehlert-design or the proposed iDoE. Data
for online variables were logged every 6 minutes. The biomass
and product concentrations (offline variables) were measured 20
times during each fermentation. During the growth four sam-
ples were taken. In the production phase the samples were evenly
distributed. It was ensured that a sample was always taken before
step-changes were applied. The data were corrupted with 5%
Gaussian (white) noise.

Dynamic hybrid models

Two dynamic hybrid models were developed, either using the
data from the iDoE design or from the classical Doehlert de-
sign. The parametric structure of both models is identical, i.e.
the material balance equations for biomass and product (with
X HM and PHM designating biomass and product concentrations,
respectively) assuming specific rates:

dX HM

dt
= μANN · X HM − D · X HM,

dPHM

dt
= vP,ANN · X HM − D · PHM,

with the dilution D = uF /W, μANN the specific biomass
growth rate and vP,ANN the specific product formation rate.

The two specific rates (μANN and vP,ANN ) are modeled using
an artificial neural network. Each network has three layers (in-
put, hidden and output layer), which typically is sufficient for
the modeling of arbitrary continuous nonlinear functions. The
transfer functions of the nodes of the layers are linear, hyperbolic
tangent and linear, respectively. Three inputs were identified to
be sufficient to describe the rate functions, namely biomass con-
centration, the feeding rate and temperature. The performance
of different numbers of nodes in the hidden layer of the neural
network was studied. For the training, validation and testing of
the model performance the data were separated into three corre-
sponding partitions, i.e. a training, validation and test partition
(for details about the partitions see Figs. 4 and 5). The parame-
ters were adapted to minimize a weighted least square function
of the concentrations using the training data. The weighting was
established by the standard deviations of every concentration,
therefore accounting for the differences of the magnitude of the
concentration values. The validation data were used to stop the
training once the fit of the model estimates to the experimental
data for the validation data did not improve further. The train-
ing was re-initiated 60 times using random parameter values as
initial weights and the best performing parameter set was cho-
sen in order to avoid local minima. The test partition was used
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to evaluate the model performance on new, unseen data. The
neural network structure that performed best on the validation
data in terms of the Bayesian Information Criteria (BIC)3 wv-
vas chosen for comparison. Four nodes in the hidden layer were
found to perform best in case of the HMiDoE, three in case of the
HMDoE. For a more detailed description of this hybrid model
development procedure, see [29].

Practical application

The proposed method can be applied to intensify classical
Design of Experiment plans in cases where i) the control
degrees of freedom comprise process parameters that can
be changed; and ii) the intra-experiment changes in the
process parameters result in a change in the process re-
sponse (which has to be quantifiable). In this paper, the
method is applied to upstream bioprocess development
and/or optimization (where the impact of temperature
and feeding rate on the simulated process performance
is investigated), but it could also be adapted to the devel-
opment/optimization of chemical synthesis processes. Ex-
perimental applicability of this concept has been shown for
an E.coli fed-batch processes elsewhere. Future research on
using the iDoE method for the development of processes
with other organisms (e.g. mammalian cells) is expected to
show that the number of experiments required for model
development can be reduced significantly.

The authors thank Jan-Martijn Hamelink for the fruitful discus-
sions on the iDoE method.
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[17] Åkesson, M., Hagander, P., Axelsson, J. P., Avoiding acetate ac-
cumulation in Escherichia coli cultures using feedback con-
trol of glucose feeding. Biotechnol. Bioeng. 2001, 73, 223–
230.

[18] Dietzsch, C., Spadiut, O., Herwig, C., A dynamic method based
on the specific substrate uptake rate to set up a feeding strategy
for Pichia pastoris. Microb. Cell Fact. 2011, 10, 14.

[19] Schaepe, S., Kuprijanov, A., Simutis, R., Lübbert, A., Avoiding
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