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SDS-PAGE fractionation to increase
metaproteomic insight into the taxonomic and
functional composition of microbial
communities for biogas plant samples
Metaproteomics represent an important tool for the taxonomic and functional inves-
tigation of microbial communities in humans, environment, and technical applica-
tions. Due to the high complexity of the microbial communities, protein, and peptide
fractionation is applied to improve the characterization of taxonomic and functional
composition of microbial communities. In order to target scientific questions re-
garding taxonomic and functional composition adequately, a tradeoff between the
number of fractions analyzed and the required depth of information has to be found.
Two samples of a biogas plant were analyzed by either single LC-MS/MS measure-
ment (1D) or LC-MS/MS measurements of fractions obtained after SDS-PAGE (2D)
separation. Fractionation with SDS-PAGE increased the number of identified spec-
tra by 273%, the number of peptides by 95%, and the number of metaproteins
by 59%. Rarefaction plots of species and metaproteins against identified spectra
showed that 2D separation was sufficient to identify most microbial families but
not all metaproteins. More reliable quantitative comparison could be achieved with
2D. 1D separation enabled high-throughput analysis of samples, however, depth in
functional descriptions and reliability of quantification were lost. Nevertheless, the
proteotyping of multiple samples was still possible. 2D separations provided more
reliable quantitative data combined with a deeper insight into the taxonomic and
functional composition of the microbial communities. Regarding taxonomic and
functional composition, metaproteomics based on 2D is just the tip of an iceberg.
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1 Introduction

Human health [1, 2] as well as global elemental cycles [3]
and technical processes [4] depend on microbial communities
and their metabolic functions. Each microbial community may
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consist of up to 1000 different species [5] expressing numerous
proteins and using various metabolic pathways. The comprehen-
sive investigation of microbial proteins (metaproteomics) repre-
sents a promising tool for the identification of actually existing
metabolic pathways and allows the taxonomic composition of
microbial communities [6] to be revealed.

Crucial steps of a metaproteomic workflow are (i) protein
extraction and purification from the contaminating sample ma-
trix, (ii) tryptic digestion to peptides, and (iii) acquisition of
peptide spectra by high-resolution LC-MS/MS. Subsequently,
the measured spectra and peptides, respectively, are identified
by comparison with theoretical spectra calculated in silico from
protein sequence databases [4]. Due to both contaminations of
samples with humic compounds and the high sample complexity
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in metaproteomics, the setting-up of an efficient workflow is very
challenging. On the one hand, a data-dependent MS/MS work-
flow using the top 10 to 20 most abundant peptide ions does
not cover all available peptide ions. On the other hand, spec-
tra of coeluting isobaric peptides may impede successful protein
identification. Thus, the cleanup of samples and characterization
of peptides and proteins in metaproteomics requires time and
labor intensive purification and prefractionation methods. For
example, ten-fold more proteins were identified after prefrac-
tionation of proteins from a biogas plant (BGP) by SDS-PAGE
(2D) in comparison to the investigation of the entire sample by
one single LC-MS/MS measurement (1D) [7]. However, the use
of a comprehensive prefractionation method increased the time
required for LC-MS/MS measurements. Accordingly, depending
on the number of fractions and the required level of insight into
the structure of a microbial community, a compromise has to
be found. And, finally, the use of different workflows raises the
question of whether the data is still comparable, even when the
same samples are being analyzed.

The present study compares high-resolution metaproteomics
(SDS-PAGE prefractionation, 2D) and high-throughput proteo-
typing (without prefractionation, 1D) as previously published
by Heyer et al. (2016) [8]. Two samples from a BGP in the in-
terval of 11 weeks were used to investigate differences in the
depth of analysis and respective insights into microbial com-
munity composition and metabolic pathways provided by both
approaches.

2 Materials and methods

2.1 Chemicals

All chemicals were at least of analysis grade. For LC-MS/MS, MS
grade solvents were used.

2.2 Metaproteomics workflow

Two samples (sample 1 and sample 2) were taken from the main
fermenter of a mesophilic (40°C) BGP Wittgensdorf (“Sachsen-
land” e.G.) in an interval of 11 weeks and stored at –80°C until
further usage. Process parameters were provided by the biogas
plant operator (Supporting Information Table S1, Supporting
Information Fig. S6).

Cell disruption and protein extraction were carried out in
triplicate according to Heyer et al. (2013) [9] using a ball mill
and phenol extraction. Afterwards proteins were dissolved in
urea buffer (7 M urea, 2 M thio urea, and 0.01 g/mL DTT) [9].
The protein concentration was measured by amido black as-
say [10, 11]. For protein separation, a SDS-PAGE [12] with a
12% separating gel was carried out. Therefore, 100 μg of protein
were precipitated with ice-cold acetone. For LC-MS/MS mea-
surement, the lanes from the first and the second sample were
divided into 10 fragments and digested tryptically (2D) [13].
Subsequently, the peptides were dissolved in 12 μL loading A,
centrifuged (30 min, 13 000 × g, 4°C) and transferred to an
HPLC vial.

In addition, a second SDS-PAGE was carried out using
100 μg acetone precipitated protein. However, the SDS-PAGE
was stopped when proteins entered 0.5 cm of the separating gel
(1D) [7]. The samples were digested and prepared for LC-MS/MS
measurement, as described above.

Peptides were analyzed by LC-MS/MS using a UltiMate 3000
RSLCnano splitless LC system coupled online to an Elite Hybrid
Ion Trap Orbitrap Mass Spectrometer (both from Thermo Fisher
Scientific, Bremen, Germany) using a 120 min gradient. For
further details, please refer to Heyer et al. (2016) [8].

Before protein identification, the MS result files (∗.raw files)
were converted to .mgf (mascot generic format) files using Pro-
teome DiscovererTM Software (Thermo Fisher Scientific, Bre-
men, Germany, version 1.4). For protein identification, the soft-
ware ProteinScape (Bruker Daltonics, Bremen, Germany, version
3.1.3) and the search engine MASCOT (Matrix Science, London,
England, version 2.5.1) were used along with a metagenome
database including UniProtKB/Swiss-Prot (version: 23.10.2014)
and seven metagenomes [11, 14–16]. The following parameters
for the protein database search were applied: trypsin, one missed
cleavage, monoisotopic mass, carbamidomethylation (cysteine),
and oxidation (methionine) as variable modifications, ±10 ppm
precursor and ±0.5 Da MS/MS fragment tolerance, 113C and
+2/+3 charged peptide ions, and 1% false discovery rate. Protein
hits were considered to be identified with at least one identified
peptide.

For further taxonomic and functional result interpretation,
the software MetaProteomeAnalyzer (MPA) was used [17] (Ver-
sion 1.0.8d). Unknown protein sequences from the metagenome
were identified by the basic local alignment search tool (BLAST,
NCBI-Blast-version 2.2.30) [18] against UniProtKB/Swiss-Prot
[19] with a maximum e-value of 10−4. Redundant homologous
proteins were grouped into metaproteins (groups of redundant
homologous proteins) according to their Uniref50 clusters [20].
The taxonomy of a metaprotein was assigned using the lowest
common ancestor of all proteins in a group.

Finally, profiles of the metaproteins, taxonomic orders as
well as biological processes (UniProtKB keyword) were exported
from the MPA software as comma separated files and fused
to combined matrices using a Matlab script (The MathWorks
GmbH, Ismaningen, Germany, version 8.3.0.532 (R2014a); Sup-
porting Information 1).

For the rarefaction curves, the identified spectra, their pep-
tides, metaproteins, and taxonomies were received from the MPA
software using a Java program (Supporting Information 2). All
spectra of each MS measurement were sorted by spectra inten-
sity, and the cumulative sums of the spectra were plotted against
the cumulative sum of metaproteins and species. The rarefaction
curves were used for calculating the maximal number of possible
identifications. The following equation was used:

y = a ∗ x/ (b + x) (1)

where y denotes the number of identified metaproteins or
species, x the number of spectra, and a and b represent two fitted
parameters (Matlab script, Supporting Information 3) [21].

Furthermore, a t-test was used for the comparison of either
1D or 2D for the two samples or the two samples with respect
to 1D or 2D. Only changes with a p-value of 0.05 and at least a
two-fold decrease or increase were considered significant.
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Principle component analysis (PCA) was used to investigate
the similarity of the two samples either by 1D or 2D with 40 other
biogas plant samples (1D approach) [8]. PCA was performed
with Matlab using the “Statistics and machine learning toolbox.”

3 Results

3.1 Taxonomic and functional coverage of microbial
communities using 1D and 2D

Metaproteomics takes aim at the taxonomic and functional
description of microbial communities. In order to compare both
approaches, two samples taken from biogas plants were analyzed
either by 1D or 2D. For 1D, the SDS-PAGE was stopped after pro-
teins entered 0.5 cm of the separation gel. Therefore, only broad
protein bands were observed in the stained gel (Supporting In-
formation Fig. S1A). On the contrary, 2D is already comprised
of a complete SDS-PAGE (Supporting Information Fig. S1B).
The protein profiles exhibited several intense bands and a strong
blue background. This background could also be related to a light
brown color before Coomassie Blue staining indicating humic
compounds as contaminants. The fact that the brown contam-
inants remained in the gel after tryptic digestion pointed to a
cleaning effect of both gel-based approaches. A subsequent LC-
MS/MS measurement identified 1921 spectra for 1D and 7165
spectra for 2D, respectively. For 1D, the identified spectra could
be assigned to 887 peptides, 4363 proteins, 420 metaproteins
and 1141 species. For 2D, 1727 peptides, 6167 proteins, 666
metaproteins, and 1328 species were obtained.

Analogous to the rarefaction curves in metagenomics [22],
cumulative sums of metaproteins (Fig. 1A) and species (Fig. 1B)
were plotted against the cumulative sum of the identified spec-
tra. The 1D-derived curves showed a steeper slope than the 2D-
derived curves. The slope for identified metaproteins (Fig. 1A)

Table 1. Number of identified spectra, peptides, proteins,
metaproteins, and species as well as the predicted number of
metaproteins and species for 1D and 2D of sample 1

Spectra Peptides Proteins Meta
proteins

Species

Identifications
1D (% of
saturation)

1921 887 4363 420
(33%)

1141
(47%)

Estimated
number of
identifications
(1D)

− 1283 2446

Identifications
2D (% of
saturation)

7164 1727 6167 666
(26%)

1328
(51%)

Estimated
number of
identifications
(2D)

2579 2587

was lower than for identified species (Fig. 1B). The species curves
for 2D showed a saturation, whereas for all other curves, in par-
ticular for metaproteins, no saturation was observed. This indi-
cates that not even 2D prefractionation is sufficient to reveal the
majority of microbial proteins within the microbial community.

To estimate the required resolution of the metaproteomic
workflow, rarefaction curves were fitted (Fig. 1A and B) and the
maximum number of possible metaproteins and species were
extrapolated (Fig. 1C, Table 1).

Based on this extrapolation, about 33% of the predicted
metaproteins were identified with 1D and 26% with 2D, respec-
tively (Table 1). Regarding the predicted number of species, 47%
were detected for 1D and 51% for 2D, respectively. Whereas
the estimated number of identifications by 1D and 2D was
similar for the species, the estimated number of identifications

Figure 1. The rarefaction curves
show the cumulative sum of
identified metaproteins (A) and
species (B) against the number
of identified spectra sorted by in-
tensity for sample 1. For each
dataset, a curve fitting was car-
ried out using Equation (1) [21].
(C) Estimated number of iden-
tified metaproteins (blue) and
species (black) for 100 000 spec-
tra. The data is based on the cal-
culated parameters a and b from
curve fitting.
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was about two times higher for metaproteins using the 2D
approach.

The taxonomic profiles were investigated for 1D and 2D us-
ing the Krona visualization tool [23] based on the spectral count
of the metaproteins and the corresponding taxonomic anno-
tations. The Krona plots for samples 1 and 2 showed similar
profiles (Fig. 2, Supporting Information Fig. S1). Using 1D, 28%
Bacteria, 35% Archaea, 0.02% Viruses, and 36% unassigned tax-
onomies were observed (Fig. 2A) for sample 1. In contrast, 2D re-
vealed 34% Bacteria, 27% Archaea, 0.08% Viruses, and 38% unas-
signed taxonomies (Fig. 2B). The main bacterial orders in both
Krona plots were Bacillales (1D: 4%/2D: 3%), Bacteroidales (1D:
2%/2D: 3%) and Clostridiales (1D: 1%/1D: 2%). Furthermore,
larger amounts of the archaeal orders Methanosarcinales (1D:
7%/ 2D: 4%), Methanococcales (1D: 7%/ 2D: 5%), Methanobac-
teriales (1D: 7%/2D: 3%), and Methanomicrobiales (1D: 4%/2D:
3%) were identified with 1D. All archaeal orders appeared to be
less abundant with 2D.

Based on the Krona plots, the abundances of taxonomic ranks
were counted (Supporting Information Table S5). The deeper the
taxonomic rank, the higher the differences between 1D and 2D
would be. For 1D, 84 species were identified in both samples.
2D revealed up to 148 species in sample 1 and 136 species in
sample 2.

To confirm the differences between both approaches regard-
ing the species composition, a t-test (Supporting Information
Table S2) was carried out (Supporting Information Fig. S4).
Only four orders were found to be significantly underestimated
by the 1D approach in contrast to the 2D approach. These include
the low abundant orders Sulfolobales, Cytophages, Campylobac-
terales, and Chroococcales.

For the comparison of the detected microbial functions iden-
tified by 1D and 2D, the Kyoto encyclopedia of genes and
genomes (KEGG) ontology and Enzyme Commission numbers
of identified metaproteins were considered. As an example, the
impact of the separation method (1D vs 2D) on the enzyme
identifications of the central carbon metabolism (KEGG map
01200) is shown in Fig. 3 [24].

Metaproteins of methanogenesis, glycolysis, citrate cycle,
butyrate fermentation, and Wood-Ljungdahl pathway were
present in both approaches. However, 2D covered more steps
of the central carbon metabolism. For instance, more enzymes
of Wood-Ljungdahl pathway and butyrate fermentation were
identified.

In order to investigate further biological functions found
to be different between 1D and 2D, the biological processes
(UniProtKB Keywords) were compared by means of a t-test (Sup-
porting Information Table S3) and visualized in a scatter plot
(Fig. 4).

The most significant differences were observed for bi-
ological processes showing low mean abundances in both
approaches. Aromatic amino acid biosynthesis decreased in
the 2D-approach. In contrast, the abundance of transcription,
transcriptional regulation, lysine biosynthesis, diaminopimelate
biosynthesis, carbohydrate metabolism, cellulose degradation,
and cell wall biogenesis/degradation increased. Metaproteins
for septation, two-component regulatory systems as well as
thiamine-, isoprene-, and molybdenum cofactor biosynthesis
could only be identified by the 2D-approach.

3.2 Application of 1D and 2D for quantitative
comparison of samples

The two samples of the BGP were compared either by 1D or
2D to investigate the impact of a reduction in feeding volume
on the taxonomic and functional structure of the microbial
communities.

Comparing the biological processes of both samples, the ap-
plication of 1D and 2D prefractionation resulted in different out-
comes (Fig. 5). The coenzyme A biosynthesis was newly detected
for sample 2 in 1D. In 2D, coenzyme A biosynthesis decreased.
However, a low mean abundance in spectral counts was detected
for both methods. Histidine- and methionine biosynthesis were
also significantly increased for sample 2 for the 1D, but not for
the 2D approach.

A PCA was performed with all 1D and 2D samples. In ad-
dition, samples obtained from a previous study comprising 40
other biogas plant samples (Fig. 6) were included [8]. The latter
were prefractionated using the 1D approach. The samples of 1D
and 2D clustered with the other mesophilic BGP, but remained
separated indicating that mixing 1D and 2D in subsequent statis-
tic approaches (e.g. PCA) is not applicable. Furthermore, the
position of both individual samples of each BGP was slightly
different for the 1D approach.

The comparison of samples 1 and 2 for either 1D or 2D re-
vealed some inconsistent findings for the identified metaproteins
(Fig. 7). Twelve significantly increased or decreased metaproteins
were found in 1D (Fig. 7A). These metaproteins were not sig-
nificant for 2D, except for the metaproteins MJ1114, fhs, gcvPB,
and grdB (Fig. 7B). It is also noticeable that three metaproteins
from Archaea are found to have decreased in sample 2 for 2D. For
1D, only one of the metaproteins from Archaea had decreased in
sample 2. Three metaproteins for the amino acid synthesis are
found to have increased for sample 2 in the 1D and 2D approach.

4 Discussion

Setting up metaproteomics studies, researches have to consider
the number of samples to be prepared and analyzed including the
required depth of analysis to target appropriately their scientific
questions. For the elucidation of metabolic pathways or specific
microbial interactions, sample prefractionation is applied fre-
quently to increase the resolution of the experiments. However,
sample prefractionation (and replicate measurements) multiply
the effort and are therefore not suitable for high-throughput
studies. Benchmarking 1D and 2D regarding the depth of tax-
onomic and functional results, the quantification of results and
the application of statistical data analysis is the main target of
the study.

The present study compares 2D prefractionation for
high-resolution metaproteomics and a 1D approach for high-
throughput proteotyping. As expected, 1D resulted in a lower
number of identified spectra, peptides, and metaproteins as
previously observed by Kohrs et al. (2014) [7]. The application
of a more sensitive Orbitrap Elite mass spectrometer compared
to that used in Kohrs et al. (2014) [7] resulted in about
10-fold more identifications that provided a depth of data
that allows for a functional and taxonomic analysis of 1D
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Figure 3. KEGG pathway map of the central carbon metabolism (map 01200) [24] using KEGG Ontologies and Enzyme Commission
numbers identified by 1D or 2D of sample 1. Blue: Identified in 1D; Red: Identified in 2D; Purple: Identified in both 1D and 2D.

data. 2D separation of the sample before tryptic digestion in
10 fractions allowed for a 2.73-fold increase in the number of
identified spectra, resulting in 95% more peptides, 59% more
metaproteins, and 16% more taxonomies. A higher numbers of
species than metaproteins were observed in rarefaction curves
(Fig. 1), presumably because many spectra were identified
as peptides matching to more than one and in worst case
hundreds of homologs proteins from different species. Thus,

the number of species is overestimated due to the similarity of
homologous proteins in the database. Nevertheless, rarefaction
curves provide information about the coverage of all species
and metaproteins within the sample. Whereas 1D failed to cover
the most abundant species, the saturation of 2D curves pointed
to a high coverage of species. Different numbers of expected
species in 1D and 2D might be attributed to the random
occurrence of spectra matching to multiple homolog proteins
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Figure 4. Scatter plot for bi-
ological processes comparing
1D and 2D of sample 1. The
mean spectral counts of 2D were
plotted against the mean spec-
tral counts of 1D. Significant
changes between 1D and 2D
were determined by a t-test. The
red colored points indicate a p-
value less than 0.05. The points
in the blue or the orange area
are at least decreased (blue)
or increased (orange) two-fold.
Description of biological pro-
cesses is based on UniPro-
tKB Keywords for biological pro-
cesses.

Table 2. Assignment of gene names from Fig. 7 to metaproteins and the corresponding relative abundance based on spectral counts of
each sample

Gene name Metaprotein Relative abundance 1D Relative abundance 2D

Sample 1 Sample 2 Sample 1 Sample 2

cdhC2 Acetyl-CoA decarbonylase/synthase complex subunit beta 2 0.0016 0.0008 0.001 0.0016
coaX Type III pantothenate kinase 0 0.0008 0.0003 0.00017
fhs Formate–tetrahydrofolate ligase 0.002 0.008 0.0006 0.0037
fmdC Molybdenum-containing formylmethanofuran dehydrogenase 1

subunit C
0.0007 0 0.0013 0.00026

folD Bifunctional protein FolD 0.0004 0.0018 0 0
fprA Nitric oxide reductase 0 0.00078 0.00039 0.00074
frhG Coenzyme F420 hydrogenase subunit gamma 0.0053 0.0028 0.0037 0.00076
gcvPB Probable glycine dehydrogenase (decarboxylating) subunit 2 0 0.002 0.00019 0.0012
gcvT Aminomethyltransferase 0.00046 0.0021 0.0013 0.0024
GND1 6-phosphogluconate dehydrogenase, decarboxylating 1 0.0014 0.0002 0 0
grdB Glycine reductase complex component B subunit gamma 0.0002 0.0027 0.0021 0.0047
hdrB1 CoB–CoM heterodisulfide reductase subunit B 1 0.00067 0.0033 0.001 0.0013
MJ0742 Uncharacterized protein MJ0742 0.0002 0.0003 0.0015 0.0001
MJ1114 Uncharacterized protein MJ1114 0.0022 0.0002 0.0023 0.00049
psbA/
psbA2

Photosystem II protein D1/
Photosystem II protein D1 2

0.0027/
0.0027

0.001/
0.001

0.003/
0.0029

0.0022/
0.002

thlA Acetyl-CoA acetyltransferase 0 0.001 0.0006 0.0008
thsB Thermosome subunit beta 0.0041 0.0018 0.0018 0.0015
tmpC Membrane lipoprotein TmpC 0.0018 0.0005 0.0003 0.0006
tuf Elongation factor Tu 0.0064 0.0046 0.0082 0.01
tufA Elongation factor Tu-A 0.003 0.0012 0.0005 0.0007

influencing strongly the curve fit. Counting species based on
metaproteins and the respective lowest common ancestors
confirms the relation between taxonomies and functions of
metaproteins [17]. Furthermore, it seemed to be more accurate
with 84 species for 1D and showed an increase of 60% for
2D. The numbers of identified species were in the same range

as in previous metaproteomic studies of BGP, but lower than
species observed with metagenomic approaches [5]. The lower
abundance of Archaea in 2D was most likely related to the
selection of most abundant top N precursors in LC-MS/MS
measurements preferring abundant proteins. Most likely, the
higher diversity of Bacteria corresponds to various less abundant
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Figure 5. Scatter plot for biological processes comparing the two samples of BGP. The mean spectral counts of sample 2 were plotted
against the mean spectral counts of sample 1. Significant changes between sample 1 and sample 2 for 1D (A) or 2D (B) were determined
by a t-test. The red colored points indicate a p-value less than 0.05. The points in the blue or orange area are at least decreased two-fold
(blue) or increased two-fold (orange). The description of biological processes is based on UniProtKB Keywords for biological processes.
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Figure 6. Principle component analysis is based on all metaproteins, which represent in at least one BGP one percent of the identified
spectra. For comparability, the two investigated samples (sampe 1: triangle; sample 2: point) with 1D (purple) and 2D (green) were plotted
together with 40 other biogas plant samples [8]. The mesophilic BGP were plotted in blue and the thermophilic BGP in orange.

species suppressed the detection of bacterial proteins in
1D due to few highly abundant Archaea as previously shown by
other studies [4, 25]. However, the higher taxonomic resolution
of 2D does not always justify the higher effort, in particular in
high-throughput studies.

But considering the higher number of detected metaproteins
and their related functions could change this point of view. A
ten-fold higher effort of 2D resulted in 60% more metaproteins,
more reliability in quantifying biological processes and single
metaproteins. This is advantageous, in particular for in-depth
metabolic pathway studies. A major reason for a low amplifi-
cation of identified metaproteins within 2D was the high re-
dundancy of detected peptides. On the one hand, this could
indicate the required improvement of data-dependent precursor
ions selection for MS/MS. On the other hand, the separation of
the LC system or the SDS-PAGE may not have been optimal.
Due to contaminating humic compounds, the latter has been
observed for biogas samples showing smearing of proteins in
SDS-PAGE resulting in redundant hits in several fractions [7].
In contrast, SDS-PAGE fractionation of mitochondrial proteins
resulted in a higher multiplicity of identifications due to bet-
ter separation [26]. Instead of SDS-PAGE as ion exchange chro-
matography of tryptic peptides could be applied as an alternative
fractionation step [27]. Based on the fitted curve of the rarefac-
tion plot (Fig. 1, Table 1), the expected number of metaproteins
at 100% saturation is approximately 2600 metaproteins. This

number appeared to be very small considering the number of
detected species where each expressed 1000 proteins [28]. But
removing redundancy by generating metaproteins could be a
reason for the underestimation of metaproteins in comparison
to taxonomic variety. Here, the application of the correspond-
ing metagenomes and the binning of the most abundant species
could optimize the bioinformatic processing of data [6].

The comparison of samples taken eleven weeks apart employ-
ing the t-test and the data from 1D and 2D showed inconsistent
results. The results of 2D appeared to be more reliable due to
the higher number of spectra used for quantification. Due to
temporarily reduced feeding volume of the BGP sampled, the
metaproteins of methanogenesis were found to be downregu-
lated and nearly the same proteins of the amino acid metabolism
were found to be increased by both approaches. In contrast,
the results for the taxonomies and biological processes differed.
According to Old et al. (2005), a quantitative comparison of
spectral abundance is valid above four identified spectra per
LC-MS/MS measurement [29]. Besides other quality criteria in
label-free quantification [30], this fact should be respected when
analyzing data quantitatively. Thus, the low resolution of 1D
seems to be more appropriate for proteotyping samples from
high-throughput analyses. PCA of 1D data of both samples and
previously published 1D data from BGPs [8] assigned both sam-
ples to mesophilic BGPs. The shift between all samples for 1D and
the 2D approach for sample 1 and 2 in PCA could be caused by a
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Figure 7. Scatter plot for
metaproteins comparing the
two samples of BGP. The mean
spectral counts of sample 2
were plotted against the mean
spectral counts of sample 1.
Significant changes between
sample 1 and sample 2 for
1D (A) or 2D (B) were deter-
mined by a t-test (Supporting
Information Table S4). The
metaproteins with a p-value of
at most 0.05 were labeled red.
Metaproteins of methanogenic
Archaea are colored red. The
relative abundances and protein
names are shown in Table 2.

different analysis depth indicating that mixing the data prepared
by means of different experimental and bioinformatic workflows
is not applicable. This fact should be also considered when dis-
cussing the occurrence of specific taxonomies or functions from
related publications.

In conclusion, the results obtained with 1D and 2D prefrac-
tionation of samples differ slightly. 1D enables high-throughput
analysis of samples losing depth in functional description and
reliability in quantification based on spectral count, but still
allowing proteotyping multiple samples. 2D provides more re-
liable quantitative data combined with a better insight into the

composition and metabolic pathways of the microbial commu-
nity. Nevertheless, metaproteomics is so far only hitting the tip of
an iceberg. Extensive fractionation adding a third separation step
prior to MS, e.g. 2D-LC [31] or liquid isoelectric focusing prior
to SDS-PAGE [7], could provide potentially more insight into
the structure and function of microbial communities. However,
increasing the redundancy of identified metaproteins in multi-
ple fractions could limit the efficiency of this approach. Here,
recent developments in MS, e.g. the separation of tryptic pep-
tides by ion mobility separation [32,33] prior MS, could be more
efficient, because a higher sampling rate and a higher sensitivity
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will increase the identification without an extensive fractionation
of samples.

Practical application

Metaproteomics is a well-established method for the tax-
onomic and functional investigation of complex microbial
communities. Due to a high complexity, prefractionation
is necessary to achieve a deeper insight into the taxonomic
and functional composition of microbial communities. The
research in this study compares two methods by either
single LC-MS/MS measurement (1D) or LC-MS/MS mea-
surements of 10 fractions obtained after SDS-PAGE (2D)
regarding their resolution for taxonomic and functional
composition. It has been shown that 1D is suitable for
proteotyping multiple samples but not sufficient for taxo-
nomic and functional investigation or quantitative analysis.
Therefore, the use of 2D proves to be a more promising
method.
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