Skip to main content
. Author manuscript; available in PMC: 2020 Feb 4.
Published in final edited form as: Remote Sens Environ. 2016 Jan 12;Volume 185(Iss 1):57–70. doi: 10.1016/j.rse.2015.12.024

Table 1:

Top of atmosphere reflectance sensor transformation functions (ETM+ to OLI and OLI to ETM+) derived by ordinary least squares (OLS) regression of the data illustrated in Figure 7, reduced major axis (RMA) regression coefficients, the number of 30m pixel values considered (n), the OLS regression coefficient of determination (r2 ), the OLS regression F-test p-value, the mean difference [2], the mean relative difference [4], and the root mean square deviation [3], between the OLI and ETM+ TOA reflectance data.

Regression type Between sensor OLS transformation functions and RMA regression coefficients n OLS r2 (p-value) mean difference OLI – ETM+ (reflectance) mean relative difference OLI – ETM+ (%) root mean square deviation (reflectance)
Blue λ (∼0.48μm) RMA OLI = −0.0029 + 1.0333 ETM+ 29,697,049 0.710 (<0.0001) 0.0013 0.69 0.0259
OLS OLI = 0.0173 + 0.8707 ETM+
OLS ETM+ = 0.0219 + 0.8155 OLI
Green λ (∼0.56μm) RMA OLI = 0.0014 + 0.9885 ETM+ 29,726,550 0.776 (<0.0001) 0.0001 0.11 0.0272
OLS OLI = 0.0153 + 0.8707 ETM+
OLS ETM+ = 0.0128 + 0.8911 OLI
Red λ (∼0.66μm) RMA OLI = 0.0009 + 1.0026 ETM+ 29,678,433 0.838 (<0.0001) 0.0012 1.13 0.0302
OLS OLI = 0.0107 + 0.9175 ETM+
OLS ETM+ = 0.0128 + 0.9129 OLI
Near infrared λ (∼0.85μm) RMA OLI = −0.0058 + 1.1007 ETM+ 29,767,214 0.711 (<0.0001) 0.0194 6.45 0.0637
OLS OLI = 0.0374 + 0.9281 ETM+
OLS ETM+ = 0.0438 + 0.7660 OLI
Shortwave infrared λ (∼1.61μm) RMA OLI = −0.0001 + 1.0659 ETM+ 29,725,068 0.780 (<0.0001) 0.0137 6.41 0.0543
OLS OLI = 0.0260 + 0.9414 ETM+
OLS ETM+ = 0.0246 + 0.8286 OLI
Shortwave infrared λ (∼2.21μm) RMA OLI = 0.0048 + 1.0983 ETM+ 29,237,762 0.837 (<0.0001) 0.0180 13.59 0.0441
OLS OLI = 0.0490 + 0.9352 ETM+
OLS ETM+ = 0.0075 + 0.8329 OLI