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Translocator protein (TSPO), also known as peripheral 
benzodiazepine receptor, is a transmembrane protein located 
on the outer mitochondria membrane (OMM) and mainly 
expressed in glial cells in the brain. Because of the close 
correlation of its expression level with neuropathology and 
therapeutic efficacies of several TSPO binding ligands under 
many neurological conditions, TSPO has been regarded as 
both biomarker and therapeutic target, and the biological 
functions of TSPO have been a major research focus. 
However, recent genetic studies with animal and cellular 
models revealed unexpected results contrary to the anticipated 
biological importance of TSPO and cast doubt on the action 
modes of the TSPO-binding drugs. In this review, we summarize 
recent controversial findings on the discrepancy between 
pharmacological and genetic studies of TSPO and suggest 
some future direction to understand this old and mysterious 
protein. [BMB Reports 2020; 53(1): 20-27]

TRANSLOCATOR PROTEIN (TSPO) AS A 
MULTI-FACETED MITOCHONDRIAL PROTEIN

Mitochondria serve as the powerhouses of the cell by 
generating ATP coupled with respiratory oxidative phosphorylation 
of the nutrients. Mitochondria have other essential roles, 
including metabolite biogenesis, Ca2+ homeostasis, reactive 
oxygen species (ROS) production, inflammation and immunity, 
and programmed cell death (1, 2). Therefore, mitochondria are 
the crucial integrator of vital and detrimental cellular processes, 
and dysfunction of mitochondria is intimately implicated in a 
variety of neurodegenerative and neurological conditions, 
including Alzheimer’s disease (AD), Parkinson’s disease (PD), 
Huntington’s disease (HD), anxiety, and bipolar disorder (3). 

Mitochondrial membrane proteins are the important regulators 
of mitochondrial homeostasis, such as ion transport, ATP/ADP 
transport, and mitochondria fusion/fission. Therefore, defects 
in these proteins are associated with numerous diseases (4). 
For this reason, mitochondrial membrane proteins are 
considered to be promising targets for development of diagnostic 
tools and therapeutic strategies. TSPO is the mitochondrial 
transmembrane protein that was discovered as the binding site 
of benzodiazepine in 1977 (5). Studies using TSPO-binding 
ligands have revealed that this protein participates in a variety 
of cellular functions, including cholesterol transport and 
steroid hormone synthesis, mitochondrial permeability transition 
pore (mPTP) opening, mitochondrial respiration, apoptosis, 
proliferation, tumorigenesis, and inflammation (6-10). In the brain, 
because of a noticeable increase in the protein expression 
level of TSPO in activated microglia during neuroinflammation 
and marked immunosuppressive potency of the TSPO ligands, 
TSPO has become an attractive pharmacological target for 
diagnostic imaging and anti-inflammatory, neuroprotective 
therapeutic design for the treatment of neurological and 
neuropsychological diseases (11). 

Evolution of TSPO 
TSPO has 169 amino-acid residues with highly conserved five 
transmembrane domains (TM) (Fig.1A). During evolution, the 
TSPO gene family has expanded its roles from environmental 
sensor to functional bioregulator (12). In bacteria, TSPO 
homologues serve as a regulator of photosynthesis and oxygen 
sensor (13). Even though the mammalian TSPOs share less 
than 30% identity in protein sequence with bacterial homologues, 
mammalian TSPO can replace bacterial TSPO’s function as an 
oxygen sensor (13). Recently, TSPO in non-photosynthetic 
eubacterium Pseudomonas fluorescens was shown to share 
close structural and functional similarities with mammalian 
TSPOs including binding affinity to PK11195, a prototypical 
TSPO ligand (14). TSPO is also found in some populations of 
archaea and plants (12). However, absence of TSPO is also 
reported in Escherichia coli and yeast Saccharomyces cerevisiae, 
indicating that TSPO is not a necessary protein for biological 
activity or that other proteins can replace TSPO’s function in 
some organisms (15). Animals and plants have more than one 
TSPO gene, namely, Tspo1 and Tspo2 (16). Tspo2 emerged by 
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Fig. 1. Sequence alignment of eukaryotic TSPO homologues. (A) 
TSPO has a highly conserved sequence, especially on transmembrane
domains from plants to human. (B) TSPO topology in the mitochondrial 
membrane.

gene duplication, which occurred before the divergence of the 
avians and mammals. Comparative analysis of TSPO1 and 
TSPO2 revealed that TSPO2 had lost its ligand-binding affinity. 
The subcellular location of TSPO2 is also different from the 
mitochondrial location of TSPO1, since TSPO2 is located on 
ER and nuclear membranes with limited distribution specific to 
hematopoietic tissue and erythroids (12). These evolutionary 
findings helped to understand the myriad functions of the 
TSPO family. 

Structure of TSPO
The three-dimensional high-resolution structure of TSPO has 
been solved for mammalian or bacterial TSPO proteins 
(17-19), in which 5 TMs of TSPO are tightly packed together in 
the clockwise order TM1-TM2-TM5-TM4-TM3 when viewed 
from the cytosol (Fig. 1B) (18). Several metabolites and 
peptides, including cholesterol, porphyrins, phospholipase A2, 
and diazepam-binding inhibitor, can bind to TSPO, suggesting 
the presence of the endogenous TSPO ligands (20). The 
cholesterol recognition amino-acid consensus (CRAC) site 
starting with the amino-acid residue Ala 147 is found in TM5 
and, together with the charged C-terminal end, faces toward 
the cytosolic side. This C-terminal region of TSPO plays an 
important regulatory role during cholesterol binding and 
import into mitochondria (17). PK11195 does not bind to 
CRAC, but binds to the pocket that is formed by the five 
transmembrane helices in the upper cytosolic part of the 
helical bundle (18). 

PK11195 binding stabilizes the structure of TSPO, which 
explains the stimulation of cholesterol transport into 
mitochondria by this synthetic ligand [19]. Ala 147 residue is 
mutated to Thr in the polymorphism associated with increased 
anxiety in humans (21). Interestingly, this residue is involved 
in binding to both cholesterol and PK11195, and binding 
affinity of both ligands is decreased in the human Ala147- 
to-Thr TSPO mutant (17). A proposed model of bacterial TSPO 
mimicking human polymorphism revealed differences in 
structure and conformational changes upon ligand binding, 
especially around the CRAC site, and provided insights into 
the potential pathogenic mechanism of TSPO polymorphism 
linked to psychiatric diseases in humans. Therefore, decreased 
binding affinity of ligands to mutated TSPO may underlie the 
pathogenesis of human psychiatric disorders, which warrants 
more in-depth future study to understand the pathophysi-
ological roles of TSPO in the brain. 

Functions of TSPO 
The best-known function of TSPO is steroidogenesis (6). 
Steroidogenesis starts with cholesterol as the substrate, which 
is cleaved by the cholesterol side-chain cleavage enzyme, 
cytochrome P450 family 11, subfamily A member 1 (CYP11A1), 
located in the inner mitochondrial membrane (IMM). Side- 
chain cleavage by CYP11A1 produces pregneolone, the precursor 
of all steroids, leading to the synthesis of steroid hormones 
through a complex process of steroidogenesis (22). 

In adrenocortical and Leydig tumor cell lines, which have 
highly steroidogenic activities, TSPO ligands promote steroid 
hormone production (23, 24). On the other hand, TSPO 
knockdown or disruption with homologous recombination in 
rat Leydig tumor cells reduced steroid hormone production 
(25, 26). Therefore, TSPO is considered to mediate the transport 
of cholesterol into IMM and play an essential role in 
steroidogenesis. 

Another function ascribed to TSPO is regulation of mPTP 
opening (27); mPTP is formed by the assembly of the voltage- 
dependent anion channel (VDAC) and adenine nucleotide 
transporter (ANT) as key components. Opening of this pore 
increases the permeability of mitochondria and allows the 
moving of molecules with a molecular weight ＜ 1.5 kDa 
through the membrane. Opening of mPTP uncouples oxidative 
phosphorylation and ATP synthesis, leading to energy depletion, 
loss of mitochondrial membrane potential (MMP), generation 
of mitochondrial ROS, and release of pro-cell-death proteins, 
which eventually lead to programmed cell death (28, 29). 
PK11195 alone at a high concentration can accelerate mPTP 
opening induced by Ca2+ overloading, a process in which 
VDAC participates. A low concentration of PK also accelerated 
opening of mPTP in synergistically with the VDAC inhibitor 
(30). These biochemical analyses suggest that TSPO as a partner 
of VDAC in modulation of mPTP, and a VDAC/ANT/TSPO 
model was suggested to explain the effects of TSPO ligands 
(31). However, recent genetic studies called into question the 
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pivotal roles of TSPO in steroidogenesis and mPTP (32), as will 
be discussed in Section 3.

THE ROLES OF TSPO IN THE NERVOUS SYSTEM 

In the central nervous system (CNS), TSPO is highly expressed 
in glial cells (e.g., astrocytes, microglia), endothelial cells, 
tanycyites, and some populations of neurons (33-35). For 
decades, some studies have used TSPO ligands to assess the 
levels of neuroinflammation and microglia activation and to 
understand the pathophysiological roles of TSPO in the brain. 
However, understanding of the TSPO function in the brain has 
faltered, partly owing to lack of studies employing cell-type 
specific approaches in normal and pathological states. 

Therapeutic potency of the TSPO ligands 
Beneficial effects of TSPO ligands on neurodegenerative 
disease and anxiety disorders have been reported in various 
experimental models. Five-week administration of PK11195 in 
3xTg-AD mice showed improved memory and reduced 
amyloid beta deposition in the hippocampus (36). XBD173, a 
synthetic ligand of the TSPO, ameliorated degeneration of 
dopaminergic neurons, preserved dopamine metabolism, and 
recovered motor dysfunction in MPTP-treated female mice, the 
model for PD (37). In experimental autoimmune encephalo-
myelitis (EAE), the model for multiple sclerosis (MS), adminis-
tration of etifoxine before the onset of EAE reduced its severity, 
and administration at the peak of the disease progression 
improved symptomatic recovery (38). 

Anxiolytic effects of TSPO ligands were also reported in 
various experimental models. In adrenalectomized and castrated 
rats, etifoxine increased the local steroids levels in the brain, 
such as allopregnanlone, the positive modulator of the 
GABAA, and had anxiolytic effects (39). Other TSPO ligands, 
DAA1097 and DAA1106, also promoted steroidogenesis from 
mitochondria and had anxiolytic effects in anxiety behavior 
tests, such as the light/dark exploration test and elevate plus 
maze test (40). In an inflammatory pain model, acetamide 
(ZBD-2) reduced the anxiety-like behaviors and prevented an 
imbalance of excitatory and inhibitory transmission in the 
basolateral amygdala (BLA) synapses (41),suggesting that TSPO 
ligands have anxiolytic effects through various mechanisms. 

The main mechanisms underlying the beneficial effects of 
the TSPO ligand in various experimental models of neurodegener-
ative conditions are likely to result from amelioration of 
microglia activation and neuroinflammation (42).

Challenge of the role of TSPO in the neuroinflammation
TSPO is now widely used as the marker for neuroinflammation 
or microglia activation, because its protein level is remarkably 
upregulated in activated glial cells, especially in microglia 
during neural disorders or injury (43). Furthermore, the 
anti-inflammatory effects of TSPO ligands were identified in 
both the peripheral nervous system and the CNS (34, 44, 45). 

The biological action of the TSPO protein itself under neuro-
inflammatory conditions was also examined. For instance, 
knockdown of TSPO augmented the inflammatory response to 
lipopolysaccharide (LPS), whereas overexpression of TSPO led 
to opposite effects (46-48). Therefore, an increase in TSPO 
level during inflammation was regarded as the adaptive 
response that may restrict an aggressive inflammatory response. 
However, there are several points worthy of attention 
regarding the relation of TSPO to neuroinflammation.

First, TSPO signaling studies have been mostly restricted to 
activated microglia, which are the resident macrophage in the 
brain that is the master regulator of the brain’s immune 
response. Under normal condition, the brain is barely affected 
by the peripheral immune system. However, under pathological 
conditions, peripheral immune cells (e.g., T cells, B cells, and 
monocytes) infiltrate the brain toward the damaged area (49, 
50). Neurons, astrocytes, and endothelial cells express 
immune checkpoint genes and regulate systemic immune 
activity in the brain, modulating the function of microglia (49, 
50). In the light of this view, altered TSPO signaling should be 
understood as the result of systemic change through 
interaction between various cell types involved in neuro- 
immune modulation and be examined, including astrocytes, 
endothelial cells, or neurons depending on the region, as well 
as microglia. This point is especially important in the diseases 
involving low-grade inflammation. For instance, in experimental 
models and human patients of schizophrenia, lowered 
prefrontal TSPO expression was associated with behavior 
abnormalities and increased levels of cytokines. Intriguingly, 
altered TSPO levels in a schizophrenia model were not 
restricted to microglia, but were observed in other cell types, 
such as astrocytes and vascular endothelial cells (51). These 
data suggest the need for systemic profiling of inflammation 
and characterization of other inflammatory markers when the 
TSPO level is interpreted.

Another point concerning the role of TSPO is that altered 
TSPO expression not only represents the inflammatory response, 
but also signifies the aberration in cellular metabolism, energy 
homeostasis, or oxidative stress during inflammation (35). 
Therefore, correlation of altered TSPO levels with microglia 
activation can be the circumstantial aftermath of, rather than 
represent, direct causality with neuroinflammation. 

The last point is that the role of TSPO in inflammation may 
be quite different depending on the species. Recent research 
on rodent and human microglia showed that basal TSPO gene 
expression was higher in human monocyte-derived macrophages 
(MDM) than in human adult microglia (HAM). Neither IFN- 
/LPS (a classic pro-inflammatory stimulus) nor IL4/IL13 (a 
stimulus of reparative activation) increased TSPO gene 
expression in HAM. In contrast, pro-inflammatory activation of 
human MDM reduced TSPO expression. However, as observed 
previously, those immune stimuli increased TSPO expression 
in a rodent’s monocyte-derived macrophages (MDM) and 
primary microglia. These results indicate that increased TSPO 
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Fig. 2. Differences between human and rodent TSPO. Unlike the 
positive correlation between TSPO and neuroinflammation in 
rodents, TSPO expression in human is not related to inflammation 
level. Binding partners of TSPO ligands are also different between 
the two species. For instance, PK11195 has a binding affinity to 
human CAR but not to mouse CAR.

expression in human positron-emission tomography (PET) 
imaging may indicate an increased number of microglia or 
monocyte-derived macrophages rather than microglia activation 
per se, emphasizing the cautious interpretation of altered 
TSPO levels (52). 

Complex functions of TSPO in the CNS
Now a TSPO-floxed mouse is available and conditional knockout 
of TSPO using Cre-LoxP system can be conducted. The 
hGFAP-driven conditional TSPO knockout resulted in the 
deletion of TSPO in the CNS, while microglial TSPO 
expression was spared (53). The neural lineage-specific TSPO 
knockout mice showed a decrease in astrogliosis in response 
to neural injury in EAE, a popular animal model of MS. This 
decline in astrogliosis was associated with lessening the 
severity of EAE, indicating a functional role for TSPO in 
activation of astrocytes (53).

A recent CRISPR-Cas9-mediated TSPO gene knockout study 
in human primary microglia reported that TSPO in human 
microglia is not related to steroidogenesis but to alterations in 
MMP, cytosolic Ca2+, and VDAC expression (54). 

TSPO ligands as diagnostic tools: is TSPO a true target?
TSPO PET imaging has been developed to detect the inflammatory 
response as a non-invasive molecular imaging tool used to 
diagnose and manage CNS disorders. Radio-labeled RO5-4864 
(benzodiazepine derivative) and PK11195 (isoquinoline 
carboxamide derivative) are the first generated probes to be 
used in PET imaging. For Ro5-4864, it has the problem that its 
binding affinity can be changed by temperature and species; 
so the initial studies on TSPO PET imaging mainly used 
[11C]PK11195 (55). [11C]PK11195 is the most studied ligand 
and is used as the standard in validation of other TSPO ligands 
in PET imaging. Early in the study, [11C]PK11195 was 
successfully employed for the study of several neurode-
generative diseases, such as MS, AD, PD, and amyotrophic 
lateral sclerosis (ALS) (56-59). Especially in AD, [11C]PK11195 
binding affinity highly correlates with the degree of disease 
progression (57). However, a high level of nonspecific binding 
of PK11195 resulting from its lipophilic nature required the 
development of new ligands that have a higher affinity to 
TSPO and less non-specific binding. 

A second generation of TSPO ligands based on the 
indole-ring structure of oracetamidobenzoxazolone was made 
to improve their binding affinity and specificity to TSPO. 
[11C]SSR180575 is the most-studied new ligand with higher 
imaging contrast than [11C]PK11195 has (60). Surprisingly, 
TSPO radio-ligands of the second generation showed the 
existence of binding targets other than TSPO, such as human 
constitutive androstane receptor (hCAR) but not mouse CAR 
(mCAR) (Fig. 2) (61). CAR is the transcription factor that 
regulates the expression of several transport proteins and 
cytochrome P450, Therefore, the CAR protein can modulate 
drug metabolism and excretion for a cellular defense system 

against xenobiotic insults. The CAR protein is also involved in 
various cell functions, including cellular metabolism and 
steroid hormone response. Interestingly, human TSPO plays 
no role in the PK11195 inhibition of hCAR activity, because 
knockdown of TSPO in HeLa cells did not alter PK11195 
effects on hCAR. This finding indicates that TSPO ligands may 
have different targets depending on species, and proteins other 
than TSPO can play roles in mediating the pharmaceutical 
effects of TSPO ligands (61). 

In conclusion, PET imaging with TSPO ligands has correlation 
with CNS disorders, but increased TSPO expression does not 
necessarily indicate microglia activation. Instead, increased 
TSPO ligand binding may indicate increased binding targets 
other than TSPO or increased immune-cell populations in 
certain contexts. 

Clinical trials on TSPO ligands 
Ligands that are known to have binding affinity to TSPO, such 
as TRO19622 (Olesoxime), TRO40303, etofoxine, and XBD173, 
have entered clinical trial phase II or III. TRO19622 
(Olesoxime) is the potential drug for spinal muscular atrophy 
(SMA) and ALS. It promoted motor-neuron survival in vitro. In 
a SOD1G93A transgenic mice model for ALS, TRO19622 
improved motor performance, delayed the onset of the clinical 
disease, and extended the survival period (62). TRO19622 has 
a cholesterol-like structure and can bind to the CRAC domain 
of TSPO with a Ki value of 100 nM. However, it also binds to 
the neurosteroid binding site of VDAC. The assumed 
molecular mechanism by which TRO19622 affects SMA is by 
targeting mPTP opening and cytochrome c release (62). 
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TRO40303 is the cardio-protective compound that has a 
cholesterol-like structure. This compound was derived from 
the optimization process for TRO19622 and affects mPTP 
opening, Ca2+ overload, ROS generation, and MMP (63). 
Along with TRO19622, it also binds at the CRAC site of TSPO 
and is now in clinical trial phase II as a drug for reducing 
reperfusion injury in patients. 

Etifoxine is the compound that has entered clinical trial III 
for treating anxiety in humans (64). Additionally, this compound 
has neuroprotective and neuroregenerative activities. These 
effects are mediated through the -aminobutyric-acid receptor 
type A (GABAA) receptor and steroid biosynthesis. Especially, 
increased steroid biosynthesis is a remarkable feature after 
etifoxine treatment, which in 1 h increased pregenelone, 
progesterone and corticosterone in adrenal glands (65). 

XBD173 (Emapunil) is another compound in clinical phase 
II with anxiolytic and anti-panic effects. It increased GABA- 
mediated neurotransmission and counteracted panic attacks 
induced in rodents without sedation and tolerance development 
(66). Furthermore, XBD173 has neuroprotective and anti- 
inflammatory actions in choroidal endothelial cells (67).

The neuroprotective effects of so-called TSPO ligands have 
been well documented. However, the biological mechanisms 
by which these ligands exert these pharmacological efficacies 
still remain elusive. The proposed target pathways are steroido-
genesis, mPTP, intracellular Ca2+ signaling, ROS generation, 
and MMP, commonly modulating neuroinflammation through 
TSPO or together with its partners, such as VDAC. However, 
as shown below, the biological action mechanism of TSPO in 
the aforementioned pathways is being discounted. 

GENETIC STUDIES OF TSPO

The early report of the embryonic lethality of the conventional 
TSPO knockout mice was considered to be evidence for the 
essential role of TSPO, especially in steroidogenesis (25). 
However, genetic studies on TSPO have recently resumed 
with unexpectedly striking results. 

Discrepancy between genetic and pharmacological studies of 
TSPO
In contrast to the previous report of the embryonic lethality of 
global TSPO-deleted (Tspo-/-) mice, recently generated Tspo-/- 
mice were born and developed normally. The mice did not 
show discernible phenotypes, including abnormality in steroid 
hormones generation (68, 69). Therefore, observations with 
new Tspo-/- mice argue against the most-cited biological role of 
TSPO, mitochondrial cholesterol import for steroidogenesis. 

Similarly, different TSPO knockout mice in which the Tspo 
gene was conditionally deleted in the liver and heart disputed 
the roles of TSPO in mPTP formation, erythropoiesis, heme 
biosynthesis, and porphyrin-mediated phototoxic cell death, 
all of which were previously purported functions of TSPO (70, 
71). These results of recent genetic studies are inconsistent 

with those of the pharmacological studies conducted for 
decades, prompting our change in the direction of TSPO 
study.

At the cellular level, CRISPR/Cas-9-mediated Tspo deletion 
in MA-10 cells also revealed that Tspo deletion did not affect 
steroidogenesis production (72). CRISPR-Cas9-mediated knockout 
and lentiviral knockdown of the TSPO gene was also done in 
human microglia C2 cells (54). This study investigated the 
involvement of TSPO in the steroid synthesis, MMP, Ca2+ 
uptake, and respiration. Notably, it examined the effects of 
different TSPO levels by comparing TSPO knockdown and 
knockout cells. Interestingly, basal pregneneolone production 
was not changed by TSPO knockdown or knockout, and TSPO 
ligands that have steroidogenic effects also failed to induce 
pregnenolone production in both WT and Tspo knockout 
microglia. These data indicate that human microglia TSPO is 
not engaged in microglia steroidogenesis (54). 

On the other hand, TSPO gene deletion resulted in 
significant reduction of MMP and increased cytosolic Ca2+ 
levels. However, the MMP and cytosolic Ca2+ level in TSPO 
knockdown microglia was not changed. Interestingly, deletion 
of the TSPO gene led to decreased VDAC1 expression, 
supporting the relationship between TSPO-VDAC interaction. 
In addition, the oxygen consumption rate was checked and 
showed that TSPO deletion in human microglia reduced 
respiration but TSPO knockdown does not affect it, suggesting 
that there are differences in phenotypes between TSPO 
knockdown and knockout (54). In conclusion, functional 
characterization of TSPO knockdown and knockout human 
microglia again discounts the essential role of TSPO in 
steroidogenesis and other presumed functions of TSPO.

Perspectives for the future study of TSPO
TSPO ligand-based studies presumed that the effects of the 
ligands are likely to be mediated by TSPO because they have 
high affinity to this protein. However, investigation with a new 
generation of the TSPO probes suggests the existence of targets 
other than TSPO (61, 62). Furthermore, recent reports propose 
that these ligands also can incorporate the lipid bilayer of 
mitochondria rather than targeting mitochondrial membrane 
proteins (73). It is clear that TSPO and its ligands have different 
mechanisms of action, and future studies should be aimed at 
identifying the authentic molecular targets of the ligands and, 
at the same time, at characterizing their effects more in depth, 
so that we can distinguish the roles of TSPO itself and its 
ligands (74). 

The second point is the lack of understanding of the 
difference roles of TSPO in different species, especially in 
humans and murine models. Historically, TSPO has been 
regarded as a surrogate for the state of inflammation with its 
remarked upregulation under neuroinflammatory conditions. 
However, recent studies indicate that increased TSPO binding 
sites in human PET imaging has implications different from 
those of increased TSPO expression in rodents. These recent 
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findings may imply aspects of brain homeostasis that are 
different between humans and rodents (52, 57, 61). 

Future study on the role of TSPO in neurological diseases 
should also keep in mind that, depending on the grades of 
inflammation, correlations of TSPO with neuroinflammation 
should be interpreted with caution, and other inflammatory 
components should be considered together. In human schizo-
phrenia, which shows increased inflammatory cytokine 
expression but with low grade of neuroinflammation, TSPO 
expression in the prefrontal area was reduced, not increased 
(51). The potency of TSPO PET imaging as a diagnostic tool 
cannot be refuted. However, to understand the biological and 
pathophysiological role of TSPO, a general understanding of 
TSPO and inflammation should be reconsidered.

The last point is the need for thorough genetic studies of 
TSPO under both normal physiological and pathological 
conditions. In spite of the past several decades of research, the 
TSPO field is facing an unexpected twist. To advance the field 
further, we need to understand the differences between the 
actions of ligands and of the protein itself, recognize species 
differences, discover other previously unrecognized functions 
of TSPO through genetic modulation, and identify the true 
targets of the so-called TSPO binding drugs. 
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