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Abstract The gut microbiome analysis, with specific

interest on their direct impact towards the human health, is

currently revolutionizing the unexplored frontiers of the

pathogenesis and wellness. Although in-depth investiga-

tions of gut microbiome, ‘the Black Boxes’, complexities

and functionalities are yet at its infancy, profound evi-

dences are being reported for their concurrent involvement

in disease etiology and its treatment. Interestingly, studies

from the ‘minimal murine’ (Oligo-MM12), ‘humanized’

microbiota gnotobiotic mice models and patient samples,

combined with multi-omics and cell biology approaches,

have been revealing the implications of these findings in

the treatment of gut dysbiosis associated diseases.

Nonetheless, due to the inherent heterogeneity of the gut

commensals and their unified co-existence with oppor-

tunistic pathobionts, it is utmost essential to highlight their

functionalities in ‘good or bad’ gut in human wellness. We

have specifically reviewed dietary lifestyle and infectious

diseases linked with the gut bacterial consortia to delineate

the ecobiotic approaches towards their treatment. This

notably includes gut mucosal immunity mediated diseases

such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc.

Alongside of each dysbiosis, we have described the current

therapeutic advancements of the pre- and probiotics

derived from human microbiome studies to restore gut

microbial homeostasis. With a continuous running debate

on the role of microbiota in above mentioned diseases, we

have collected numerous scientific evidences highlighting a

previously unanticipated complex involvement of gut

microbiome in the potential of human health.
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Introduction

Human beings are primate-microbe hybrids and have co-

evolved along with the gut microbial world such as bac-

teria, bacteriophages, viruses, yeasts and fungi. The gut

microbiome harbors almost 10–100 trillion of microbial

cells, which are largely composed of diverse bacterial

commensals, alongside with Colonizing Opportunistic

Pathogens (COPs) and Simple Opportunistic Pathogens

(SOPs) in a homeostatic ratio and plays the fundamental

role in human health [1–5]. The COPs and SOPs are hidden

opportunistic pathobionts that continuously invade, colo-

nize and persist asymptomatically in the gut together with

the commensals and co-exist with commensals in a mutu-

alistic manner as a ‘good gut’. However, upon any per-

turbation in the proportional cohabitation of COPs or SOPs

residing along with the commensals leads to the dysbiosis,
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a ‘leaky gut’, and when these opportunistic microbes attain

a particular level can cause severe acute, chronic, or latent

human diseases [3, 6, 7]. Nonetheless, gut microbiome

remarkably serves as a primary immune defense system at

the gut mucosal surface, which constantly buffers the effect

against COPs and SOPs [3, 8]. The benign coexistence of

microbial consortia inside the gut has led to the develop-

ment of ‘war and peace’ at the gut mucosal surface and

always in ‘tug of war’ situation inside human body. Earlier

COPs have been primarily reported from many reservoirs

like water, soil, air, etc., which typically includes various

pathobionts namely Vibrio vulnificus, Mycobacterium

marinum, and Legionella pneumophila, etc. Therefore, in-

depth understandings on the plausible link between alter-

ations by COPs and disease may lead to more focused and

effective treatment strategies.

Recent studies unveil that management of lifestyle can

change dysbiosis to restore normal health conditions and

gut consortial integrity using prebiotics, probiotics or

synbiotics encompassing Lactobacillus, Clostridium, Bifi-

dobacterium, Faecalibacterium and Streptococcus, etc. [4].

Notably, COPs effects over microbiome modulations have

also been observed in a range of infectious diseases like

Tuberculosis, Inflammatory Bowel Disorder (IBD) and

Clostridium difficile Infection (CDI) along with lifestyle

disorders like obesity and type-2 diabetes. However, now

these COPs have been reported as ‘‘normal’’ part of the

human microbiome and can lead to diseases progression at

a slow pace due to the latency effect. Despite distinct

species of microbes that vary in different individuals, each

habitat holds signature species that governs many meta-

bolic pathways [9].

While in the previous articles of the special issue on

microbiome, normal and changed microbiome in human

beings has already been described [4, 10], here we discuss

the modulations of infectious diseases by COPs and their

direct link with alterations in the gut commensal bacterial

diversity and their effect on pathogenesis (Fig. 1). We have

mainly focused on predominant infectious and lifestyle

diseases mentioned in Table 1, along with highlighting the

applications of prebiotics and probiotics for these diseases.

Tuberculosis and Gut Microbiome

The imprecations of Mycobacterium tuberculosis (MTB)

caused Tuberculosis (TB), an infectious disease has been

recognized since early human antiquity, whereby suscep-

tibility to infections through MTB is marked by the host

immune status, nutrition factors, geology and notably the

gut diversity responses [11]. However, it has been only

recently established that composition of gut microbiota

indeed exert major impact on the TB pathology and

severity [12–14].

Infection of TB occurs through inhalation of Mycobac-

terium bacilli which are then phagocytized by resident lung

alveolar macrophages and replicate by circumventing host

defences. There continuous persistence and co-evolution of

these bacilli with the host are predominantly influenced by

the gut commensal microbiota that populates our mucosal

surfaces [15, 16]. The association of these commensal

bacteria in disease severity has not been fully understood,

but they most likely contribute to disease outcome by

modulating immune status either through dynamics of the

gut microbiome or directly through the lung bacteria.

Indeed, it has been demonstrated that gut microbiota

influences anti-TB therapy (ATT) response. The recent

reports on the effect of ATT on gut bacterial diversity

showed that there was a persistent microbial imbalance or

dysbiosis, in terms of species richness and distribution [17].

This dysbiosis of intestinal microbiota could not be cured

and can last up to several years after treatment completion

[18]. In addition, variations in the lung microbiome during

TB has also been reported in humans as well as in mice

system [19].

Effect of Microbiome on Disease Progression:
From Latent to Active TB

The infection of MTB in humans is commonly thought to

have a binary distribution: active and latent infection.

Many of the risk factors involved in the progression from

this latent to active state includes HIV infection, exposure

to antibiotics, immunodeficiency, air pollution alcohol and

smoking addictions. These factors severely affect the gut

bacterial consortia, thus playing crucial roles in causing

tuberculosis by activation of latent mycobacterial popula-

tion along with dynamic interaction between the host sys-

tems and microbial products [20].

Gut bacteria directly modulate the host immunity, which

initiates the innate and adaptive immune responses and

regulates the transition from persistent to active TB

infection. For instance, the CD4? and CD8? cells are key

modulators of MTB infection by producing Th-1 mediated

pro-inflammatory cytokines which are critical for lysis of

infected macrophages [34]. Notably, not only these Th-1

mediated immune responses are important for clearing the

pathogens but are also responsible for the host cell dam-

ages. Hence, in order to balance this inflammatory

response, it is ideal to have Th-2 and regulatory T (T-reg)

cell responses thus maintaining a Th-1/Th-2 equilibrium in

the body. Gut bacteria play a significant role in maintaining

this T cell homeostasis through producing acetate, propi-

onate and butyrate, etc. Short Chain Fatty Acids (SCFAs)
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Fig. 1 A schematic illustration the cross talk between human

microbiome and diseases. Shown in left demonstrates significant

alterations of the gut bacterial diversity in various diseases

(Tuberculosis, Obesity, Type-2 diabetes, IBD and CDI) and are

highlighted by red and grey arrows, respectively

Table 1 Colonizing opportunistic pathogens (COPs) and triggered diseases

Disease COPs/Signature organism References

Tuberculosis Mycobacterium tuberculosis, Faecalibacterium, Roseburia, Eubacterium and

Phascolarctobacterium

[14, 17]

Inflammatory Bowel Disorder

(IBD)

Escherichia coli, Ruminococcus gnavus (CD), Faecalibacterium prausnitzii and Roseburia

(UC)

[21, 22]

Clostridium difficile Infection

(CDI)

Clostridium difficile [23, 24]

Obesity Fermicutes, Lactobacillus reuteri, Methanobrevibacter smithii [25–27]

Type 2 diabetes Bifidobacterium spp., Faecalibacterium prausnitzii, Bacteroides and Eubacterium [28, 29]

Sepsis Staphyllococcus aureus [30]

Pneumonia Staphyllococcus pneumoniae [31]

Pharyngitis Streptococcus [32]

Tinea Pedia Staphylococcus, Trichophyton rubrum, Corynebacterium minutissimum [33]
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by fermentation of dietary fibres [35]. These SCFAs serve

as primary precursor substrates in the host metabolism and

immunomodulatory proinflammatory cytokines and T-reg

cells activation. Current reports on human PBMCs infected

with MTB reveal that acetate and butyrate downregulates

the production of pro-inflammatory cytokines [36]. Thus,

in cell-mediated response against MTB infection, SCFA

production is one of the potential mechanisms and link

between the microbiome and progression of TB. Recently,

Maji et al. [14] reported that patients suffering from pul-

monary TB from Indian subcontinents also showed higher

Firmicutes to Bacteroidetes ratio, that disturb SCFA and

GM-derived bacterial metabolites concentration. This sig-

nificant increase in the number of bacteria that produces

butyrate and propionate including Faecalibacterium,

Roseburia, Eubacterium and Phascolarctobacterium

develops an inflammatory milieu in host contributing to the

pathophysiology of TB [14]. While there are few specific

examples as to how these changes in microbial diversity

contribute to TB pathology by affecting the anti-inflam-

matory response in the host, in-depth investigations are

essential to delineate their functional roles [19, 37].

Anti-tuberculosis Therapy and Changing
Microbiome

Antibiotics therapy has a profound effect on the human

microbial diversity, especially the usage of broad-spectrum

antibiotics dramatically alters the gut ecology. As of now

an effective TB treatment involves use of orally adminis-

tered antibiotics for a period of at least 6 months [38],

which is known to be the longest duration of antibiotics

treatment utilized for the patients. The ATT treatment

includes a typical combinatorial four-line drug therapeutics

that involves the use of rifampicin (R), a drug with broad

spectrum antibacterial activity, and three antibiotics (iso-

niazid, H; pyrazinamide, Z and ethambutol, E) targeting

specifically mycobacterial species (2 months), followed by

4 month of rifampicin and isoniazid (HRZ) [38]. Although

ATT administration has been the only prescribed cure for

millions of patients suffering with MTB infection, its

adverse impact on the host microbiome, specifically gut

diversity is only recently has become the focus of the

comprehensive investigation. The effect of ATT in relation

to changes in the intestinal microbial population shows that

it adversely affects the gut bacterial composition leading to

the dysbiosis, which enables the dominance of oppor-

tunistic pathobionts in the gut community (Fig. 1).

Emerging studies on the murine models of TB indicate

dramatic alterations in the bacterial composition with the

start of HRZ treatment and persist for 3 months after ces-

sation of therapy [17]. Furthermore, chances of re-infection

increase after a patient has been treated once with the

cocktail of TB antibiotics, suggesting the effect dysbacte-

riosis in TB recurrence [17, 39]. It has studied that during

ATT treatment, the members of the Bacteroidetes are

decreased while Prevotella are shown to increase, sug-

gesting the shift in gut immune function associated with the

host immunity. These studies strongly indicate the effect of

ATT on comprehensive microbial ecology and suggest

consequences impaired microbiota on human health by

increasing risk for resilient TB reinfection and COPs as

well as SOPs [3, 6].

Inflammatory Bowel Diseases (IBD) and Gut
Microbiome

An autoimmune disease by class, inflammatory bowel

disorder is another widespread gut related disorder, where

self-immune system attacks the digestive tract components

[40]. IBD patients have inflammation in their colon and

intestine region. There are two types of IBDs, Crohn’s

disease (CD) and Ulcerative colitis (UC) [41]. They differ

from each other in location and nature of inflammatory

disorder:

• Crohn’s disease targets gastrointestinal tract, from

mouth to anus, covering full thickness of the bowel

wall [42]. Out of all the sites, the three most promi-

nently affected sites include ileal, ileocolic, colonic

epithelium [43]. Abdominal pain, diarrhea, fever along

with weight loss, underline some of the symptoms

experienced under Crohn’s disease including bowel

obstructions [44].

• Ulcerative colitis (UC) is marked by ulcers or open

sores in the colon region of the large intestine. As the

name suggests, colitis is inflammation of the colon.

Additionally, other symptom includes diarrhea mixed

with blood or pus, abdominal and rectal pain [45].

There are various factors that may result in the onset of

these disorders such as dysbiosis, immunity, environmental

factors and genetic factor [46]. Recent studies have also

shown a direct link of oral microbiome dysbiosis along

with gut in the commencement of these diseases.

Dysbiosis

The pathogenesis of IBD comprises the chronic and per-

sistent gut response to the commensal gut microbiome,

including genetically susceptible host [47]. The remarkable

correlation between IBD and impaired gut microbiota can

be proved with the fact that the location, pH and anaero-

biosis in the gut, e.g. colon and ileum, are shown to harbor
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highest percentage of total gut microbiota. Of the 4 main

divisions of bacteria colonized in these regions, primarily

Firmicutes, Bacteroidetes, Proteobacteria and Actinobac-

teria, the levels of Firmicutes and Bacteroidetes have been

found disrupted severely [48]. On the contrary, Pro-

teobacteria and Actinobacteria are comparatively abundant

in IBD patients [41, 48, 49]. Faecalibacterium prausnitzii

and Roseburia, most predominant species under Firmicutes

are known to produce SCFA especially butyrate and acet-

ate, playing a significant role in the protection of the

mucosal immunity [49, 50]. Moreover, F. prausnitzii is

reported as anti-inflammatory commensal due to the large

production of anti-inflammatory factor IL-10. But, in

patients suffering from ileal CD, the dynamics of these

bacteria are significantly reduced, therefore increasing the

risk of early reactivation of the disease. Roseburia is sug-

gested to increase the production of T-regulatory cells,

required for the anti-inflammatory purpose, however, with

the decrease in their cohorts, the anti-inflammatory agents

tend to decrease [48, 51].

In the CD patients, another group of bacteria whose

levels elevated were Enterobacteriaceae, including

Escherichia coli and Ruminococcus gnavus [22, 52]. E. coli

levels as observed in ileal Crohn’s disease were restricted

to the region of inflamed mucosa [43]. They promote

inflammation by adhering and subsequently degrading the

ileal mucosal layers to reach the crypt and attach with the

epithelium. Upon attaching with the gut immune cells, this

bacterium can replicate within the macrophages and pro-

mote the release of tumor necrosis factor. On contrary, R.

gnavus is involved in mucolytic activity as well, i.e.

breaking down thick mucus layer that is meant for the

protection of the intestinal wall [49]. It has been found in

several studies that the levels of Bacteroidetes are reduced

in IBD patients. However, a subset of Bacteroides fragilis

i.e. enterotoxigenic B. fragilis, (ETBF) is also found in

high numbers in UC. It secretes proinflammatory zinc-de-

pendent metalloprotease toxin and produces IL-7 in high

amounts that cause severe gut inflammation [53, 54].

Studies have shown that oral microecological dysbiosis

also a plays role in the compromised gut microbiome

causing IBD. During normal body physiology, gut resists

colonization of the non-native bacteria thus controlling the

expansion of pathobionts. But involvement and coloniza-

tion of oral dysbacteriosis in the gut tend to cause persis-

tence of inflammatory disease [55, 56]. Atarashi and

coworker in 2017 reported strains of Klebsiella spp. from

oral region colonized the gut [57]. Streptococcus, Pre-

votella, Neisseria, Haemophilus, Veillonella and Gemella,

were major cause of dysbiosis in the salivary microbiota of

IBD patients [58]. Thus, IBD also affects oral cavity of the

patients with symptoms like ulcers, dry mouth, aphthous

stomatitis, etc. [59]. Intestinal mycobiome such as species

of Candida, Saccharomyces, and Aspergillus are another

critical component of the microbiota, and modulate

immune homeostasis and inflammatory disease. Leonardi

et al. [60], reported CX3CR1 (CX3C chemokine receptor

1) and mononuclear phagocytes (MNPs) is significant part

in initiation of immune responses (innate and adaptive) to

intestinal fungi. They activate antifungal responses by

expressing adhesions and antifungal receptors in a Syk-

dependent manner. This help in mediating intestinal

microbiota and host immune system interactions during

inflammatory disease [60].

The dysbiosis is also related to the host genetics. This

can be seen with the polymorphism in about more than 75

genes especially in Crohn’s disease that leads abnormali-

ties in mucosal barriers and innate immunity, etc. [21, 61].

A typical example is linked with the IL-23-Th17 pathway,

which has an important role in microbial defense and

intestine immune homeostasis. Nonetheless, IL-23R

receptor in this pathway contains gene that can be affected

by environmental factors [61, 62]. Mutation in IL-23R

results in overproduction and accumulation of granulocyte-

monocyte progenitor cells in the intestine that causes colitis

phenotype. High levels of IL-23 are reported in the

epithelial mucosal lining of IBD patients [63].

Prebiotic and Probiotics Treatment

Probiotics and prebiotics have prominent roles in resorting

commensal gut microbiota and thus are directly involved in

the treatment of IBDs. The commonly used probiotics for

the treatment have microorganisms like Lactobacillus,

Bifidobacterium, and E. coli. They act by reestablishing the

mucosal barrier by producing higher amounts of SCFA and

metabolites. A similar effect is shown by the intake of

prebiotics that is known to increase the levels of Lacto-

bacillus, Bifidobacterium in the gut thus increasing SCFA

that is an anti-inflammatory factor [64]. Synbiosis factors

produced by microbes can also be used in treatment, for

e.g. PSA (Polysaccharide A) made by Bacteroides fragilis

suppresses the release of pro-inflammatory IL-17 from

intestinal immune cells [65].

Clostridium difficile Infection (CDI) and Gut
Microbiome

Another nosocomial infectious disease, spreading world-

wide, due to disruptive changes in the gut microbiome is

Clostridium difficile infection belonging to firmicutes. CDI,

also known as pseudomembranous colitis, is marked with

intestinal sores like IBD, whereby inflammation is largely

due to elevated levels of C. difficile in the gut [66].
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Symptoms include flu like condition, along with bloating,

diarrhea, and abdominal pain caused by the toxin released

from the bacteria. The main cause behind the infection is

the lack of colonization resistance towards C. difficile and

commensals [67]. C. difficile is considered as a good gut

colonizer, but its rate of colonization varies with ethnicity,

malnutrition and age groups. For instance, infants have the

highest rate of colonization and with age, this rate tends to

decrease. Under stressed conditions such as pH and

anaerobiosis, C. difficile can produce dormant spores that

are resistant to those conditions and undergo vegetative

propagation and colonize upon favorable gut conditions.

The main risk factor(s) involved in CDI pathogenesis

develops due to antibiotics induced dysbiosis given to

patients for other diseases such as diarrhea and TB, which

results in collateral disruption of gut bacterial communities

[68]. This disruption leads to suppression of dominant

species and increased colonization of C. difficile.

Dysbiosis and Colonization of C. difficile

The antibiotic induced, environmental, dietary and age-

related changes shift the healthy microbiota of the gut

[69, 70]. The changes reported till date majorly include

increase in the Bacteroides species like, Enterobacteri-

aceae, Erysipelotrichaceae, and Bacteroidetes, and

decrease in the members of Ruminococcaceae and Lach-

nospiraceae, which further promote the colonization of C.

difficile [68–71]. Nonetheless, the foremost cause of this

colonization underlies within the levels of production of

butyrate, which decreases in the gut when the numbers of

butyrate producers decrease. Butyrate along with SCFAs is

associated with C. difficile colonization resistance [67].

With the decline in their number, resistance levels lower,

thereby promoting growth during the infection. Further,

Bacteroides uniformis, which is particularly involved in

improving the malfunctions caused by obesity, also pro-

tects the inflammations from C. difficile outgrowth in the

gut. Reduction in its numbers leads to declination in the C.

difficile colonization resistance [24].

Treatment

The most effective treatments for CDI to restore the normal

microbiome is by RePOOPulating the gut with multi-

species bacterial community [72]. The classical approach

involves fecal bacteriotherapy or stool transplantation,

where stool of a healthy individual is infused into patient to

re-establish the healthy microbiota of gut [73]. This treat-

ment can cure antibiotic resistant C. difficile colitis; how-

ever, practice is limited by inadequacies like pathogen

transmission from donor to patients, lack of natural stool

stability and its handling. These defects are being over-

come by new approaches of synthetic stool substitution

known as fecal microbiota transplantation (FMT). In this

technique, the synthetic stool is developed by in vitro

culturing, isolating microbial diversity and then enriching

commensals isolated from the stool of a healthy individual

[73, 74]. In addition, current therapy also involves

adjoining FMT with synergistic combination of pro- and

prebiotics with synbiotics [75]. Together, these combined

approaches further enhance the pure commensal,

stable stool preparation and reduces the risk of pathogen

transmissions. The patient undergoes colon cleansing fol-

lowed by colonoscopy. Thus, patients become capable to

soon restore the normal microbiota composition, and levels

of Clostridium reduce to negligible number over time. With

rapid advancement in microbiome research, the develop-

ment of ecobiotic drugs have paved novel ways for quicker

treatment, which are detailed in Kumar et al., 2019. In

addition, diet also plays crucial roles in restoring the

microbiota. It is recommended to consume fiber rich diet

and products without probiotics [76]. Age factors also do

not adversely impact in the FMT method, such that even if

the donor is quite young as compared to the aged patient,

the effect of the therapy does not change and is equally

effective.

Obesity and Gut Microbiome

While obesity is governed by many factors including

environmental exposure, malnutrition, sleep deprivation,

and chronic inflammation [77]. However, emerging reports

suggest that the gut microbial composition and diet energy

plays a significant role in structuring this medical condition

[77, 78]. The metabolic capacity that the gut microbiota

holds not only includes the degradation of indigestible

components, but also includes microbial fermentation of

dietary polysaccharides. This results in increased absorp-

tion of monosaccharides, fatty acids and their conversion

into various biochemical pathways [79]. The first direct

association of gut microbiota with obesity has been in-

depth demonstrated by J. I. Gordon and co-workers on

about 5000 genetically obese mice models (ob/ob). A clear

reduction in the number of Bacteroidetes was observed

along with increased number of Firmicutes, whereas a

completely contrast ratio was observed in genetically lean

mice It is currently being considered that Bacteroidetes to

Firmicutes ratio largely determines the obese and lean

condition in an individual [80, 81].
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Bacteroidetes-to-Firmicutes Dysbiosis

Firmicutes possess genes belonging to Gram-positive

polysaccharide utilization loci (gpPULs) for the breakdownof

the complex dietary polysaccharides into di- and mono- sac-

charides. However, these enzymes are not yet deciphered in

Bacteroidetes [1, 25, 82]. Thus, individuals having ‘obese

genetic microbiota makeup’, and consuming carbohydrates

and fats enriched westernized diet, harbor a relatively higher

proportion of gut Firmicutes and tend to put on weight easily.

While, individuals with a genetic makeup of lean microbiota,

having higher levels of Bacteroidetes, do not put on excess fat

even after consuming the same westernized diet [26, 83].

Lactobacillus reuteri was associated with obesity, whereas,

Methanobrevibacter smithiiwas depleted in obese individuals

[25, 27]. With the breakdown of dietary polysaccharides by

Firmicutes in a genetically obese individual, a high amount of

energy extraction from the diet takes place and the energy is

stored in adipose tissue.Thus, relatively lowamount of energy

remains in their fecal matter, However, due to lower levels of

Firmicutes in genetically lean individuals, a relatively less

amount of energy is extracted from the diet and higher

amounts undigested diet remains in their fecalmatter [81, 83].

Probiotic and Prebiotic Therapy as Treatment

As noted earlier that the increased levels of Firmicutes to

Bacteroidetes ratio results in obesity. Thus, in probiotic ther-

apy by live microorganisms, like Lactobacillus species is

administered to the obese individuals and after a couple of

weeks, reduction in weight is observed without reduction in

energy intake [4, 84]. Few strains of Bifidobacterium, Ente-

rococcus,Bacteroides,Pediococcus and evenSaccharomyces

as a formula-fed probiotic, etc. are also included in this ther-

apy. On the contrary, prebiotics are non-digestible carbohy-

drates that passes small intestine and finally reaches colon

where they promote the growth of commensal microorgan-

isms. It is also known to reduce hunger and boost the growth

and colonization of Bifidobacterium and Lactobacillus spp.

[85]. A comprehensive description of probiotics and prebi-

otics for the treatment of obese patients has been discussed by

Kumar and co-authors (2019).

Type 2 Diabetes and Gut Microbiome

The occurrence of type 2 diabetes is characterized by

numerous factors that include individuals’ circadian life-

style, obesity, age, genetics, and gender, etc. However,

along with these factors, upcoming studies evidence the

dramatic disproportions in microbial communities residing

in the GI tracts, which are directly linked to the insulin

resistance [86, 87]. The most important triggering factor

that results in the onset of diabetes is the bacterial

lipopolysaccharide (LPS) [88]. With the increased intake of

high fat diet having higher levels of saturated fats, the

microbial dysbiosis is observed and levels of Gram-nega-

tive bacteria like Bifidobacterium spp., Faecalibacterium

prausnitzii, Bacteroides and Eubacterium decreases

[28, 89]. LPS being component of cell wall increases with

the increasing mortality of these bacteria [88].

In healthy gut, intestinal epithelium, crypts and mucosal

layers along with commensal bacteria act as a barrier to

avoid the LPS translocation to the blood stream

[88, 90, 91]. Thus, any agent that disrupts these fence(s) is

responsible for the promotion of gut associated disorders.

Fat rich diet alters the intestinal barrier, leading to

increased permeability and LPS absorption by two to three

folds resulting in the disruption of the gut barrier [92]. This

subsequently enables in the increase of LPS concentration

in the serum, leading to a situation called metabolic

endotoxemia [93]. The intestinal fence disruption occurs

not only due to dysbiosis, but also due to alterations in the

tight junction proteins namely, occluding and zonal

occluding that are responsible for maintaining the barriers,

thus facilitating the permeability of LPS [88, 94]. The

involvement of microbiota in these metabolic disorders

was proved by a set of experiments performed by Cani and

co-workers on genetically obese mice ob/ob. In the first set,

LPS quencher like polymyxin B was administered into the

mice that function as a blocker for the receptor. And the

second set of obese mice lacked CD14, the receptor for

LPS. Of note, high levels of LPS promote insulin resis-

tance. In both the conditions, improvement in insulin

resistance was observed, clearly demonstrating the contri-

bution of LPS derived from the gut microbiota to metabolic

endotoxemia [88].

Treatment

As in obesity, probiotics and prebiotics has crucial role in

the treatment of type 2 diabetes. One of the therapies

includes use of Bifidobacterium as a component of probi-

otic that helps to stabilize the gut microbiota of a diabetic

patient. They tend to enhance the gut barrier function thus,

reducing intestinal endotoxin absorptions [84]. The effects

of prebiotics were analogous to the regulation of intestinal

mucosal surface with increased mucus layer thickness, and

hence inhibition to LPS permeability [95]. Prebiotic like

fructo-oligosaccharides helps in regulating the gut-brain

axis for glucose metabolism [95]. Drugs used as antidia-

betic are also known to normalize the composition of gut

microbiota, for example, Metformin acts in the similar
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manner. One of the species that increase in number after its

treatment is Akkermansia, which helps in the stabilization

of glucose homeostasis and insulin sensitivity [96].

Conclusions

With the known fact ofmicrobial colonization to almost every

specific niche ‘in-and-on’ human body has suggested the

symbiosis with not only physiological, but also with clinical

connections. Their balanced co-existence is an outcome of

several adaptation mechanisms, failure of which results in

human health fatalities. The ultimate reason to study micro-

biome is to improve human health status by all means. Any

break down in microbial balances due to stress in lifestyle can

be detectiblemarkers for predicting the onset of a disease. The

early physiological detection of IBD, obesity and type 2 dia-

betes using microbial composition before clinical onset is a

clear advancement of microbiome studies over other non-

clinical analysis. Since these diseases are becoming one of the

most prominent health threats in our country, thus their

treatment should be taken as a top priority. We have high-

lighted and presented the recent attempt made to overcome

these challenges by using probiotics consumptions as a

medicinal alternate or supplement. The latest microbial ther-

apeutic methods could involve prebiotics along with drug- or

food-incorporating microbes as a substitute to cure the dis-

eases.Nonetheless,we are only at the beginning to understand

their in-depth molecular mechanism of interaction. It is yet to

be investigated how gut commensals and COPs interact

together. What are the molecular apparatus allowing them to

communicate along with the host gut? One of the greatest

hurdles is to culture these the gut bacteria in vitro by mim-

icking host gut conditions. In summary, these upcoming evi-

dences along with current challenges demands further

advanced clinical investigations to be translated into clinical

practices for FMT and applications of the gut microbial

compositions in the wellness human health.
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