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Abstract

Background: Modern testing paradigms seek to apply human-relevant cell culture models and integrate data from
multiple test systems to accurately inform potential hazards and modes of action for chemical toxicology. In
genetic toxicology, the use of metabolically competent human hepatocyte cell culture models provides clear
advantages over other more commonly used cell lines that require the use of external metabolic activation systems,
such as rat liver S9. HepaRG™ cells are metabolically competent cells that express Phase I and II metabolic enzymes
and differentiate into mature hepatocyte-like cells, making them ideal for toxicity testing. We assessed the
performance of the flow cytometry in vitro micronucleus (MN) test and the TGx-DDI transcriptomic biomarker to
detect DNA damage-inducing (DDI) chemicals in human HepaRG™ cells after a 3-day repeat exposure. The
biomarker, developed for use in human TK6 cells, is a panel of 64 genes that accurately classifies chemicals as DDI
or non-DDI. Herein, the TGx-DDI biomarker was analyzed by Ion AmpliSeq whole transcriptome sequencing to
assess its classification accuracy using this more modern gene expression technology as a secondary objective.

Methods: HepaRG™ cells were exposed to increasing concentrations of 10 test chemicals (six genotoxic chemicals,
including one aneugen, and four non-genotoxic chemicals). Cytotoxicity and genotoxicity were measured using the
In Vitro MicroFlow® kit, which was run in parallel with the TGx-DDI biomarker.

Results: A concentration-related decrease in relative survival and a concomitant increase in MN frequency were
observed for genotoxic chemicals in HepaRG™ cells. All five DDI and five non-DDI agents were correctly classified
(as genotoxic/non-genotoxic and DDI/non-DDI) by pairing the test methods. The aneugenic agent (colchicine)
yielded the expected positive result in the MN test and negative (non-DDI) result by TGx-DDI.

Conclusions: This next generation genotoxicity testing strategy is aligned with the paradigm shift occurring in the
field of genetic toxicology. It provides mechanistic insight in a human-relevant cell-model, paired with
measurement of a conventional endpoint, to inform the potential for adverse health effects. This work provides
support for combining these assays in an integrated test strategy for accurate, higher throughput genetic
toxicology testing in this metabolically competent human progenitor cell line.
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Introduction
Twenty-first century toxicology necessitates alternative
test methods that are more efficient and effective to
evaluate the backlog of chemicals requiring assessment
[1–6]. Thus, higher throughput, higher content tests in
human and animal cell cultures are being investigated
for this purpose [7–11]. One important key to the im-
provement of in vitro testing strategies is the use of rele-
vant human cell culture systems that exhibit intact
intracellular compartmentalization and model tissue-like
functionality dynamics (e.g., in vivo metabolic processes
and toxicological effects). In parallel, modern testing
strategies rely more heavily on the measurement of
mechanistic changes that inform the potential for ad-
verse outcomes in humans [12–16]. An ideal twenty-first
century strategy should apply high-content and higher-
throughput approaches to efficiently leverage mechanis-
tic information to predict apical effects and inform mode
of action (MOA).
Genotoxicity testing is an imperative component of chem-

ical risk assessment, as damage to genetic material leading
to mutations, chromosome damage, or genetic instability
can result in hereditary diseases and cancer [17, 18]. Histor-
ically, in vitro genotoxicity tests have been performed in ro-
dent cell lines such as CHO, V79, CHL, and L5178Y, in
addition to human TK6 lymphoblastoid cells and peripheral
blood lymphocytes [19, 20]. These cell types have various
limitations, a significant one being their lack of xenobiotic
metabolism required for both activation and detoxification
[21]. Thus, these cell culture models require the use of ex-
ogenous metabolic activating systems (i.e., typically induced
rat liver S9 subcellular fractions supplemented with NADPH
or a NADPH generating system to support cytochrome
P450 (CYP450) activity for pro-mutagen activation). The
addition of S9 can be problematic in that it can cause cyto-
toxicity, models highly-induced CYP450-mediated rat liver
metabolism, generally lacks support of Phase II metabolism
pathways, may require optimization of the amount and type
of induction for bioactivation of certain chemicals, and the
efficiency can vary between lots [22–29]. Furthermore, it is
important to ensure the cell model is relevant to humans.
While the “gold standard” for in vitro modeling of human
liver functionality (e.g., liver enzyme induction, biliary efflux
transport) has been the culture of primary human hepato-
cytes (PHHs), given their retention of metabolic enzyme ex-
pression and proficiency for hepatic receptor signalling
pathways, PHHs can be phenotypically unstable over time
with differentiation that rapidly diminishes ex vivo [30–32].
Moreover, profound donor-to-donor variability paired with
the finite number of cells available from an individual liver
limits their broader use in year-over-year screening plat-
forms. Thus, a next generation in vitro testing strategy
would benefit from the use of human-relevant cell
models with metabolic capabilities that more

effectively mimic in vivo metabolism without the po-
tential complications and limitations of exogenous S9
addition or the use of PHHs [30, 33–35].
Human HepaRG™ cells are gaining more traction as a

cell line of choice for in vitro testing [33, 35–37]. These
cells, derived from a hepatocellular carcinoma in a Cau-
casian female, differentiate into mature co-cultures of
hepatocyte- and cholangiocyte-like cells and express
relevant levels of Phase I and Phase II metabolic en-
zymes, transporters and nuclear receptors, making them
ideal for year-over-year drug metabolism and toxicity
screening while overcoming the limitations of PHHs in
culture [30, 32–35]. Cryopreserved HepaRG™ cells have
also been extensively validated for in vitro cytochrome
P450 induction and have been determined to be a reli-
able metabolically competent human cell line that can
be used as a replacement for PHHs [38]. There are now
hundreds of research publications using fresh or cryo-
preserved HepaRG™ cells that have studied chemically-
induced responses to hepatic pathways at the molecular
level [39, 40]. There is also great interest in the use of
HepaRG™ cells in genetic toxicology testing. Indeed, the
flow cytometry-based micronucleus (MN) assay has been
adapted for use with HepaRG™ cells [41, 42], and a var-
iety of investigators have used this progenitor cell line
for the assessment of chemically-induced genetic effects
[32, 36, 43–48].
Various studies have shown that HepaRG™ transcrip-

tional profiles are more similar to PHHs than other
commonly used liver cell lines (e.g., HepG2), supporting
their use as a human liver model for chemically-induced
gene expression responses for hazard identification and
the evaluation of genotoxic potential [32, 39, 44]. More-
over, several studies have demonstrated the ability to use
transcriptional profiling in HepaRG™ cells to differentiate
genotoxic from non-genotoxic carcinogens and non-
carcinogens, and that the classification accuracy is
higher in HepaRG™ cells than in other in vitro liver
models [46, 47, 49]. Furthermore, recent work has
shown that chemically-induced transcriptional responses
in HepaRG™ cells can be measured in a high-throughput
manner using TempO-Seq® as an effective in vitro tool
to study toxicological responses [40, 50]. Overall, these
studies provide a strong rationale for the use of the
liver-based HepaRG™ model paired with transcriptomic
analysis using various gene expression technologies as a
strategy to identify genotoxic chemicals and their mech-
anism of action for chemical evaluation.
The overarching objective of the present study was to

explore the use of HepaRG™ cells in genetic toxicology
testing using the flow cytometry MN assay and the
TGx-DDI transcriptomic biomarker assay. To do this,
HepaRG™ cell cultures were exposed to ten test chemi-
cals (six genotoxic chemicals, including one aneugen,
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and four non-genotoxic chemicals) to evaluate the per-
formance of these assays together in these cells. A sec-
ondary objective was to explore the performance of the
TGx-DDI transcriptomic biomarker analyzed using
AmpliSeq, an RNA-sequencing based technology. Fur-
thermore, by combining a validated genotoxicity test
(e.g., the MN test) with a novel genotoxicity test that
provides mechanistic data (e.g., TGx-DDI), there is the
added benefit of utilizing information that is currently
lacking from the standard genotoxicity test paradigm for
predictive purposes and to gain insight into genotoxic
MOAs.
The TGx-DDI biomarker was developed and is under-

going validation through the Health and Environmental
Sciences Institute’s (HESI) Technical Committee for
Emerging Systems Toxicology for the Assessment of
Risk (eSTAR), as a transcriptomic approach to predict
the DNA damaging potential of chemicals [51, 52].
Transcriptional changes in the 64 genes that comprise
the TGx-DDI are used to classify compounds as DNA
damage-inducing (DDI) and non-DDI in human lym-
phoblastoid TK6 cells in the presence/absence of S9
metabolic activation using Agilent gene expression DNA
microarrays [53, 54]. The biomarker has been demon-
strated to improve upon the problems associated with
the low specificity of existing in vitro chromosome dam-
age assays [52]. Moreover, the biomarker informs that
the observation of chromosomal changes (e.g., in the
MN assay) are the result of DNA damage (to differenti-
ate from aneugenic mechanisms) and that the damage
was sufficient to induce a robust change in the transcrip-
tion of p53-regulated genes. The present study investi-
gates the performance of the TGx-DDI biomarker in
HepaRG™ cells using RNA-Seq (a more precise, modern

transcriptional profiling approach). The work explores
the accuracy of TGx-DDI predictions in HepaRG™ cells
relative to published information on the test chemicals
used in the experiment, and through comparison with
concurrent results with the MN assay, a validated regu-
latory assay to assess chromosomal aberrations and
aneugenicity.
We exposed HepaRG™ cells to the ten test chemicals

(Table 1) at six different concentrations in a repeated ex-
posure study design. The DDI chemicals in this study
are: aflatoxin B1 (AFB1), cisplatin (CISP), etoposide
(ETP), methyl methanesulfonate (MMS), and 2-
nitrofluorene (2-NF). These DDI chemicals exert their
genotoxic effects through various mechanisms, including
the formation of bulky adducts (AFB1, 2-NF), alkylation
of DNA (MMS), the creation of DNA cross-links (CISP),
and topoisomerase II inhibition (ETP). The non-DDI
chemicals are: ampicillin trihydrate (AMP), colchicine
(COL), 2-deoxy-D-glucose (2DG), sodium ascorbate
(ASC), and sodium chloride (NaCl). The non-DDI test
chemicals encompass an antibiotic (AMP), an antimi-
totic agent that is well-known to cause aneuploidy
(COL), a glycolysis inhibitor (2DG), a mineral salt of as-
corbic acid (ASC), and salt (NaCl). The in vitro Micro-
Flow® kit was applied to measure cytotoxicity and MN
frequency. In parallel, high-throughput Ion AmpliSeq
Human Transcriptome sequencing technology with an
Ion Proton sequencer was used to measure gene expres-
sion. AmpliSeq is a targeted, whole transcriptome profil-
ing approach that enables the concurrent measurement
of more than 20,000 human genes [55]. By pairing a sen-
sitive modern chromosome damage test (i.e., the MN
test – considered a gold standard within this study) with
mechanistic data (i.e., TGx-DDI) in this human-relevant,

Table 1 Test Chemical Information

Test Chemical Chemical Abbreviation CAS No. Vehicle Control Concentrations Tested

DNA Damage-Inducing (DDI) Chemicals

Aflatoxin B1 AFB1 1162-65-8 DMSO 0.1, 0.25, 0.5, 1, 2.5, 5* μM

Cisplatin CISP 15,663–27-1 DMSO 1, 2, 3, 5, 10, 20* μM

Etoposide ETP 33,419–42-0 DMSO 0.25, 0.5, 1, 2.5, 5, 10 μM

Methyl methanesulfonate MMS 66–27-3 Water 5, 10, 20, 50, 100, 200 μM

2-Nitrofluorene 2NF 607–57-8 DMSO 2, 10, 50, 100, 250, 500* μM

Non-DNA Damage-Inducing (Non-DDI) Chemicals

Ampicillin Trihydrate AMP 7177-48-2 Media 0.4, 1, 2, 3, 5, 10 mM

Colchicine COL 64–86-8 DMSO 0.0125, 0.025, 0.05, 0.1, 0.2, 0.3 μM

2-Deoxy-D-Glucose 2DG 154–17-6 Media 0.3125, 0.625, 1.25, 2.5, 5, 10 mM

Sodium Ascorbate ASC 134–03-2 Media 0.1, 0.4, 1, 2, 4, 10 mM

Sodium Chloride NaCl 7647-14-5 Media 0.5, 1, 2.5, 5, 7.5, 10 mM

*indicates a cytotoxic concentration (< 40% RS) that was subsequently eliminated from the analysis; concentrations that are underlined were used for gene
expression analysis (a low, mid and high concentration were selected based on criteria in Buick et al. (2015) and Buick et al. (2017) using the % RS and %
MN data).
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metabolically competent cell line, this novel test strategy
is expected to yield results that are likely to be relevant
to humans and positive findings should be high priority
for in vivo testing.

Materials and methods
Chemicals
Test chemicals were purchased from Sigma-Aldrich (St.
Louis, Missouri, USA) for exposures in human cryopre-
served No-Spin HepaRG™ cells (Triangle Research Labs
(TRL), Durham, North Carolina, USA; acquired by
Lonza Bioscience). The test chemical information, the
corresponding vehicle control, and the concentrations
tested are presented in Table 1. The chemical exposures
in HepaRG™ cultures and the paired high-content flow
cytometry data were conducted at Integrated Laboratory
Systems, Inc. (ILS; Research Triangle Park, Durham,
North Carolina, USA).

HepaRG™ cell culture and chemical exposures
Human HepaRG™ cells were cultured according to a
method adapted from Jossé et al. for use in a slide-based
in vitro MN assay [41]. Differentiated HepaRG™ cells
were seeded into collagen-coated wells at approximately
1.0–1.75 × 105 viable cells per well in 12-well plates in
TRL’s Thawing and Plating Medium for 24 h, then
switched to TRL’s Pre-Induction/Tox medium for cell
maintenance and treatment. The 12-well plate format
was chosen in order to provide sufficient numbers of
cells per replicate for RNA extraction and the MN assay
without the need to pool wells. Cells were incubated for
7 days following seeding to allow the cells to regain peak
metabolic function [34], then they were treated with six
concentrations of each test chemical and refreshed with
media and test article daily for 3 days (i.e. 3-day repeat
exposures; 0 h, 24 h, and 48 h). A multiple exposure pro-
cedure was selected to allow for a more gradual induc-
tion of metabolic activity that led to more effective
bioactivation of certain chemicals, specifically cyclophos-
phamide [56, 57]. Seven hours following the third treat-
ment (55 h total exposure time), a subset of cells were
detached using TrypLE (Waltham, MA), washed with
1X phosphate buffered saline, pelleted, flash-frozen and
stored at − 80 °C for RNA extraction and subsequent
whole transcriptome profiling. This sampling time was
selected as it most aligned with the optimized protocol
for use of the TK6 cell line in the presence of rat liver
S9, in which a 4 h chemical exposure was followed by a
3 to 4 h recovery time for optimal TGx-DDI perform-
ance. Chemical treatments continued for MN frequency
testing for a full 24 h following the last treatment (e.g. 3-
day repeat exposures for 24 h each; 72 h total treatment
time). Test articles were then removed, media was
refreshed and the cells were stimulated with human

Epidermal Growth Factor-1 (hEGF) for a further 72 h to
induce cell division (i.e., 144 h total time following the
last chemical exposure). hEGF-1 (Cell Signaling Tech-
nology, Danvers, MA) was applied to the cultures at 200
ng/mL immediately following chemical removal and
media refreshment, and again 48 h later. The 3-day
mitogen stimulation was found to increase the cell
population by approximately 2.3-fold. All experiments
were run in duplicate for the MN assay and in triplicate
for RNA extraction (RNA-Seq was run as a pooled sam-
ple for each condition), with concurrent media and ve-
hicle controls. Chemical concentrations were based on
previous work with these chemicals in HepaRG™ and
other cells at ILS (data not shown) and on literature
searches.

In vitro MicroFlow® MN assay
The flow cytometry-based cytotoxicity and MN assay
was performed using the In Vitro MicroFlow® kit (Litron
Laboratories, Rochester, New York, USA). Sample prep-
aration, staining and other methods were performed ac-
cording to the Instructional Manual provided with the
kit. Data were collected using a Becton-Dickinson
FACSCalibur 2 laser 4-color instrument. Unless pre-
cluded by cytotoxicity, 20,000 (± 2000) cells were ana-
lyzed to determine relative survival (% RS) and the MN
frequency (% MN). A detailed description of the
methods is outlined in Buick et al. [53]. In brief, % RS
was determined using intact viable nuclei-to-bead ratios
in exposed versus control cells by spiking in counting
beads to the cell suspensions to function as the internal
standards. MN induction was measured simultaneously
using the double staining procedure. The RS and MN
data were analyzed using generalized estimating equa-
tions (GEEs) as outlined in Yauk et al. [54]. Briefly, a
normal distribution for the RS data and a binomial dis-
tribution for MN data were assumed for the error terms.
The geepack library in R was used for this analysis. GEEs
only require specification of the first two moments, the
mean and the variance. In the MN analysis, a log link
function was used. The results were then back trans-
formed to the original scale using the delta method. MN
induction was considered to be positive if the MN fre-
quency was statistically significant and at least twofold
above matched vehicle controls.

Total RNA extraction
Total RNA was extracted from exposed and control
HepaRG™ cell pellets (n = 3) using the Qiagen RNeasy
Mini kit (Qiagen, Toronto, Ontario, Canada) with an
on-column DNase I digestion, according to the sup-
plier’s protocol. Purified RNA was quantified and
assessed for quality with a NanoDrop® ND-1000 spectro-
photometer and an Agilent 2200 TapeStation. High
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quality RNA was used for gene expression analysis
(A260/280 ≥ 2.0 and RINe ranging from 8.3 to 10).

Library preparation and AmpliSeq whole transcriptome
sequencing
Three concentrations (low, mid, high) were selected for
gene expression analysis (Table 1) based on the % RS flow
cytometry analysis [53, 58]. The top concentration selected
ensured that RS was greater than 40% and then concentra-
tions were scaled down from there. In the absence of cyto-
toxicity, a top concentration of 10mM was selected.
The Ion AmpliSeq Transcriptome Human Gene Ex-

pression Kit (ThermoFisher Scientific, USA) was used to
generate libraries from exposed and control HepaRG™
cells according to the manufacturer’s instructions.
Briefly, RNA was pooled in equal amounts from all three
samples in each treatment group, then 50 ng of the
pooled total RNA samples were reverse transcribed to
cDNA using a random priming approach with the
SuperScript® VILO™ cDNA synthesis kit. Following 11
cycles of amplification of more than 20,000 human
RefSeq transcripts (18,574 mRNAs and 2228 non-coding
RNAs) using AmpliSeq primers, the resulting amplicons
were treated with FuPa reagent to partially digest the
primers and to phosphorylate the amplicons. The ampli-
cons generated for each sample pool were then ligated
to unique barcode adapters, which were purified using
SPRIselect reagent (Beckman Coulter, Brea, California,
USA) to perform a magnetic bead-based DNA clean up
method. Libraries were then quantified by TaqMan®
qPCR using the Ion Library Quantitation kit, normalized
to 200 pM, and pooled in equal amounts for multiplex
sequencing. The quantified barcoded libraries were di-
luted to 50 pM for template preparation and chip load-
ing using the Ion Chef™ Instrument for sequencing using
the Ion Proton™ sequencer with Ion PI™ Hi-Q™ Sequen-
cing 200 kits and Ion PI™ Chips (V3).

Read alignment analysis
Raw sequencing data were analyzed and aligned to the
reference genome (Human genome Hg 19) using the Ion
Torrent Suite software (v5.04) for the Ion Proton.
AmpliSeq sequencing data were analyzed using the
ampliSeqRNA plugin available through the Ion Torrent
server. This plugin uses the Torrent Mapping Alignment
Program (TMAP) that has been optimized for Ion Tor-
rent sequencing data and is capable of aligning the raw
sequencing reads to a custom reference sequence set
that contains all of the human transcripts represented by
the AmpliSeq kit.

Statistical and bioinformatic analyses
Sequencing data are accessible in the National Centre
for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) database under accession number
GSE136009. The pooled library was sequenced on a total
of five Ion PI™ Chips (V3). All chips were monitored for
Ion Sphere Particle (ISP) loading, enrichment and poly-
clonality, as well as read length and alignment (coverage
and quality). Reads from the five chips were pooled and
the raw sequencing data were analyzed using the Ion
Torrent wizard for pooling samples with identical bar-
codes from multiple runs. Pooled samples had an aver-
age of 11M valid reads according to the AmpliSeq
plugin. Quality assurance and quality control parameters
generated by the plugin, included the percentage of
reads on target (average: 94.16%; standard deviation
0.7%), the percentage of detected transcripts (average:
61%; standard deviation 1%), and the log2 reads-per-
million (RPM) correlation plots (a measure of each
gene’s RPM correlation between sample pairs), which re-
vealed no correlation below 0.97. There was no add-
itional normalization applied and no differential gene
expression analysis was conducted.
In depth information regarding statistical and bioinfor-

matic analyses for the TGx-DDI biomarker have been
previously published [54, 58]. To summarize, the error-
weighted average for each biomarker gene was produced
by merging AmpliSeq probe ID read counts for the same
gene symbol. Hierarchical cluster analysis was done
using the hclust function in R (www.r-project.org). In
the pamr function of R (www.bioconductor.org), class
predictions (DDI vs. non-DDI) were achieved using the
Nearest Shrunken Centroids (NSC) method [59], as has
been described previously [51, 53, 54, 58]. Briefly, the
standardized centroid (SC) was calculated by applying
the NSC method for DDI and non-DDI chemicals in the
training set and is the mean expression level for each
gene in a class divided by its within-class standard devi-
ation. For each DDI and non-DDI chemical, the SC is
shrunken in the direction of the overall centroid to cre-
ate the NSC. Samples were then classified by comparing
their gene expression profile to the class of NSCs and
then assigned to a class closest to it in squared distance
so that the likelihood of class membership was greater
than 0.90 [51].
Three different analyses were completed to classify the

test chemicals using the TGx-DDI biomarker, including
NSC probability analysis (PA; visualized by heatmaps),
principal component analysis (PCA), and 2-dimensional
hierarchical clustering (2 DC), as previously described
[52]. PCA was completed using the prcomp function in
R [60], where the training set data [51] was used to ap-
proximate the principal components. The PCA loadings
obtained from this analysis were applied to the data gen-
erated with the ten test chemicals. A scatterplot with
data from the training set and the ten test chemicals was
generated to visualize the results. Hierarchical cluster
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analysis was conducted using Euclidean distances with
average linkage using the hclust function [61] in the R
software. The classification strategy was as follows: if a
chemical results in a positive call in any one of three
classification analyses (NSC heatmap, PCA, or 2 DC), it
was classified as DDI; while a chemical was classified as
non-DDI if it did not lead to a positive call in any of the
three analyses [54].

Results
Human HepaRG™ cells were exposed to increasing con-
centrations of 10 chemicals, five of which are well-
characterized for their ability to cause DNA damage.
These samples were analyzed by flow cytometry to as-
sess relative survival and MN frequency, and by RNA-
Seq to detect the DNA damage response using the TGx-
DDI biomarker.

Relative survival and micronucleus frequency
The In Vitro MicroFlow® data, collected following re-
peated chemical exposures in human HepaRG™ cells, are
presented in Figs. 1 and 2. Note that these figures dis-
play the full concentration-response of In Vitro Micro-
Flow® data for all ten test chemicals. Additional file 1
and Additional file 2 only contain the % RS and % MN
data for the concentrations selected for RNA-Seq ana-
lysis, respectively (described as low, mid, and high con-
centrations for simplicity; also shown in Table 1), rather
than all concentrations tested. Overall, the DDI chemi-
cals (AFB1, CISP, ETP, MMS, and 2NF) caused a
concentration-related decline in cell survival (Fig. 1a). In
contrast, three of the non-DDI chemicals did not cause
any notable cytotoxicity (% RS > 80%) up to 10mM.
NaCl showed some decline in % RS at several concentra-
tions when tested up to 10mM. Note that colchicine

Fig. 1 Cytotoxicity assessment in human HepaRG™ cells following exposure to: (a) DDI chemicals in μM concentrations; and (b) non-DDI
chemicals in mM concentrations (except COL, which was in μM) using the In Vitro MicroFlow® assay (Litron Laboratories). See Table 1 for specific
concentrations (C1 = lowest concentration and C6 = highest concentration). Percent relative survival is depicted 96 h following the last exposure
(n = 2). DDI chemical abbreviations: 2-nitrofluorene (2NF), cisplatin (CISP), etoposide (ETP), aflatoxin B1 (AFB1), and methyl methanesulfonate
(MMS). Non-DDI chemical abbreviations: 2-deoxy-D-glucose (2DG), sodium chloride (NaCl), ampicillin trihydrate (AMP), sodium ascorbate (ASC),
and colchicine (COL). Control represents the vehicle control (DMSO for 2NF, CISP, ETP, AFB1, and COL; water for MMS; media for 2DG, NaCl, AMP,
and ASC). Error bars depict standard error, but are too small to see in all but one data point. * P < 0.05 compared to the vehicle control
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was tested in the μM concentration range (Fig. 1b), as
these concentrations were effective in inducing
aneugenicity.
A concentration-related increase in % MN was also

observed for all DDI compounds (Fig. 2a). ETP and
AFB1 induced statistically significant increases in % MN
at the top five concentrations tested (C2-C6). MN induc-
tion was observed for the top four concentrations of
2NF and CISP (C3-C6), and MMS induced MN at the
top two concentrations tested (C5 and C6). The fold
changes in % MN over vehicle control observed for the
highest, non-cytotoxic concentrations of each DDI
chemical were as follows: 4.9-fold for 2NF, 7.1-fold for
ETP, 11.8-fold for MMS, 17.8-fold for CISP, and 28.6-
fold for AFB1, respectively. No MN induction was ob-
served for the non-DDI chemicals tested, except for
COL, which induced MN at the top three concentrations

tested (C4-C6), and resulted in a 2.9-fold increase over
vehicle control at the highest concentration (Fig. 2b).
This response was expected as colchicine is an aneugen
that affects microtubule assembly and inhibits tubulin
polymerization [62, 63]. It is well established that the
MN assay detects both structural and numerical
chromosomal alterations in a cell [64–66].

TGx-DDI biomarker analysis
The TGx-DDI genomic biomarker was used to classify
the 10 test chemicals as DDI or non-DDI using Ampli-
Seq whole transcriptome sequencing. Figure 3 depicts
the TGx-DDI classification results for all chemicals.
Three separate analyses, including NSC Probability Ana-
lysis (PA; Fig. 3a), PCA (Fig. 3b), and 2 DC (Fig. 3c) were
used to classify the chemicals. A chemical that rendered

Fig. 2 Measurement of MN frequency in human HepaRG™ cells following exposure to: (a) DDI chemicals in μM concentrations; and (b) non-DDI
chemicals in mM concentrations (except COL, which was in μM) using the In Vitro MicroFlow® assay (Litron Laboratories). Percentage of MN
induction is depicted 96 h following the last exposure (n = 2). See Table 1 for specific concentrations (C1 = lowest concentration and C6 = highest
concentration). DDI chemical abbreviations: 2-nitrofluorene (2NF), cisplatin (CISP), etoposide (ETP), aflatoxin B1 (AFB1), and methyl
methanesulfonate (MMS). Non-DDI chemical abbreviations: 2-deoxy-D-glucose (2DG), sodium chloride (NaCl), ampicillin trihydrate (AMP), sodium
ascorbate (ASC), and colchicine (COL). Control represents the vehicle control (DMSO for 2NF, CISP, ETP, AFB1, and COL; water for MMS; media for
2DG, NaCl, AMP, and ASC). Error bars depict standard error, but are too small to see for many data points. * P < 0.01 compared to the
vehicle control
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Fig. 3 (See legend on next page.)
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a positive call in one or more analyses was considered to
be DDI; whereas, a chemical that rendered a negative
call in all three analyses was considered to be non-DDI.
The TGx-DDI genomic biomarker accurately classified
all five DDI compounds as DNA damage-inducing. All
three concentrations of ETP, the mid and the high con-
centration of 2NF, AFB1, and MMS, and the high con-
centration of CISP all classified as DDI based on the
combined PA, PCA, and 2 DC analysis (Table 2). The
TGx-DDI biomarker accurately classified all five non-
DDI test chemicals as non-DDI at the low, mid, and
high concentrations in all three analyses (Fig. 3 and
Table 2).

A full summary of the MN and TGx-DDI results is
shown in Table 2. MN induction was considered to be
positive if the MN frequency was statistically significant
(p < 0.01 compared to vehicle controls) and at least two-
fold higher than the matched controls. Overall, classifica-
tion as DDI or non-DDI by TGx-DDI was concordant
with MN calls and expectations for each chemical, though
there were slight discrepancies in the concentrations at
which these calls were made for these two assays.

Discussion
Although genetic toxicity testing is not routinely con-
ducted in HepaRG™ cells, this progenitor cell line is

(See figure on previous page.)
Fig. 3 (a) The heatmap on the left depicts the responses of the TGx-DDI biomarker genes in the 28 reference chemicals used to generate it by
DNA microarray analysis in TK6 cells, and the test chemicals assessed with AmpliSeq in HepaRG™ cells are shown in the subsequent columns. The
labels on the far right hand side are Gene Symbols corresponding to the GenBank accession numbers for the biomarker genes. The color scale
indicates fold changes relative to control: up-regulated genes are in red, down-regulated genes in green, and genes exhibiting no changes
relative to controls are in black. Predictions of DDI/non-DDI and NSC classification probabilities for all treatment conditions are shown using red
(DDI) and blue (non-DDI) bars above each heatmap. (b) Principal component analysis using the TGx-DDI biomarker for TK6 cells exposed to the
training set of chemicals (red text = DDI training set; blue text = non-DDI training set) and for HepaRG™ cells exposed to 10 test chemicals at low,
mid, and high concentrations 7 h following the last exposure (green text = replicates of test agent). The line drawn at 0 on the PCA plot divides
the DDI and non-DDI agents and was used for classification. (c) Hierarchical clustering of the chemicals with TGx-DDI, with color coding as in
panel B. The main branch on the dendrogram separates the DDI and non-DDI agents and was used for classification of the test agent

Table 2 MN frequency and TGx-DDI classification for test chemicals using NSC probability analysis, principal component analysis,
and 2-dimensional clustering

Test Chemical MN Induction Overall TGx-DDI Classification PA Classification PCA Classification 2 DC Classification

Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

DDI Chemicals

Aflatoxin B1 + + + Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

Non-
DDI

DDI

Cisplatin – + + Non-
DDI

Non-
DDI

DDI Non-
DDI

Non-
DDI

DDI Non-
DDI

Non-
DDI

DDI Non-
DDI

Non-
DDI

Non-
DDI

Etoposide + + + DDI DDI DDI DDI DDI DDI Non-
DDI

DDI DDI Non-
DDI

Non-
DDI

Non-
DDI

Methyl
methanesulfonate

– + + Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

DDI DDI

2-Nitrofluorene – + + Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

DDI DDI Non-
DDI

DDI DDI

Non-DDI Chemicals

Ampicillin Trihydrate – – – Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Colchicine – + + Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

2-Deoxy-D-Glucose – – – Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Sodium Ascorbate – – – Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Sodium Chloride – – – Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

Non-
DDI

For MN Induction, a ‘+’ sign indicates a statistically significant induction of MN and at least a two-fold change over vehicle controls and a ‘-‘sign indicates that
there was no statistically significant induction of MN. For the TGx-DDI classification results, DDI represents a DNA damage-inducing classification; whereas, non-
DDI represents a non-DNA damage-inducing classification. The ‘overall’ DDI call requires a DDI call in at least one of the three analyses (PA, 2 DC, PCA), whereas a
non-DDI is non-DDI in all of these analyses
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gaining more traction for this purpose [47, 67–69] as
these cells can differentiate into hepatocyte- and
cholangiocyte-like cells that express human-relevant
levels of Phase I and Phase II metabolic enzymes, are
easily accessible, and are stable in culture [33–35, 39,
49]. We measured MN frequency by flow cytometry in
combination with the TGx-DDI biomarker response by
RNA-sequencing to evaluate the application of these
tests run in parallel in HepaRG™ cells using 10 genotoxic
and non-genotoxic chemicals. A concentration-related
decrease in % RS and a concomitant increase in MN fre-
quency was observed for DDI chemicals using our ex-
perimental design. In addition, the non-DDI agent
colchicine induced a significant increase in % MN as ex-
pected, as it is an aneugen. The remaining non-DDI che-
micals did not induce MN and generally did not impact
% RS up to 10mM (note: colchicine was tested in the
μM range). The TGx-DDI biomarker also correctly clas-
sified all test compounds; ETP was classified as DDI at
all three concentrations tested, 2NF, AFB1, and MMS at
the mid and high concentrations, and CISP at the high
concentration only; all non-DDI chemicals were cor-
rectly classified at all concentrations. We achieved the
expected MN and DDI classifications for the pro-
genotoxicants (2NF and AFB1), indicating acceptable
biotransformation of these compounds to reactive geno-
toxic metabolites. In addition, agents not requiring
metabolic activation (CIS, ETP, MMS, COL) correctly
classified using the TGx-DDI method with this experi-
mental design. Thus, these results demonstrate that
these assays worked effectively in 3-day repeat exposure
experimental designs in HepaRG™ cells.
Previous studies have demonstrated the utility of

HepaRG™ cells for genetic toxicity testing. For example,
Jossé et al. [70] assessed the cytotoxicity and genotoxi-
city of malathion (an insecticide) and isomalathion (an
impurity of malathion) either individually or in combin-
ation using a 24 h exposure with a hEGF stimulation in
HepaRG™ cells. Their results showed that isomalathion
is cytotoxic and genotoxic in human liver cells, and that
the compounds can display antagonistic and additive ef-
fects in combination, where the deleterious effects were
dependent on the endpoint and concentration of the test
compounds. Recently, Souton et al. [71] studied the gen-
otoxic effects of food contact recycled paperboard ex-
tracts in two human hepatic cell lines. They exposed
HepaRG™ cells to the paperboard extracts for 24 h with-
out hEGF stimulation and then incubated the cells with
cytoB for 28 h. The paperboard extracts from the begin-
ning of the chain did not induce MN, but MN induction
was observed following exposure to the end paperboard
extracts, indicating that recycled food contact papers can
induce genotoxic effects in vitro under these experimen-
tal conditions [71]. In another recent study, Allemang

et al. [68] demonstrated the utility of the high-
throughput MN assay for evaluating the genotoxic po-
tential of 15 pyrrolizidine alkaloids (PAs) in HepaRG™
cells. In this study, a 24 h treatment period with six con-
centrations of each PA was followed by a 72 h hEGF
stimulation. They found marked differences between the
most and least potent PA, covering a range of 500x.
Overall, despite the fact that the differentiation status of
the HepaRG™ cultures differed at the beginning of these
experiments (i.e., some studies used cryopreserved ter-
minally differentiated cells and some used fresh cells that
were differentiated in the lab over a four week period),
the concentrations of DMSO varied, and the chemical
exposure and MN protocols in HepaRG™ cells were not
conducted in a standardized manner, these studies and
our work support that HepaRG™ cells provide a robust
model for assessment of the genetic effects using the
more traditional MN assay, in addition to the higher-
throughput flow cytometry-based version of the assay.
Our study included both pro-genotoxicants (i.e., those

requiring metabolic activation to exhibit genotoxic ef-
fects), as well as direct-acting substances (no metabolism
required), to evaluate the suitability of our experimental
design in HepaRG™ cells in genetic toxicology assess-
ment. The suitability of HepaRG™ cells specifically for
use in the MN test has previously been confirmed with
some adaptations for this cell line [41, 42, 45]. Previous
work by Jossé et al. [41] showed that HepaRG™ cells
could be adapted to the in vitro MN assay after a single
24 h exposure and a repeat exposure scenario including
three chemical treatments with media renewal over 7
days . For our study, we adapted a 3-day repeat expos-
ure. Further adaptations included allowing for hepato-
cyte enrichment to 80% of the cell population, omitting
the cell detachment step following chemical exposure to
lower the possibility of cell loss, stimulating cell prolifer-
ation with hEGF, and removing the cytochalasin B
(cytoB) blocking step of the protocol [41]. Preliminary
work with this progenitor cell line at ILS indicated that a
repeated exposure design in HepaRG™ cultures enhanced
their modeling of metabolic-associated responses more
effectively than a single 24 h exposure. This is likely the
result of the notable, but diminished metabolic compe-
tence of 2D cell cultures unless using very high concen-
trations of DMSO (MHMET supplement after ~ 10 days
of exposure) compared to in vivo levels [39]. By using a
3-day repeated exposure format allowing each test article
to induce specific CYP450s, in addition to the adapta-
tions outlined by Jossé et al. [41] above, the use of
HepaRG™ cells with the flow cytometry-based in vitro
MN assay achieved the expected results using these DDI
and non-DDI chemicals.
The MN and TGx-DDI classification results in our

study were highly concordant (Table 2) and aligned with
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well-established knowledge of these test agents, all of
which frequently serve as prototypes in assessing the
performance of genotoxicity tests and novel cell culture
models [72, 73]. Colchicine provides an interesting ex-
ample of the added-value of the mechanistic information
provided by the biomarker; a positive call by MN ana-
lysis with a negative call by TGx-DDI indicates that the
MN observed may not be occurring through DNA dam-
age. If aneugenicity is thus suspected, additional tests
should be performed to investigate further (e.g., MN
analysis with CREST staining, or In Vitro MultiFlow®
analysis). Using our established criteria for MN calls at
each concentration, we noted a marginal increase in sen-
sitivity of the MN assay over the TGx-DDI biomarker
(i.e., some low concentrations that classified as non-DDI
by the TGx-DDI assay were positive for the MN assay)
in HepaRG™ cells. Similarly, in our previous work, we
combined the flow cytometry MN assay with TGx-DDI
analysis in human TK6 cells in the presence of rat liver
S9 to analyze 7 genotoxic and 2 non-genotoxic chemi-
cals [54]. Interestingly, in TK6 cells the opposite was ob-
served in terms of test sensitivity, in that the TGx-DDI
biomarker was slightly more sensitive than the MN assay
(i.e., some low concentrations were negative for the in-
duction of MN, but classified as DDI by the TGx-DDI
assay) [54]. Based on these preliminary studies, it ap-
pears that the sensitivities of these two toxicological tests
may be cell-type specific and thus will be influenced by
the in vitro model of choice. Indeed, Corton et al. [74]
demonstrated that the balanced accuracies of the TGx-
DDI biomarker vary based on cell line and gene expres-
sion technology using an alternative computational
method, the Running Fisher test. In this study, the pre-
dictive accuracies of the TGx-DDI classifications were
determined for TK6 cells and three different liver cell
lines (HepaRGTM cells, HepG2 cells, and embryonic
stem cell (ESC)-derived hepatocytes) [74]. Using the
Running Fisher test, the biomarker had a balanced ac-
curacy of 90% in TK6 and HepaRG™ cells, but the bal-
anced accuracies were not as robust in the other two
liver-derived cell lines (80% in ESC-derived hepatocytes
and 60% in HepG2 cells), which are less metabolically
competent than HepaRG™ cells [74]. Thus, based on pre-
vious work of collaborators and others, along with the
current study, HepaRG™ cells are a suitable choice of cell
line for the MN and TGx-DDI assays. Overall, despite
some slight variations in test sensitivities, when run in
parallel, the flow cytometry MN assay and TGx-DDI
classification using RNA-Seq complement each other
well and led to the correct classification of all 10 test
compounds.
Observation of the expected responses for the DDI

agents within this study confirms an intact response of
the p53 pathway in HepaRG™ cells. The TGx-DDI

biomarker is enriched in p53-responsive genes that are
regulated through this nuclear receptor, and therefore
the use of p53-competent cells is a mandatory require-
ment for this assay [52]. When a positive TGx-DDI clas-
sification is rendered, this indicates that sufficient DNA
damage has been sustained due to the chemical treat-
ment, which directs the cell to initiate a transcriptional
DNA damage response driven by p53 [52]. Indeed, Cor-
ton et al. not only confirmed that most TGx-DDI bio-
marker genes are p53-dependent, but also showed that
the biomarker is able to identify a multitude of environ-
mental chemicals, chemotherapeutic drugs, and chemi-
cals that activate p53 [75].
The TGx-DDI genomic biomarker was developed and

initially validated using Agilent microarray technology [51–
53, 76]. To date, the biomarker has been further validated
with several other gene expression technologies, including
qPCR [77] and NanoString analysis [52], but validation has
been focused on its use in TK6 cells. In this study, we dem-
onstrate that the TGx-DDI biomarker correctly predicts
DNA damaging potential using Ion AmpliSeq whole tran-
scriptome gene expression profiling in HepaRG™ cells.
The current study builds on our previous work show-

ing accurate TGx-DDI predictions using Affymetrix
DNA microarrays from a publicly available data set in
HepaRG™ cells [46, 53]. In that study, HepaRG™ cells
were exposed to fifteen compounds (5 genotoxic and 5
non-genotoxic hepatocarcinogens, plus 5 non-
carcinogens) for 72 h at concentrations that reduced cell
viability by 10% [46]. Only two test chemicals overlapped
between that study and our current work: AFB1 and
2NF. Both chemicals rendered positive TGx-DDI calls in
each of the studies, but at slightly different concentra-
tions. This highlights the critical importance of concen-
tration selection for TGx-DDI analysis and provides
support for using more than one concentration for
chemical testing. There are also several noteworthy dif-
ferences in the experimental design used in the afore-
mentioned study compared to our current work,
including the use of fresh versus cryopreserved
HepaRG™ cells, a single 72 h exposure versus repeat ex-
posures at 0 h, 24 h, and 48 h with cells collected for
RNA extraction 7 h after the last exposure (55 h total ex-
posure time), and concentration selection criteria for the
test compounds (IC10 versus > 40% RS). However, des-
pite these differences, our experimental design and that
used by Doktorova et al. were equally effective in classi-
fying chemicals as DDI or non-DDI, suggesting that
HepaRG™ cells exhibit a robust TGx-DDI response
under multiple testing conditions [46]. Moreover, this
current experiment provides additional validation that
supports TGx-DDI biomarker analysis through modern
RNA-sequencing technologies to broaden its application
for in vitro genotoxicity testing.
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Conclusions
In summary, this work provides support for the use of
HepaRG™ cells with the MN assay in combination with
TGx-DDI classification analysis to accurately identify
chemicals that cause DNA damage. It also demonstrates
how these two genetic toxicology assays may be inte-
grated into a single experimental design. The combin-
ation of the flow cytometry-based MN assay with this
RNA-Seq approach to TGx-DDI biomarker analysis is a
step towards accomplishing a higher-throughput, more
integrated genotoxicity testing strategy in metabolically
competent human hepatocytes to better inform human
health risk assessment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s41021-019-0139-2.

Additional file 1. Cytotoxicity assessment in human HepaRG™ cells
following exposure to: (A) DDI chemicals in μM concentrations; and (B) non-DDI
chemicals in mM concentrations (except COL, which was in μM) using the In
Vitro MicroFlow® assay (Litron Laboratories). A low, mid and high concentration
were used for AmpliSeq analysis (specific concentrations are underlined in Table
1). Percent relative survival is depicted 96 hr following the last exposure (n = 2).
DDI chemical abbreviations: 2-nitrofluorene (2NF), cisplatin (CISP), etoposide
(ETP), aflatoxin B1 (AFB1), and methyl methanesulfonate (MMS). Non-DDI
chemical abbreviations: 2-deoxy-D-glucose (2DG), sodium chloride (NaCl),
ampicillin trihydrate (AMP), sodium ascorbate (ASC), and colchicine (COL).
Control represents the vehicle control (DMSO for 2NF, CISP, ETP, AFB1, and COL;
water for MMS; media for 2DG, NaCl, AMP, and ASC). Error bars depict standard
error, but are too small to visualize. * P < 0.05 compared to the vehicle control.

Additional file 2. Measurement of MN frequency in human HepaRG™ cells
following exposure to: (A) DDI chemicals in μM concentrations; and (B) non-DDI
chemicals in mM concentrations (except COL, which was in μM) using the In
Vitro MicroFlow® assay (Litron Laboratories). Percentage of MN induction is
depicted 96 hr following the last exposure (n = 2). A low, mid and high
concentration were used for AmpliSeq analysis (specific concentrations are
underlined in Table 1). DDI chemical abbreviations: 2-nitrofluorene (2NF),
cisplatin (CISP), etoposide (ETP), aflatoxin B1 (AFB1), and methyl
methanesulfonate (MMS). Non-DDI chemical abbreviations: 2-deoxy-D-glucose
(2DG), sodium chloride (NaCl), ampicillin trihydrate (AMP), sodium ascorbate
(ASC), and colchicine (COL). Control represents the vehicle control (DMSO for
2NF, CISP, ETP, AFB1, and COL; water for MMS; media for 2DG, NaCl, AMP, and
ASC). Error bars depict standard error, but are too small to see for many data
points. * P < 0.01 compared to the vehicle control.
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Nitrofluorene; AFB1: Aflatoxin B1; AMP: Ampicillin Trihydrate; ASC: Sodium
Ascorbate; CISP: Cisplatin; COL: Colchicine; DDI: DNA damage-inducing;
ETP: Etoposide; HESI: Health and Environmental Sciences Institute;
HHRA: Human Health Risk Assessment; MMS: Methyl methanesulfonate;
MN: micronucleus; MOA: Mode of Action; NaCl: Sodium Chloride;
NSC: Nearest Shrunken Centroids; PCA: Principal Component Analysis;
RS: Relative survival; TGx: Toxicogenomics

Acknowledgements
We gratefully acknowledge the excellent technical expertise of our
colleagues at ILS, who conducted the HepaRG™ exposures and associated
cytotoxicity and genotoxicity testing. In addition, we thank Eunnara Cho for
extracting the RNA samples used in this study. Finally, we would like to
thank Drs. Marc Beal and Julie Cox for their insightful input during the
review of this manuscript.

Authors’ contributions
CY, AW, CS, LR and SF were involved in project conception, in the
development of the analytical approach and in the data interpretation. CY,
JB and CS designed the study, in consultation with the other authors. CY
obtained funding for the project. LR and CS supervised the cellular
exposures and flow cytometry-based methods and were involved in data in-
terpretation. JB conducted the AmpliSeq whole transcriptome experiments.
RG was responsible for read alignment and bioinformatics analysis of the se-
quencing data. AW conducted the statistical analyses and prepared some of
the Figs. JB prepared the manuscript with important intellectual input from
CY, SF and LR. CY, AW, RG and JB had complete access to the study data. All
authors read, reviewed and approved the final manuscript.

Funding
This work was supported by the Genomics Research and Development
Initiative (GRDI) at Health Canada.

Availability of data and materials
The datasets generated and analysed in this study are available through the
NCBI Gene Expression Omnibus under accession number GSE136009.
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136009].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Stephen Ferguson disclaims that the statements and opinions expressed in
the text are not those of the US government. The authors declare that they
have no competing interests.

Author details
1Environmental Health Science and Research Bureau, Health Canada, Ottawa,
Ontario K1A 0K9, Canada. 2Integrated Laboratory Systems Inc. (ILS), Research
Triangle Park, Durham, North Carolina 27709, USA. 3National Toxicology
Program, National Institute of Environmental Health Sciences, Research
Triangle Park, Durham, North Carolina 27709, USA. 4Health Canada,
Environmental Health Centre, 50 Colombine Driveway, PL 0803A, Ottawa,
Ontario K1A 0K9, Canada.

Received: 4 September 2019 Accepted: 27 November 2019

References
1. Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, Edwards S, et al.

Implementing toxicity testing in the 21st century (TT21C): making safety
decisions using toxicity pathways, and progress in a prototype risk
assessment. Toxicology. 2015;332:102–11.

2. Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME.
Toxicity testing in the 21st century: defining new risk assessment
approaches based on perturbation of intracellular toxicity pathways. PLoS
One. 2011;6(6):e20887.

3. Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From
classical toxicology to Tox21: some critical conceptual and technological
advances in the molecular understanding of the toxic response beginning
from the last quarter of the 20th century. Toxicol Sci. 2018;161(1):5–22.

4. Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, et al.
The next generation of risk assessment multi-year study-highlights of
findings, applications to risk assessment, and future directions. Environ
Health Perspect. 2016;124(11):1671–82.

5. Keller DA, Juberg DR, Catlin N, Farland WH, Hess FG, Wolf DC, et al.
Identification and characterization of adverse effects in 21st century
toxicology. Toxicol Sci. 2012;126(2):291–7.

6. Krewski D, Westphal M, Al-Zoughool M, Croteau MC, Andersen ME. New
directions in toxicity testing. Annu Rev Public Health. 2011;32:161–78.

7. Clewell RA, McMullen PD, Adeleye Y, Carmichael PL, Andersen ME. Pathway
based toxicology and fit-for-purpose assays. Adv Exp Med Biol. 2016;856:
205–30.

Buick et al. Genes and Environment            (2020) 42:5 Page 12 of 14

https://doi.org/10.1186/s41021-019-0139-2
https://doi.org/10.1186/s41021-019-0139-2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136009


8. Council of Canadian Academies. Integrating Emerging Technologies into
Chemical Safety Assessment. Ottawa, ON, Canada: Council of Canadian
Academies; 2012.

9. Malloy T, Zaunbrecher V, Beryt E, Judson R, Tice R, Allard P, et al. Advancing
alternatives analysis: the role of predictive toxicology in selecting safer
chemical products and processes. Integr Environ Assess Manag. 2017;13(5):
915–25.

10. Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K. Big data in chemical
toxicity research: the use of high-throughput screening assays to identify
potential toxicants. Chem Res Toxicol. 2014;27(10):1643–51.

11. Liu Z, Huang R, Roberts R, Tong W. Toxicogenomics: a 2020 vision. Trends
Pharmacol Sci. 2019;40(2):92–103.

12. Blaauboer BJ, Boekelheide K, Clewell HJ, Daneshian M, Dingemans MM,
Goldberg AM, et al. The use of biomarkers of toxicity for integrating in vitro
hazard estimates into risk assessment for humans. ALTEX. 2012;29(4):411–25.

13. Campion S, Aubrecht J, Boekelheide K, Brewster DW, Vaidya VS, Anderson L,
et al. The current status of biomarkers for predicting toxicity. Expert Opin
Drug Metab Toxicol. 2013;9(11):1391–408.

14. Fielden MR, Zacharewski TR. Challenges and limitations of gene
expression profiling in mechanistic and predictive toxicology. Toxicol
Sci. 2001;60(1):6–10.

15. Goetz AK, Singh BP, Battalora M, Breier JM, Bailey JP, Chukwudebe AC, et al.
Current and future use of genomics data in toxicology: opportunities and
challenges for regulatory applications. Regul Toxicol Pharmacol. 2011;61(2):
141–53.

16. Kohl M. Development and validation of predictive molecular signatures.
Curr Mol Med. 2010;10(2):173–9.

17. Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. In:
Luch A, editor. Molecular, Clinical and Environmental Toxicology Volume 1:
Molecular Toxicology: Birkhäuser Basel; 2009. p. 87–110.

18. Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects
for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089–98.

19. OECD. Test No. 473: In Vitro Mammalian Chromosomal Aberration Test:
Organisation for Economic Co-operation and Development; 2016.

20. OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test:
Organisation for Economic Co-operation and Development; 2016.

21. Fowler P, Smith K, Young J, Jeffrey L, Kirkland D, Pfuhler S, et al. Reduction
of misleading ("false") positive results in mammalian cell genotoxicity assays.
I. Choice of cell type. Mutat Res. 2012;742(1–2):11–25.

22. Cox JA, Fellows MD, Hashizume T, White PA. The utility of metabolic
activation mixtures containing human hepatic post-mitochondrial
supernatant (S9) for in vitro genetic toxicity assessment. Mutagenesis. 2016;
31(2):117–30.

23. Garcia Franco S, Dominguez G, Pico JC. Alternatives in the induction and
preparation of phenobarbital/naphthoflavone-induced S9 and their
activation profiles. Mutagenesis. 1999;14(3):323–6.

24. Hyde R, Smith JN, Ioannides C. Induction of the hepatic mixed-function
oxidases by Aroclor 1254 in the hamster: comparison of Aroclor-induced rat
and hamster preparations in the activation of pre-carcinogens in the Ames
test. Mutagenesis. 1987;2(6):477–82.

25. Ku WW, Bigger A, Brambilla G, Glatt H, Gocke E, Guzzie PJ, et al.
Strategy for genotoxicity testing--metabolic considerations. Mutat Res.
2007;627(1):59–77.

26. Obach RS, Dobo KL. Comparison of metabolite profiles generated in
Aroclor-induced rat liver and human liver subcellular fractions:
considerations for in vitro genotoxicity hazard assessment. Environ Mol
Mutagen. 2008;49(8):631–41.

27. Paolini M, Biagi GL, Cantelli-Forti G. Metabolizing systems for in vitro
genotoxicity tests. Mutagenesis. 1996;11(3):305.

28. Rees RW, Brice AJ, Carlton JB, Gilbert PJ, Mitchell ID. Optimization of
metabolic activation for four mutagens in a bacterial, fungal and two
mammalian cell mutagenesis assays. Mutagenesis. 1989;4(5):335–42.

29. Yauk CL, Buick JK, Williams A, Swartz CD, Recio L, Li HH, et al. Application of
the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-
genotoxic chemicals in human TK6 cells in the presence of rat liver S9.
Environ Mol Mutagen. 2016;57(4):243–60.

30. Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al.
Characterization of primary human hepatocytes, HepG2 cells, and HepaRG
cells at the mRNA level and CYP activity in response to inducers and their
predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;
28(2):69–87.

31. Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB. A comparison
of whole genome gene expression profiles of HepaRG cells and HepG2 cells
to primary human hepatocytes and human liver tissues. Drug Metab Dispos.
2010;38(6):988–94.

32. Jetten MJ, Kleinjans JC, Claessen SM, Chesne C, van Delft JH. Baseline and
genotoxic compound induced gene expression profiles in HepG2 and
HepaRG compared to primary human hepatocytes. Toxicol in Vitro. 2013;
27(7):2031–40.

33. Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique
in vitro tool for understanding drug metabolism and toxicology in human.
Expert Opin Drug Metab Toxicol. 2012;8(7):909–20.

34. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, et al.
Expression of cytochromes P450, conjugating enzymes and nuclear
receptors in human hepatoma HepaRG cells. Drug Metab Dispos. 2006;
34(1):75–83.

35. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The
human hepatoma HepaRG cells: a highly differentiated model for studies of
liver metabolism and toxicity of xenobiotics. Chem Biol Interact. 2007;168(1):
66–73.

36. Josse R, Aninat C, Glaise D, Dumont J, Fessard V, Morel F, et al. Long-term
functional stability of human HepaRG hepatocytes and use for chronic
toxicity and genotoxicity studies. Drug Metab Dispos. 2008;36(6):1111–8.

37. Antherieu S, Chesne C, Li R, Guguen-Guillouzo C, Guillouzo A. Optimization
of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol
in Vitro. 2012;26(8):1278–85.

38. Institute for Health and Consumer Protection. European Union Reference
Laboratory (EURL) European Centre for the Validation of Alternative
Methods (ECVAM). Multi-study validation trial for cytochrome P450
induction providing a reliable human metabolically competent standard
model or method using the human cryopreserved primary hepatocytes and
the human cryopreserved HepaRG® cell line. European Commission Joint
Research Centre; 2014.

39. Jackson JP, Li L, Chamberlain ED, Wang H, Ferguson SS. Contextualizing
hepatocyte functionality of cryopreserved HepaRG cell cultures. Drug Metab
Dispos. 2016;44(9):1463–79.

40. Ramaiahgari SC, Auerbach SS, Saddler TO, Rice JR, Dunlap PE, Sipes NS,
et al. The power of resolution: contextualized understanding of
biological responses to liver injury chemicals using high-throughput
Transcriptomics and benchmark concentration modeling. Toxicol Sci.
2019;169(2):553–66.

41. Josse R, Rogue A, Lorge E, Guillouzo A. An adaptation of the human HepaRG
cells to the in vitro micronucleus assay. Mutagenesis. 2012;27(3):295–304.

42. Le Hegarat L, Mourot A, Huet S, Vasseur L, Camus S, Chesne C, et al.
Performance of comet and micronucleus assays in metabolic competent
HepaRG cells to predict in vivo genotoxicity. Toxicol Sci. 2014;138(2):300–9.

43. Lambert CB, Spire C, Renaud MP, Claude N, Guillouzo A. Reproducible
chemical-induced changes in gene expression profiles in human hepatoma
HepaRG cells under various experimental conditions. Toxicol in Vitro. 2009;
23(3):466–75.

44. Jennen DG, Magkoufopoulou C, Ketelslegers HB, van Herwijnen MH,
Kleinjans JC, van Delft JH. Comparison of HepG2 and HepaRG by whole-
genome gene expression analysis for the purpose of chemical hazard
identification. Toxicol Sci. 2010;115(1):66–79.

45. Le Hegarat L, Dumont J, Josse R, Huet S, Lanceleur R, Mourot A, et al.
Assessment of the genotoxic potential of indirect chemical mutagens in
HepaRG cells by the comet and the cytokinesis-block micronucleus assays.
Mutagenesis. 2010;25(6):555–60.

46. Doktorova TY, Yildirimman R, Vinken M, Vilardell M, Vanhaecke T, Gmuender
H, et al. Transcriptomic responses generated by hepatocarcinogens in a
battery of liver-based in vitro models. Carcinogenesis. 2013;34(6):1393–402.

47. Ates G, Mertens B, Heymans A, Verschaeve L, Milushev D, Vanparys P, et al.
A novel genotoxin-specific qPCR array based on the metabolically
competent human HepaRG™ cell line as a rapid and reliable tool for
improved in vitro hazard assessment. Arch Toxicol. 2018;92(4):1593–608.

48. Seo JE, Tryndyak V, Wu Q, Dreval K, Pogribny I, Bryant M, et al. Quantitative
comparison of in vitro genotoxicity between metabolically competent
HepaRG cells and HepG2 cells using the high-throughput high-content
CometChip assay. Arch Toxicol. 2019;93(5):1433–48.

49. Doktorova TY, Yildirimman R, Ceelen L, Vilardell M, Vanhaecke T, Vinken M,
et al. Testing chemical carcinogenicity by using a transcriptomics heparg-
based model? EXCLI J. 2014;13:623–37.

Buick et al. Genes and Environment            (2020) 42:5 Page 13 of 14



50. Limonciel A, Ates G, Carta G, Wilmes A, Watzele M, Shepard PJ, et al. Comparison
of base-line and chemical-induced transcriptomic responses in HepaRG and
RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018;92(8):2517–31.

51. Li HH, Hyduke DR, Chen R, Heard P, Yauk CL, Aubrecht J, et al.
Development of a toxicogenomics signature for genotoxicity using a dose-
optimization and informatics strategy in human cells. Environ Mol Mutagen.
2015;56(6):505–19.

52. Li HH, Chen R, Hyduke DR, Williams A, Frotschl R, Ellinger-Ziegelbauer H,
et al. Development and validation of a high-throughput transcriptomic
biomarker to address 21st century genetic toxicology needs. Proc Natl Acad
Sci U S A. 2017;114(51):E10881–9.

53. Buick JK, Moffat I, Williams A, Swartz CD, Recio L, Hyduke DR, et al.
Integration of metabolic activation with a predictive toxicogenomics
signature to classify genotoxic versus nongenotoxic chemicals in human
TK6 cells. Environ Mol Mutagen. 2015;56(6):520–34.

54. Yauk CL, Buick JK, Williams A, Swartz CD, Recio L, Li HH, et al. Application of
the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-
genotoxic chemicals in human TK6 cells in the presence of rat liver S9.
Environ Mol Mutagen. 2016;57(4):243–60.

55. Li W, Turner A, Aggarwal P, Matter A, Storvick E, Arnett DK, et al.
Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted
whole transcriptome RNA sequencing methodology for global gene
expression analysis. BMC Genomics. 2015;16:1069–81.

56. Cao J, Leibold E, Beisker W, Schranner T, Nusse M, Schwarz LR. Flow
cytometric analysis of in vitro micronucleus induction in hepatocytes
treated with carcinogens. Toxicol in Vitro. 1993;7(4):447–51.

57. Chang TK, Yu L, Maurel P, Waxman DJ. Enhanced cyclophosphamide and
ifosfamide activation in primary human hepatocyte cultures: response to
cytochrome P-450 inducers and autoinduction by oxazaphosphorines.
Cancer Res. 1997;57(10):1946–54.

58. Buick JK, Williams A, Kuo B, Wills JW, Swartz CD, Recio L, et al. Integration of
the TGx-28.65 genomic biomarker with the flow cytometry micronucleus
test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in
human TK6 cells. Mutat Res. 2017;806:51–62.

59. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer
types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A.
2002 May;99(10):6567–72.

60. Venables WN, Ripley BD. Modern applied statistics with S. fourth edition ed.
New York: Springer-Verlag; 2002.

61. Becker RA, Chambers JM, Wilks AR. The New S Language: a programming
environment for data analysis and graphics: Wadsworth & Brooks/Cole; 1988.

62. Fowler P, Whitwell J, Jeffrey L, Young J, Smith K, Kirkland D. Etoposide;
colchicine; mitomycin C and cyclophosphamide tested in the in vitro
mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL)
cells at Covance laboratories; Harrogate UK in support of OECD draft test
guideline 487. Mutat Res. 2010;702(2):175–80.

63. Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Colchicine: old and new.
Am J Med. 2015;128(5):461–70.

64. Parry JM, Parry EM. The use of the in vitro micronucleus assay to detect and
assess the aneugenic activity of chemicals. Mutat Res. 2006;607(1):5–8.

65. Kirchner S, Zeller A. Comparison of different cytotoxicity measures for the
in vitro micronucleus test (MNVit) in L5178Y tk(+/−) cells: summary of 4
compounds (Mitomycin C, cyclophosphamide, colchicine and
Diethylstilboestrol) with clastogenic and aneugenic mode of action. Mutat
Res. 2010;702(2):193–8.

66. Whitwell J, Fowler P, Allars S, Jenner K, Lloyd M, Wood D, et al. 5-
fluorouracil, colchicine, benzo [a] pyrene and cytosine arabinoside tested in
the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster
V79 cells at Covance laboratories, Harrogate, UK in support of OECD draft
test guideline 487. Mutat Res. 2010;702(2):230–6.

67. Mueller D, Kramer L, Hoffmann E, Klein S, Noor F. 3D organotypic HepaRG
cultures as in vitro model for acute and repeated dose toxicity studies.
Toxicol in Vitro. 2014;28(1):104–12.

68. Allemang A, Mahony C, Lester C, Pfuhler S. Relative potency of fifteen
pyrrolizidine alkaloids to induce DNA damage as measured by micronucleus
induction in HepaRG human liver cells. Food Chem Toxicol. 2018;121:72–81.

69. Mandon M, Huet S, Dubreil E, Fessard V, Le Hegarat L. Three-dimensional
HepaRG spheroids as a liver model to study human genotoxicity in vitro with
the single cell gel electrophoresis assay. Sci Rep. 2019;9(1):10548 -019-47114-7.

70. Josse R, Sharanek A, Savary CC, Guillouzo A. Impact of isomalathion on
malathion cytotoxicity and genotoxicity in human HepaRG cells. Chem Biol
Interact. 2014;209:68–76.

71. Souton E, Severin I, Le Hegarat L, Hogeveen K, Aljawish A, Fessard V, et al.
Genotoxic effects of food contact recycled paperboard extracts on two
human hepatic cell lines. Food Addit Contam Part A Chem Anal Control
Expo Risk Assess. 2018;35(1):159–70.

72. Kirkland D, Kasper P, Muller L, Corvi R, Speit G. Recommended lists of
genotoxic and non-genotoxic chemicals for assessment of the performance
of new or improved genotoxicity tests: a follow-up to an ECVAM workshop.
Mutat Res. 2008;653(1–2):99–108.

73. Kirkland D, Kasper P, Martus HJ, Muller L, van Benthem J, Madia F, et al.
Updated recommended lists of genotoxic and non-genotoxic chemicals for
assessment of the performance of new or improved genotoxicity tests.
Mutat Res Genet Toxicol Environ Mutagen. 2016;795:7–30.

74. Corton JC, Williams A, Yauk CL. Using a gene expression biomarker to
identify DNA damage-inducing agents in microarray profiles. Environ Mol
Mutagen. 2018;59(9):772–84.

75. Corton JC, Witt KL, Yauk CL. Identification of p53 activators in a human
microarray compendium. Chem Res Toxicol. 2019;32(9):1748–59.

76. Williams A, Buick JK, Moffat I, Swartz CD, Recio L, Hyduke DR, et al. A
predictive toxicogenomics signature to classify genotoxic versus non-
genotoxic chemicals in human TK6 cells. Data Brief. 2015;5:77–83.

77. Cho E, Buick JK, Williams A, Chen R, Li HH, Corton JC, et al. Assessment of
the performance of the TGx-DDI biomarker to detect DNA damage-
inducing agents using quantitative RT-PCR in TK6 cells. Environ Mol
Mutagen. 2019;60(2):122–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Buick et al. Genes and Environment            (2020) 42:5 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Chemicals
	HepaRG™ cell culture and chemical exposures
	In vitro MicroFlow® MN assay
	Total RNA extraction
	Library preparation and AmpliSeq whole transcriptome sequencing
	Read alignment analysis
	Statistical and bioinformatic analyses

	Results
	Relative survival and micronucleus frequency
	TGx-DDI biomarker analysis

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

