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Abstract

Negative affect (NA) is a significant cause of disability for chronic pain patients. While little is 

known about the mechanism underlying pain-comorbid NA, previous studies have implicated 

neuroinflammation in the pathophysiology of both depression and chronic pain. Here, we tested 

the hypothesis that NA in pain patients is linked to elevations in the brain levels of the glial marker 

18kDa translocator protein (TSPO), and changes in functional connectivity.

25 cLBP patients (42.4±13 years old; 13F, 12M) with chronic low back pain (cLBP) and 27 

healthy control subjects (48.9±13 years old; 14F, 13M) received an integrated (i.e., simultaneous) 

positron emission tomography (PET) / magnetic resonance imaging (MRI) brain scan with the 

second-generation TSPO ligand [11C]PBR28. The relationship between [11C]PBR28 signal and 

NA was assessed first with regression analyses against Beck Depression Inventory (BDI) scores in 

patients, and then by comparing cLBP patients with little-to-no, or mild-to-moderate depression 

against healthy controls. Further, the relationship between PET signal, BDI and frontolimbic 

functional connectivity was evaluated in patients with mediation models.

PET signal was positively associated with BDI scores in patients, and significantly elevated in 

patients with mild-to-moderate (but not low) depression compared to controls, in anterior middle 

and pregenual anterior cingulate cortices (aMCC, pgACC). In the pgACC, PET signal was also 

associated with this region’s functional connectivity to the dorsolateral PFC (pgACC-dlPFC), and 

mediated of the association between pgACC-dlPFC connectivity and BDI.
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These observations support a role for glial activation in pain-comorbid NA, identifying in 

neuroinflammation a potential therapeutic target for this condition.

INTRODUCTION

The experience of chronic pain is intimately linked with negative affect (NA), which can 

significantly complicate presentation, clinical course and treatment response.1 Indeed, 

approximately 40% of chronic low back pain (cLBP) patients, the most common chronic 

pain disorder, exhibit comorbid NA, including major depression, anxiety, and high levels of 

pain catastrophizing.2–5 Patients with comorbid chronic pain and high NA report 

significantly higher pain severity and interference, and lower quality of life, than individuals 

with chronic pain or mood disorders alone.6–8

A growing body of evidence suggests that neuroinflammation is associated with chronic 

pain and NA, and may in fact be a common substrate contributing to both conditions. For 

instance, elevated levels of circulating inflammatory markers have been detected in patients 

with chronic pain and/or depression;9, 10 preclinical studies demonstrate brain glial 

activation in models of both chronic pain11–14 and chronic stress;15–19 and finally, human 

imaging studies provide evidence of central nervous system (CNS) glial activation in chronic 

pain patients,20–22 as well as patients with depression23–26 (although see27). While these 

data support a role for glial activation in the pathophysiology of both chronic pain and 

affective disorders, no study has yet investigated the neuroinflammatory component of 

depressive symptoms comorbid with chronic pain.

The principal aim of the current study was to test the hypothesis that cLBP with comorbid 

NA is accompanied by neuroinflammation in frontolimbic and insular cortices.23–25 We 

studied cLBP patients with depression scores ranging from low to mild/moderate, as well as 

healthy, non-depressed controls, using integrated positron emission tomography/magnetic 

resonance imaging (PET/MRI) and [11C]PBR28. This radioligand binds to the 18-kDa 

translocator protein (TSPO), a mitochondrial protein that is considered a putative imaging 

biomarker of inflammation28 because it is expressed at low levels in healthy CNS tissue,29 

but is consistently upregulated in activated microglia and/or astrocytes during 

neuroinflammatory responses.30

In addition, a secondary aim was to evaluate the relationship between neuroimmune 

activation and functional connectivity. This aim is motivated by the potential existence of a 

bidirectional relationship between glial activation and neural communication, as the former 

per se is able to modulate synaptic transmission,31 and conversely, neural activity is also 

able to trigger activation of neuroimmune cells, e.g. in neurogenic neuroinflammation.32 

Given the interplay between neuroinflammation and neural communication, and because 

aberrant functional connectivity has been documented in patients with chronic pain33, 34 and 

in those with depression,35, 36 we tested for the presence of an association between glial 

activation and functional connectivity as assessed using resting-state blood oxygen level 

dependent functional magnetic resonance imaging (BOLD fMRI) data collected 

simultaneously to the [11C]PBR28 PET signal.
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MATERIALS AND METHODS

Subjects

Twenty-five patients diagnosed with cLBP more than 6 months before enrollment, and rating 

their average pain at least 3/10 during a typical week for at least half the week. In addition, 

an existing dataset of 27 healthy, pain-free controls was used to perform the (secondary) 

group analyses. While no formal calculation was performed to specifically estimate the 

power needed to detect an association between [11C]PBR28 signal and BDI, previous 

studies have identified a statistically significant correlation between TSPO signal and 

measures of negative affect with smaller samples23, 25, suggesting that we would have 

sufficient power to detect such an association in our own sample. Data for 10 patients and 9 

controls have been previously reported as part of a study not investigating the role of 

neuroinflammation in negative affect.21 Exclusion criteria included any PET/MRI 

contraindications (including pregnancy, metallic implants, claustrophobia), any past or 

present major medical, neurological, or psychiatric illness (general anxiety disorder, PTSD, 

and depression were only exclusionary if severe enough to require hospitalization in the past 

5 years), or illicit drug use as confirmed by subjective report and urine drug screening. 

Recruitment took place between April 4, 2012 and November 27, 2017.

All study procedures were performed at the Athinoula A. Martinos Center for Biomedical 

Imaging at Massachusetts General Hospital. All protocols were approved by the Institutional 

Review Board and Radioactive Drug Research Committee, and all subjects signed a written 

informed consent.

Behavioral visit

At the first visit, all subjects underwent a medical history and physical examination, and 

provided a urine sample was obtained for drug screening. Subjects were genotyped for the 

Ala147Thr TSPO polymorphism, which affects [11C]PBR28 binding to TSPO,37, 38 and 

were included in the subsequent imaging portion of the study only if they exhibited the 

ala/ala (“high affinity binders”, HABs) or ala/thr (“mixed affinity binders”, MABs), but not 

the thr/thr (“low affinity binders”) genotype. Participants also completed the Beck 

Depression Inventory BDI-1A;39, which has shown good psychometric properties in 

individuals with chronic pain,40 as well the McGill Pain Questionnaire, short form.41

Imaging visit

Dynamic [11C]PBR28 PET and structural MR data were acquired for 90 minutes as 

described previously.21, 42 Simultaneously to the PET data, a 6-minute blood oxygen level-

dependent (BOLD) resting-state fMRI scan was acquired for each subject (TR/TE=2sec/

30ms, flip angle=90°, voxel size=3.1×3.1×3mm, 37 slices), with eyes open. All subjects 

rated their current clinical pain during the scan, using a Numerical Rating Scale from 0 (no 

pain) to 100 (the most intense pain tolerable).

Data preprocessing

[11C]PBR28 PET data—SUV images, 60–90 minutes post-injection, normalized by 

whole brain uptake (SUVR), were generated as described previously.21, 42, 43 Briefly, a 90-
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minute dynamic [11C]PBR28 PET acquisition and MR-imaging were performed with an 

integrated PET/MRI scanner consisting of a dedicated brain avalanche photodiode-based 

PET scanner in the bore of a Siemens 3T Tim Trio MRI.44 [11C]PBR28 was produced in-

house using a procedure modified from the literature.45 A multi-echo MPRAGE volume was 

acquired prior to tracer injection (TR/TE1/TE2/TE3/TE4=2530/1.64/3.5/5.36/7.22 ms, flip 

angle=7°, voxel size=1mm isotropic) for the purpose of anatomical localization, spatial 

normalization of the imaging data, as well as generation of attenuation correction maps.46 

MPRAGE-based attenuation correction was performed according to published methods.46 

SUV maps were nonlinearly transformed to MNI space and smoothed with an 8mm full 

width at half maximum Gaussian kernel. Finally, SUV frames were normalized by average 

whole brain uptake to obtain SUV ratios (SUVR), as our group has described previously for 

[11C]PBR28.21 This method has been used in several [11C]PBR28 studies, including in 

cLBP patients, and demonstrates good ability to detect signal elevations in regions where 

neuroinflammation is known or expected to occur, e.g., motor cortex in amyotrophic lateral 

sclerosis, basal ganglia in Huntington’s Disease.21, 43, 47–50 Importantly, in order to validate 

the use of SUVR as an outcome metric, we compared SUVR against VT ratio (DVR) in a 

subset of subjects for whom arterial plasma data were available. These correlations reached 

statistical significance for all regions evaluated in this study (a-priori ROIs and regions 

identified in the voxelwise regression analyses; 0.59≤r≤0.85, 0.034≤p≤0.001), except for the 

prefrontal ROI, which showed a strong trend (r=0.55; p=0.053; Supplementary Figure 1). 

These analyses therefore provided support to the use of SUVR as viable PET metric in our 

study.

Resting-state fMRI data—6-minute BOLD scans were pre-processed using FSL 

(FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl/), AFNI (http://

afni.nimh.nih.gov/afni), and FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) software 

packages. Data were corrected for slice-timing, physiological motion, and B0 field 

inhomogeneities. Brain extraction, co-registration to the MPRAGE, spatial smoothing with a 

6mm Gaussian kernel, high-pass temporal filtering (f = 0.008Hz), and nonlinear 

transformation to MNI space were subsequently performed. To reduce physiological noise, 

we employed denoising with a principle component analysis (PCA), aCompCor.51 In order 

to reduce physiological noise in the resting-state BOLD data, MPRAGE images were 

segmented in probabilistic maps of gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) using SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/). To minimize potential partial 

volume effects, WM and CSF masks were thresholded at 90% and eroded by one voxel. 

BOLD data were masked with WM and CSF inclusive masks, and a principal component 

analysis was performed on the masked data. WM and CSF noise time courses were extracted 

only from unsmoothed functional BOLD data. To determine whether NA-related 

neuroinflammation was associated with neural communication, we performed seed-based 

functional connectivity analyses investigating the regions demonstrating the strongest 

association between [11C]PBR28 signal and BDI scores: the anterior middle and pregenual 

anterior cingulate cortices (aMCC, pgACC; see Results). To this end, the average BOLD 

time series was extracted from 3mm-radius spheres placed around the peak voxels identified 

in the voxelwise regression analysis (MNI coordinates, x,y,z [mm]): (−10,36,22) and 

(2,40,−2) for the aMCC and pgACC, respectively.
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Statistical analysis

To test the relationship between neuroinflammation signal and negative affect we adopted a 

multi-stage approach. In broad terms, we first identified regions demonstrating a statistically 

significant association between [11C]PBR28 signal and BDI scores in patients, using both 

region-of-interest (ROI) and voxelwise regression analyses. The mean [11C]PBR28 signal 

extracted from the regions identified in the voxelwise regression analyses was then 

compared between patients, split into subgroups with “mild-to-moderate” or “low-to-none” 

depression, and a group of healthy non-depressed controls. The purpose of these follow-up 

group analyses was to further elucidate the link between negative affect and TSPO signal, by 

specifically testing the hypothesis that only patients with “mild-to-moderate depression” 

would demonstrate statistically elevated [11C]PBR28 compared to controls (and not patients 

with levels of NA comparable to those of healthy controls), in those regions.

More in detail, we first performed a partial correlation analysis between BDI scores and 

[11C]PBR28 SUVR in patients, correcting for TSPO genotype, in three anatomically-defined 

ROIs (PFC, insula, and ACC), because a recent study in major depression disorder 

demonstrated an association between depression scores and TSPO level in these regions.25 

Significance was set at p<0.05 (Bonferroni-corrected for multiple comparisons). As a 

follow-up analysis, the same analysis was run for “control” regions we previously showed to 

exhibit elevated [11C]PBR28 signal in cLBP patients, but not expected to be related to NA: 

left and right thalamus (anatomically defined), and a subregion of the left thalamus 

identified in voxelwise analyses.21 PFC, insula, and left and right thalamic ROIs were 

created from the Harvard-Oxford Cortical Structural Atlas (Centre for Morphometric 

Analyses, http://www.cma.mgh.harvard.edu/fsl_atlas.html) according to landmarks 

described in the study, and thresholded at the arbitrary value of 30 as performed previously.
21 Because the Harvard-Oxford label of the ACC contains posterior portions likely 

belonging to middle and posterior cingulate cortex, the ACC ROI was obtained with 

Neurosynth,52 using “anterior cingulate cortex” as a term in a reverse inference search, 

thereby excluding posterior portions of the cingulate cortex present in the Harvard-Oxford 

label. The left thalamus cluster ROI corresponded to the left thalamic cluster that exhibited 

statistically significant differences across groups in our previous study.21 Because the 

distribution of residuals for the partial correlations comparing SUVR values from all ROIs 

with BDI scores did not significantly deviate from normality (p’s>0.076, Shapiro-Wilk), the 

use of Pearson’s correlation was appropriate.

Because a statistically significant association between TSPO PET signal and BDI was either 

reached (ACC) or approached (PFC, insula) in all primary ROIs (see Results), we performed 

a follow-up voxelwise regression analysis to test if any subregions within the above-

mentioned primary ROIs were driving these effects, again controlling for TSPO genotype. 

To this end, we used nonparametric permutation testing (randomise, FSL) with 10000 

permutations, 5mm variance smoothing, threshold-free cluster enhancement, and a search 

volume restricted to include only the primary a-priori ROIs. We then compared the PET 

signal from patients with little-to-no depression (BDI score=0–9; n=18) or mild-to-moderate 

depression (BDI score=10–18; n=7) against that from healthy, non-depressed controls, using 

ranges recommended in patients with medical illness for the BDI version used in the current 
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study.53 Using ANCOVAs, we compared mean [11C]PBR28 SUVR, extracted from clusters 

significant in the voxelwise regression analysis (aMCC and pgACC), between these 

subgroups of patients and healthy, non-depressed controls (CTRL). Of note, because the 

primary aim of the study was to perform cross-sectional analyses within the patient group 

only, healthy controls were evaluated under different protocols, and were not specifically 

recruited to match the patients. Because group differences in injected dose and age reached 

or approached statistical significance (see Results), these variables were included, in 

addition to TSPO polymorphism, as regressors of no interest in our analyses. Because 

previous research in depressed patients demonstrated elevated TSPO PET signal compared 

to controls, and our own regression analyses in the patient group demonstrated a positive 

correlation between depression scores and TSPO PET signal, statistically significant Group 

effects in the ANCOVA were decomposed using one-sided Dunnett’s post-hoc pairwise 

comparisons to test the hypothesis that mean PET signal in the two subgroups of cLBP 

patients was higher than mean PET signal in healthy controls. The use of an ANCOVA was 

justified because the distribution of the residuals for all regions or any groups did not 

significantly vary from normality (p’s>0.078, Shapiro-Wilk), and there were no violations of 

the equal variance assumption for either region (p’s>0.48, Levene’s test).

Next, we evaluated functional connectivity of the regions showing an association between 

PET signal and BDI scores in the voxelwise regression analysis, using resting-state fMRI 

data collected simultaneously to the PET data. First-level general linear model analyses were 

performed, modeling seed region time series as a regressor of interest, as well as the 

following nuisance regressors: 6 motion parameters (3 translations, 3 rotations from FSL’s 

mcflirt tool), motion-flagged volumes (identified by fsl_motion_outliers), and the first 5 

PCA components from CSF and WM.54 The resulting connectivity maps were passed up to 

a second-level analysis, where they were regressed against the [11C]PBR28 SUVR extracted 

from the same seed, in order to determine whether PET signal in a given region was 

associated with the functional connectivity between that brain region and others. These 

analyses were carried out with the nonparametric randomise tool, as described above. As the 

regions used as seeds in the connectivity analyses were selected because of their association 

between PET signal and BDI scores, we further hypothesized that any connectivity patterns 

identified as showing an association with the PET signal (pgACC to dorsolateral prefrontal 

cortex, pgACC-dlPFC; see Results) would also be associated with BDI scores. To test this 

hypothesis, mean pgACC-dlFPC z-scores were regressed against BDI. Finally, in order to 

gain a more mechanistic understanding of the relation between neuroinflammation, 

functional connectivity and depressive scores, we performed exploratory mediation analyses. 

Of all the possible model configurations, we elected to test only mediation models in which 

depressive symptoms were dependent on [11C]PBR28 PET signal (but not vice versa), 

because inflammatory signaling is known to induce depressive behaviors in humans and 

animal models.55, 56 As such, we designed three mediation models with the following 

independent, mediator and dependent variables (IV/M/DV): IV=connectivity, 

M=[11C]PBR28 signal, DV=BDI (model 1); IV=[11C]PBR28 signal, M=connectivity, 

DV=BDI (model 2); IV=[11C]PBR28 signal, M=BDI, DV=connectivity (model 3). The 

unstandardized regression coefficients in this mediation model and the bootstrap 95% 

confidence intervals (CIs) for total and indirect effects of the independent variable on the 
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dependent variable through M (1000 bootstrap samples) were estimated using the Preacher 

and Hayes Indirect Mediation Analysis tool for SPSS,57 version 20 (IBM Corp, Armonk, 

NY). As recommended, the indirect (i.e., mediation) effect was considered statistically 

significant if the bias corrected 95% CI did not include zero.

RESULTS

Subject characteristics

Patients reported significantly more back pain (p<0.001) and higher BDI scores (p<0.001) 

compared to controls. Patient BDI scores ranged from low to mild/moderate, and were not 

correlated with either MPQ score or current pain ratings (r’s<0.145; p’s<0.48). See 

Supplementary Table 1 for more details.

[11C]PBR28 signal is associated with depressive symptoms

First, we performed a region-of-interest (ROI) partial correlation analysis to assess the 

association between BDI scores and [11C]PBR28 SUVR in patients (Figure 1). Prefrontal 

cortex (PFC), insula, and anterior cingulate cortex (ACC) were selected as a-priori ROIs.25 

In these analysis, TSPO PET signal demonstrated a positive correlation with BDI scores that 

was statistically significant in the ACC (r=0.494, p=0.042, corrected), but not for insula 

(r=0.47, p=0.06, corrected) or PFC (r=0.44; p=0.099, corrected; Figure 1), after correction 

for multiple comparisons. There were no significant associations between [11C]PBR28 

signal and BDI in control thalamic ROIs (regions we previously showed to exhibit elevated 

[11C]PBR28 signal in cLBP patients, but not expected to be related to NA), even when 

explored uncorrected (r’s<0.163 p’s>0.446). In cLBP patients, clinical pain during the scan 

was not significantly correlated with BDI scores (p=0.263), or [11C]PBR28 PET signal in 

any of the three a priori ROIs (p’s>0.14).

In agreement with the ROI analyses, which show the strongest association in the ACC 

region, two clusters within the boundaries of this anatomical label were the only ones 

reaching significance in a follow-up nonparametric voxelwise permutation analysis: the 

pregenual anterior and the anterior middle cingulate cortices (pgACC and aMCC) (Figure 

2A–2B). There were no regions showing significant negative correlations between BDI and 

TSPO PET signal.

After demonstrating a linear association between [11C]PBR28 PET signal and BDI scores in 

the patients, we sought to test the hypothesis that the PET signal in patients with higher 

depression symptom scores was significantly elevated compared to an existing dataset of 

healthy, non-depressed volunteers (Supplementary Table 1). We split the patients into those 

with little-to-no depression or mild-to-moderate depression.53 ANCOVA analyses revealed a 

significant Group effect on [11C]PBR28 signal in both regions identified in the voxelwise 

analyses (aMCC: p<0.001; pgACC: p=0.005). Post-hoc analyses indicated that this effect 

was driven by patients with mild-to-moderate depression, which showed elevated PET signal 

compared to controls (aMCC: difference, 0.11; 95% CI, 0.08 to 0.13; p<0.001; pgACC: 

difference, 0.12; 95% CI, 0.09 to 0.16; p=0.003), whereas the non-depressed patients did not 
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(aMCC: difference, −0.03; 95% CI, −0.04 to −0.02; p=0.937; pgACC: difference, −0.02; 

95% CI, −0.03 to −0.01; p=0.868; Figure 2C).

Pregenual TSPO PET signal mediates the association between depressive symptoms and 
frontolimbic connectivity

Next, we used BOLD resting state fMRI data collected simultaneously to the PET data to 

evaluate functional connectivity of the regions showing an association between PET signal 

and BDI scores in the voxelwise regression analysis. Using pgACC as a seed region, we 

observed that functional connectivity between the pgACC and dorsolateral PFC (dlPFC) was 

positively associated with pgACC [11C]PBR28 signal (Figure 3A–B). Average pgACC-

dlPFC connectivity also showed a trend-level association with BDI (p=0.054; Figure 3C). 

TSPO PET signal in the aMCC was not significantly associated with aMCC functional 

connectivity.

Because of the observed intercorrelations between three variables of interest (BDI, pgACC 

[11C]PBR28 signal, and pgACC-dlPFC connectivity), we conducted three exploratory 

bootstrapped mediation analyses to investigate whether one variable was potentially 

mediating the relationship between the other two. Of these three models, only model 1 (IV, 

connectivity; M, [11C]PBR28 PET signal; DV, BDI) reached statistical significance. This 

model revealed that the strength of the association between pgACC-dlPFC connectivity and 

BDI (path c; β±standard error=0.969±0.48, p=0.054) was significantly reduced after 

accounting for the effects of the mediator, pgACC [11C]PBR28 signal, (path c’; β=

−0.172±0.61; p=0.780). The bias corrected 95% CIs for the indirect effect of pgACC-dlPFC 

on BDI through pgACC SUVR (path a × b; β=0.06±0.57) yielded a lower limit of 0.352 and 

an upper limit of 2.57. A 95% CI range not containing zero suggests that pgACC 

[11C]PBR28 signal significantly mediates the association between pgACC-dlPFC 

connectivity and BDI score (Figure 4).

DISCUSSION

Here, we show that [11C]PBR28 PET signal in the pgACC is associated with frontolimbic 

connectivity and depressive symptoms, and mediates the relationship between the former 

and the latter, in chronic pain patients.

Because TSPO is upregulated by glial cells during neuroimmune activation,28 our 

observations agree with, and extend, results from a growing body of literature supporting a 

role for neuroinflammation in mood disorders, including both in vivo and in vitro studies. 

For example, postmortem studies in depressed or suicidal patients showed elevated 

inflammatory cytokine levels or markers of glial activation in ACC and PFC.58–61 

Preclinical studies have demonstrated brain microglial activation and increased 

neuroinflammatory markers in models of chronic stress15–19 in regions consistent with those 

observed in the present study. In clinically depressed patients, brain TSPO PET binding was 

elevated compared to healthy volunteers,23–26 and positively correlated with depressive 

symptoms in the ACC, PFC, and insula.25 Here, we have identified in the very same regions 

a positive association between [11C]PBR28 signal and BDI scores, although significantly 

only for the ACC after correction for multiple comparisons (with the PFC and insula being 
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significant only at an uncorrected level). Interestingly, no such relationship was observed for 

the thalamus, a region demonstrating consistently elevated TSPO PET signal in cLBP 

patients compared to healthy controls in our previous work.21 This observation suggests that 

different spatial patterns of glial activation may contribute independently to specific 

symptoms.

Our study further shows a relationship between pgACC [11C]PBR28 PET signal and 

pgACC-dlPFC connectivity, a neural metric that previous fMRI research found to be 

positively correlated with negative self-focused thought in depressed patients.36 The 

association between TSPO PET signal and functional connectivity could reflect different 

mechanisms. First, glial cells can modulate neuronal activity,62, 63 and might therefore play 

a role in dysfunctional neuronal communication in numerous pathologies,64 including 

depression.65 Studies show that manipulation of fractalkine receptors, expressed only on 

microglia, is sufficient to alter synaptic function: fractalkine receptor activation releases pro-

inflammatory cytokines and increases excitatory signaling,31 whereas attenuation of 

fractalkine signaling inhibits pro-inflammatory signaling.66 Furthermore, fractalkine 

receptor knockout animals show deficient synaptic pruning during development, weakened 

synaptic transmission and reduced functional brain connectivity.67 While these studies 

highlight the ability of glial cells to regulate neural activity in preclinical models, the results 

of our analyses suggest that connectivity may be instead driving neuroinflammation in our 

dataset. In our analyses, pgACC TSPO PET signal significantly mediated the relationship 

between pgACC-dlPFC connectivity and BDI. Importantly, the mediation model in which 

the directionality of the association between connectivity and PET signal was reversed 

(model 2) was not statistically significant. Therefore, our results lead us to speculate that 

changes in frontolimbic connectivity may cause NA indirectly, by exerting an effect on glial 

activation. As glial cells are sensitive to neural activity and can change activation states as a 

result of activity changes,32 it is possible that aberrant communication between the dlPFC 

and pgACC predates and contributes to neuroinflammation in the pgACC. While statistical 

modeling can provide hints at the possible neuroglial mechanisms leading to depressive 

symptoms, it is important to stress that causality cannot be conclusively demonstrated solely 

on the basis of the existing data, and specifically designed studies will be ultimately needed 

to provide empirical evidence corroborating our interpretation.

Several caveats should be considered when interpreting the results of our report. First, 

contributions of specific glial subtypes cannot be resolved with TSPO PET imaging. In fact, 

while elevations in TSPO levels are most commonly interpreted as evidence of microglial 

activation, in some circumstances this protein can (also) be upregulated by reactive 

astrocytes.68, 69 However, studies implicating astrocytic involvement in major depression70 

support a reduction, rather than an increase, in astrocytic density and expression of astrocytic 

markers. As such, it seems more likely that the depressive symptom-associated elevations in 

TSPO observed here are reflective of microglial activation. Moreover, we have recently 

shown that TSPO elevations observed in a different chronic pain disorder (fibromyalgia) are 

not accompanied by elevations in [11C]-L-deprenyl-D2 signal.71 Because the latter is thought 

to reflect mostly astrocytic contributions,72 this observation suggests that microglia and not 

astrocytes might be driving the TSPO signal, although whether this conclusion can be 

generalized to cLBP awaits experimental verification. Second, the healthy volunteer data 
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included in this study for secondary analyses came from an existing dataset of participants 

recruited through different protocols, and thus not specifically recruited to match these 

patients. As a result, the former happened to have a higher average injected dose and tended 

to be marginally older. However, neither injected mass nor specific activity were 

significantly different across groups, and increasing age is more likely to be associated with 

higher, rather than lower, TSPO signal.73–75 Thus, we deem it unlikely that any of our 

results might be explained by the above-mentioned group differences. Perhaps most 

importantly, these group differences have no bearing on the main observation of the study, 

which is the association between PET signal and BDI in the cLBP group. Finally, in this 

study we used a simplified ratio metric (SUVR) as the primary outcome measure. Measures 

obtained with kinetic modeling using arterial input functions (e.g. distribution volume [VT] 

and VT ratio [DVR]) are still largely considered the gold standard for quantification of 

TSPO tracers. However, in a subset of the participants we were able to verify that SUVR 

was significantly correlated with DVR in all regions evaluated in this study (with the 

exception of the prefrontal ROI, which showed a strong trend; Supplementary Figure 1), 

suggesting that this metric is an appropriate surrogate for TSPO quantification, at least in 

this population. Additionally, the use of ratio metrics such as SUVR or DVR, instead of an 

absolute metric such as SUV or VT, may come with drawbacks. Because no brain region 

devoid of TSPO exists, a true reference region cannot be identified, and the selection of the 

pseudoreference region to be used to normalize the signal relies on the assumption that that 

region is not affected by pathology. On the other hand, this approach can increase the 

sensitivity to detect neuroinflammatory responses as it can correct for the large 

interindividual variability in global signal often observed with TSPO tracers.48 Indeed, our 

group and others have used ratio metrics to demonstrate TSPO signal increases across 

multiple conditions, in spatial distributions overlapping with the known or expected 

distribution of neuroinflammation in each condition (e.g, motor/premotor cortices and 

corticospinal tracts in amyotrophic lateral sclerosis;43, 76 basal ganglia in Huntington’s 

Disease,50 temporoparietal regions in Alzheimer’s disease).77

In conclusion, the present results provide evidence supporting a role for glial activation in 

depressive symptoms comorbid with chronic pain and, more broadly, further corroborate the 

neuroinflammatory hypothesis of negative affect.25 Our findings therefore support the 

exploration of neuroinflammation as a therapeutic target for conditions characterized by NA, 

including chronic pain.
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Figure 1. ROI [11C]PBR28 signal is associated with depressive symptoms.
Scatterplots display the relationship between [11C]PBR28 SUVR in each ROI (displayed in 

green) and BDI in cLBP patients (n=25). All data have been adjusted for TSPO 
polymorphism. BDI – Beck Depression Inventory; ACC – anterior cingulate cortex; PFC – 

prefrontal cortex
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Figure 2. Voxelwise [11C]PBR28 signal is associated with depressive symptoms and elevated in 
patients with mild-to-moderate depression.
A. Results from the voxelwise analysis showing clusters where [11C]PBR28 SUVR is 

significantly positively associated with BDI. B. For visualization purposes, average SUVR 

from the aMCC and pgACC clusters in panel A are plotted against BDI, both adjusted for 

TSPO polymorphism. C. Results from the ANCOVA analysis comparing average aMCC and 

pgACC SUVR between cLBP patients with little-to-no depression, mild-to-moderate 

depression, and controls. P-values represent results from post-hoc Dunnett’s tests comparing 

both patient subgroups against to controls. All values have been adjusted for age, injected 

dose, and TSPO polymorphism.
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Figure 3. Frontocingulate connectivity is associated with pgACC [11C]PBR28 signal, and with 
BDI
A. Results from the voxelwise nonparametric permutation analysis showing a significant 

positive association between pgACC [11C]PBR28 SUVR and functional connectivity 

between pgACC and right dlPFC. B. For visualization purposes, the average z-statistic was 

extracted from the dlPFC cluster in panel A and plotted against pgACC SUVR. All data has 

been adjusted for TSPO polymorphism. C. A scatterplot shows the regression between 

average z-statistic connectivity extracted from dlPFC in Panel A and BDI.
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Figure 4. pgACC [11C]PBR28 signal mediates the relationship between pgACC-dlPFC 
connectivity and BDI
A bootstrapped mediation analysis revealed that pgACC significantly mediated the 

relationship between pgACC-dlPFC connectivity and BDI. Values within parentheses 

represent bootstrap standard errors for each path. #p = 0.054, *p < 0.05, **p < 0.01.

Albrecht et al. Page 19

Mol Psychiatry. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Subjects
	Behavioral visit
	Imaging visit
	Data preprocessing
	[11C]PBR28 PET data
	Resting-state fMRI data

	Statistical analysis

	RESULTS
	Subject characteristics
	[11C]PBR28 signal is associated with depressive symptoms
	Pregenual TSPO PET signal mediates the association between depressive symptoms and frontolimbic connectivity

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

