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Whether marine omega-3 fatty acid (n-3 FA) or vitamin D supplementation can prevent 

cardiovascular disease (CVD) in general populations at usual risk for this outcome is unknown. A 

major goal of the VITamin D and OmegA-3 TriaL (VITAL) was to fill this knowledge gap. In this 

article, we review the results of VITAL, discuss relevant mechanistic studies regarding n-3 FAs, 

vitamin D, and vascular disease, and summarize recent meta-analyses of the randomized trial 

evidence on these agents. VITAL was a nationwide, randomized, placebo-controlled, 2×2 factorial 

trial of marine n-3 FAs (1 g/d) and vitamin D3 (2000 IU/d) in the primary prevention of CVD and 

cancer among 25,871 U.S. men aged ≥50 and women aged ≥55, including 5,106 African 

Americans. Median treatment duration was 5.3 years. Supplemental n-3 FAs did not significantly 

reduce the primary cardiovascular endpoint of major CVD events (composite of myocardial 

infarction [MI], stroke, and CVD mortality; hazard ratio [HR]=0.92 [95% confidence interval 

0.80–1.06]) but was associated with significant reductions in total MI (HR=0.72 [0.59–0.90]), 

percutaneous coronary intervention (HR=0.78 [0.63–0.95]), and fatal MI (HR=0.50 [0.26–0.97]) 

but not stroke or other cardiovascular endpoints. For major CVD events, a treatment benefit was 

seen in those with dietary fish intake below the cohort median of 1.5 servings/week (HR=0.81 

[0.67–0.98]) but not in those above (p, interaction=0.045). For MI, the greatest risk reductions 

were in African Americans (HR=0.23 [0.11–0.47]; p, interaction by race=0.001). Vitamin D 

supplementation did not reduce major CVD events (HR=0.97 [0.85–1.12]) or other cardiovascular 

endpoints. Updated meta-analyses that include VITAL and other recent trials document coronary 

risk reduction from supplemental marine n-3 FAs but no clear CVD risk reduction from 

supplemental vitamin D. Additional research is needed to determine which individuals may be 

most likely to derive net benefit from supplementation.

(VITAL (clincialtrial.gov identifier: )
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INTRODUCTION

Marine n-3 FA supplementation has been recommended for heart health in patients with 

coronary heart disease (CHD) who do not meet target intakes for n-3 FA-rich fatty fish,1, 2 

and vitamin D supplementation is an established intervention for the prevention and 

treatment of bone disorders.3 A decade ago, these supplements were also increasingly being 

used for the possible prevention of a first cardiovascular event or cancer, and their U.S. sales 

soared.4–6 Indeed, n-3 FAs and vitamin D remain among the most widely used supplements 

today.7, 8

Ecologic, laboratory, and observational study data supporting these potential new indications 

were promising but inconclusive and insufficient to establish causality.3, 9, 10 For n-3 FAs, 

some11–13 though not all14–16 trials in secondary prevention or high-risk settings had found 

cardiovascular disease (CVD) risk reductions, but no large trial in a general population 

unselected for elevated cardiovascular risk had been conducted. For vitamin D, trials that 

had assessed CVD or cancer outcomes in secondary or post hoc analyses had shown 

Manson et al. Page 2

Circ Res. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clincialtrial.gov


generally null results, but low doses, inadequate statistical power, short treatment durations, 

and/or lack of rigorous endpoint adjudication precluded definitive assessments.3 Large trials 

of vitamin D in doses adequate to produce meaningful changes in 25-hydroxyvitamin D 

(25(OH)D) levels and designed to assess CVD or cancer as primary outcomes were lacking. 

The Institute of Medicine3 in 2011 concluded that the effectiveness and benefit-risk balance 

of vitamin D supplementation for CVD or cancer prevention could not be established with 

existing data (as did the U.S. Preventive Services Task Force17 in 2014) and highlighted the 

need for trials of vitamin D in doses at least twice the current recommended dietary 

allowance of 600–800 IU/d for bone health to understand the benefit-risk balance, including 

in diverse populations.

We conducted the VITamin D and OmegA-3 TriaL (VITAL), an investigator-initiated study, 

to fill these knowledge gaps. To date, VITAL is the only trial of n-3 FA supplementation for 

prevention of CVD in a general population selected only on age and not on high risk for 

CVD. VITAL is also the first of only two large (N≥10,000) trials of moderate- to high-dose 

vitamin D for the prevention of CVD and cancer, and the only such trial with a significant 

number of black individuals, for whom these issues may be particularly salient because of 

their lower cutaneous synthesis of vitamin D in response to solar radiation.18 In this article, 

we summarize the design and primary results19, 20 of the trial; discuss the findings in the 

context of relevant research; report on recent meta-analyses of clinical trial evidence; 

summarize mechanistic data; and suggest avenues for further investigation. The focus is on 

the trial’s cardiovascular findings, but cancer and all-cause mortality are also discussed as 

these outcomes are important contributors to the benefit-risk balance of supplementation.

OVERVIEW OF VITAL

VITAL was a randomized, double-blind, placebo-controlled trial of the benefits and risks of 

supplemental marine n-3 FAs (1 g/d Omacor® fish-oil capsule with 840 mg of n-3 FAs, 

including eicosapentaenoic acid [EPA, 460 mg] + docosahexaenoic acid [DHA, 380 mg]) 

and vitamin D3 (2000 IU/d) in the primary prevention of CVD and cancer among 25,871 

men and women, aged ≥50 and ≥55, respectively.9, 19–21 Participants were recruited 

throughout the U.S., balanced by sex, and with oversampling of African Americans 

(n=5,106). Eligible participants had no prior myocardial infarction (MI), stroke, transient 

ischemic attack, coronary revascularization, or cancer (except non-melanoma skin cancer) at 

study entry. They needed to agree to forego the use of fish-oil supplements and to limit their 

daily intake of vitamin D and calcium from all supplemental sources, including 

multivitamins, to no more than 800 IU and 1200 mg, respectively (the recommended dietary 

allowances [RDAs] for older adults3). Safety exclusions included renal failure or dialysis, 

severe liver disease (cirrhosis), use of anticoagulants, history of hypercalcemia or 

parathyroid disorders, or other conditions that would preclude participation. After successful 

completion of a 3-month placebo run-in, participants were randomized in a 2×2 factorial 

design to vitamin D, n-3 FAs, both active agents, or both placebos (Figure 1). 

Randomization took place from November 2011 to March 2014. Randomized treatment 

ended as planned on December 31, 2017, yielding a median intervention period of 5.3 years 

(range 3.8–6.1 years).
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Baseline questionnaires collected data on clinical and lifestyle risk factors for CVD, cancer, 

and other conditions; a food frequency questionnaire ascertained intake of fish, dairy 

products, and other foods. Annual follow-up questionnaires assessed treatment compliance 

and side effects, risk factor updates, and endpoint occurrence. Participant-reported endpoints 

were confirmed/disconfirmed by medical record review using accepted criteria22–24 by 

physicians blinded to treatment assignment, and deaths were ascertained through the 

National Death Index-Plus and other sources. Baseline blood samples were collected during 

the run-in from all willing participants (16,956 of 25,871 randomized participants [66%]), 

and follow-up samples were collected in years 1–5 from ~6000 participants in ancillary 

studies. Some Boston-area participants (n=1,054) underwent detailed in-clinic assessments 

at a local Clinical and Translational Science Center (CTSC) clinic at baseline and years 1, 2, 

and 4. Except for the CTSC component and selected ancillary studies, VITAL has been 

conducted primarily by postal and electronic communication.

Baseline characteristics of the study population are in Table 1. During the 5.3-year 

intervention period, response rates to yearly questionnaires averaged 93%, and mortality 

follow-up was >98%.19 Adherence to randomized treatment was high.19, 20 Among the 

~15,500 participants with analyzable baseline blood samples, the mean plasma n-3 index 

(EPA+DHA as a percent of total fatty acids25) was 2.6% (SD, 0.9%) and the mean serum 

total 25(OH)D level was 30.8 ng/mL (SD, 10.0) ng/mL, with 12.7% and 32.2% having 

levels <20 ng/mL and 20-<30 ng/mL, respectively. There was a large post-randomization 

difference in the n-3 index between the active n-3 FA and placebo groups (55% increase) 

and in 25(OH)D levels between the active vitamin D and placebo groups (40% increase), 

which was evident throughout the trial. In the subgroup with follow-up measurements, the 

achieved plasma n-3 index with active n-3 FA was ~4.1% and the achieved serum 25(OH)D 

with active vitamin D exceeded 40 ng/mL (100 nmol/L), without changes over time in the 

placebo groups.

SUPPLEMENTAL n-3 FAs

VITAL Results

Supplemental n-3 FAs did not significantly reduce the primary endpoint of major CVD 

events (a composite of MI, stroke, and CVD mortality; hazard ratio=0.92 [95% confidence 

interval 0.80–1.06]) but did reduce total MI (a prespecified secondary endpoint) by a 

significant 28% (HR=0.72 [0.59–0.90]) (Table 2). This benefit emerged after the first year 

and persisted throughout the trial (Figure 2). Significant reductions in risk of percutaneous 

coronary intervention (PCI; HR=0.78 [0.63–0.95]), fatal MI (HR=0.50 [0.26–0.97]), and 

total CHD (HR=0.83 [0.71–0.97]) were also found. In contrast, there were no significant 

reductions in risk of coronary artery bypass grafting (CABG), stroke, CVD mortality, or an 

expanded CVD endpoint (major CVD events plus coronary revascularization [PCI or 

CABG]). In analyses that excluded the first 2 years of follow-up, the HR for major CVD 

events was 0.89 (0.76–1.05). In analyses that censored for noncompliance, the HRs were 

similar to those in intention-to-treat analyses.

With respect to noncardiovascular endpoints, n-3 FA supplementation was not associated 

with incidence of total cancer (co-primary endpoint) or breast, prostate, or colorectal 
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cancers; cancer mortality; or all-cause mortality in analyses of the full trial period (Table 2). 

However, a signal for increased cancer incidence (HR=1.13 [1.00–1.28]), though not for 

cancer mortality (HR=0.93 [0.73–1.19]) or all-cause mortality (HR=0.97 [0.84–1.12]), 

emerged in analyses that excluded the first two years of follow-up. With regard to side 

effects, the n-3 FA intervention was well tolerated, with no treatment-associated increase in 

bleeding or gastrointestinal symptoms.

The following characteristics, assessed at baseline, were examined as potential modifiers of 

n-3 FA treatment effects: age; sex; race/ethnicity; traditional cardiovascular risk factors; 

aspirin use; statin use; dietary fish intake, plasma n-3 index, and concurrent randomization to 

the active vitamin D group. Of these, only baseline dietary fish intake significantly 

influenced the effect of n-3 FA supplementation on both major CVD events (Online Figure 

I) and total MI (Figure 3) (p, interaction<0.05 for each endpoint). This characteristic also 

significantly modified the intervention’s effect on all-cause mortality (p, interaction=0.02) 

and tended to modify its effect on cancer (p, interaction=0.09). In individuals with low fish 

intake (below the median of 1½ servings/week), n-3 FA supplementation was associated 

with a 19% reduction in major CVD events (HR=0.81 [0.67–0.98]), including a 40% 

reduction in MI (HR=0.60 [0.45–0.81]), and a trend toward a reduction in all-cause 

mortality (HR=0.87 [0.73–1.04]) and no indication of increased cancer risk (HR=0.96 

[0.84–1.09]). In contrast, for individuals with higher fish intake (≥1½ servings/week), n-3 

FAs offered no protection against major CVD events, MI, all-cause mortality, or cancer. No 

other characteristic significantly affected the association between the intervention and risk of 

major CVD events or all-cause mortality. For MI, however, race/ethnicity and the presence 

of traditional cardiovascular risk factors also significantly modified the effect of n-3 FA 

supplementation. African Americans experienced a significant 77% treatment-associated 

reduction in MI (HR=0.23 [0.11–0.47]) while other racial/ethnic groups had smaller 

reductions (p, interaction=0.001) (Figure 3). Of note, African Americans derived an MI 

benefit irrespective of fish intake, but non-Hispanic whites did so only when fish intake was 

low. African Americans also had significant treatment-associated reductions in coronary 

revascularization (HR=0.51 [0.28–0.92]) and total CHD (HR=0.61 [0.43–0.88]) and no 

treatment-associated increase in cancer risk (HR=1.02 [0.79–1.33]) or all-cause mortality 

(HR=0.84 [0.64–1.11]). Participants with a larger number of traditional cardiovascular risk 

factors also derived an MI benefit from n-3 FA supplementation, but those without these risk 

factors did not (p, interaction=0.047) (Figure 3). The aforementioned treatment benefit for 

MI in African Americans did not diminish after adjustment for cardiovascular risk factors 

(HR=0.19 [0.07–0.50]) and was more apparent than in non-Hispanic whites across all 

cardiovascular risk-factor strata. For all-cause mortality, no factor other than dietary fish 

intake significantly modified the treatment effect.

We recently analyzed Intervention effects on lipids and inflammatory markers in participants 

with 1-year follow-up blood samples. n-3 FA supplementation was associated with a small 

but significant reduction in triglycerides but had no significant effect on other lipids. 

Treatment-associated reductions in high-sensitivity C-reactive protein levels were greater in 

those with low fish intake (p, interaction=0.06), supporting the finding that such individuals 

were more likely to experience reduced risk of major CVD events with n-3 FAs.
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Discussion and Context of Other Research

VITAL is the only large trial of n-3 FAs for the primary prevention of CVD in a usual-risk 

population. However, several earlier n-3 FA trials have been conducted in patients with or at 

high risk for CVD. Various meta-analyses have aggregated these findings, with some 

reporting benefit26 but most27–29 concluding that supplementation has no or at most a weak 

preventive effect limited to coronary death but not stroke or other cardiovascular outcomes. 

In a 2018 meta-analysis by the Omega-3 Treatment Trialists’ Collaboration of 10 trials with 

12,001 incident major vascular events among 77,917 participants, n-3 FA supplementation 

(EPA dose range, 226–1800 mg/d; all but one trial12 tested an EPA-DHA combination) for a 

mean of 4.4 years (range, 1.0–6.2 years) did not reduce the incidence of major vascular 

events, major CHD events, stroke, or revascularization,28 although the subdivision of major 

CHD events into nonfatal MI and CHD death revealed a suggestive 7% reduction in the 

latter outcome (relative risk [RR]=0.93 ([99% confidence interval 0.83–1.03]; p=0.053).30 

Although the 2018 meta-analysis did not consider total MI, an earlier meta-analysis27 of 13 

trials found a HR of 0.89 (0.76–1.04) for this endpoint, and a HR of 0.91 (0.85–0.98) for 

cardiac death. The results of the ASCEND trial, which tested a median of 7.4 years of 

supplementation with a 1 g/d fish-oil capsule (containing the same EPA-DHA dose and ratio 

as in VITAL) in 15,480 UK adults with diabetes, were published shortly before those of 

VITAL. ASCEND investigators reported null results for the primary endpoint of serious 

vascular events (HR=0.97 [0.87–1.08]).31 With regard to coronary outcomes, treatment-

associated HRs for coronary death, nonfatal MI, and the composite of these two endpoints 

were 0.79 (0.61–1.02), 0.93 (0.76–1.14), and 0.89 (0.75–1.04), respectively. For vascular 

death, the HR was 0.81 (0.67–0.99). Although the marked treatment benefit on MI and PCI 

in VITAL contrasts with the more modest coronary benefits suggested by the collective 

findings of these secondary-prevention or high-risk trials, neither VITAL nor these other 

trials indicate a consistent benefit for stroke or composite cardiovascular endpoints, 

suggesting that future investigations should be designed and powered to analyze potential 

effects of n-3 FAs on coronary outcomes as distinct endpoints. That said, recent results from 

the 4.9-year REDUCE-IT trial, which tested high-dose synthetic EPA (icosapent ethyl [4 

g/d]) in 8,179 statin users with elevated triglyceride levels (70% with prior CVD, and the 

rest with diabetes plus other cardiovascular risk factors) indicate a significant 26% reduction 

in major CVD events, including significant reductions of 31%, 28%, and 20% in total MI, 

total stroke, and cardiovascular death, respectively.32 Whether these greater risk reductions 

are due to the higher dose, specific formulation, and/or other factors requires further study.

There are several potential explanations for the apparently stronger coronary benefits of n-3 

FAs in VITAL than those seen in aggregated analyses of secondary prevention trials. Two 

early open-label trials—GISSI11 in Italy, which tested 3.5 years of EPA+DHA (1 g/d) in 

11,324 recent MI patients, and JELIS12 in Japan, which tested 4.6 years of EPA (1.8 g/d) in 

18,645 hypercholesterolemic patients on statins—found significant coronary protection. 

However, all but one13 (two, if REDUCE-IT32 is included) subsequent placebo-controlled 

trials13–16, 31, 33, 34 (some with smaller sample sizes13–16 and some testing lower doses14, 15) 

failed to find benefit. The divergent results may be partly attributable to differences in these 

design parameters. In addition, the use of cardiovascular medications, including statins, β-

blockers, anticoagulants, and angiotensin-converting enzyme inhibitors, was more prevalent 
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among participants in recent trials than among those in earlier trials, perhaps reducing the 

opportunity for n-3 FAs to provide incremental benefit. The Omega-3 Treatment Trialists’ 

meta-analysis, ASCEND, and VITAL found no variation in results by statin use, but 

attenuation of a potential n-3 FA effect by other medications remains a possibility. This 

attenuation would likely be greater in secondary prevention settings, where medication use is 

more prevalent. (In REDUCE-IT, where statin use was an entry requirement, there was a 

significant protective effect of the icosapent ethyl intervention in participants with high- or 

moderate-intensity statin use but not in those with low-intensity use [p, interaction=0.12]. 

However, interpretation of the findings is complicated by the trial’s use of a mineral-oil 

placebo, which may have interfered with the absorption of, and thus the salutary effects of, 

statins.35) Another possible explanation for different effects in primary vs. secondary 

prevention is the more advanced atherosclerotic disease in the latter, which may require 

more powerful interventions than n-3 FAs—or as suggested by REDUCE-IT, significantly 

higher doses of n-3 FAs—to forestall clinical events. Indeed, in the Omega-3 Treatment 

Trialists’ meta-analysis,28 a greater n-3 FA benefit for major vascular events was found in 

participants without (HR=0.92 [0.84–1.01]) than with (HR=1.07 [0.95–1.20]) prior stroke 

(p, interaction=0.06). Similarly, the Age-Related Eye Disease Study 2,36 a trial of n-3 FAs 

for progression of macular degeneration or vision loss in ophthalmology patients, reported a 

greater treatment benefit for CVD risk reduction in participants without (HR=0.81 [0.62–

1.06]) than in those with (RR=1.25 [0.91–1.72]) prior CVD (p, interaction=0.04). 

Differences in dietary fish intakes across study populations may have also influenced 

findings. The VITAL finding of a substantial treatment benefit on MI (and also a reduction 

in the primary composite CVD endpoint) in those with low fish intake is a novel finding 

requiring confirmation (few trials have examined this variable as a potential effect modifier) 

and suggests that larger benefits may be observed in populations with very low n-3 FA 

intakes. Finally, the secondary prevention trials enrolled few black participants, who as a 

group derived a greater coronary benefit from n-3 FA supplementation than members of 

other racial/ethnic groups in VITAL.

A 2019 meta-analysis of 30 n-3 FA trials with a total of >130,000 participants that included 

VITAL and ASCEND, but not REDUCE-IT, reported modest but statistically significant risk 

reductions for MI (RR=0.92 [0.85–0.99]) and total CHD (RR=0.93 [0.89–0.98]); a 

nonsignificant reduction in CVD mortality (RR=0.93 [0.86–1.01]); and no reduction in 

stroke (RR=1.05 [0.97–1.13]).37 Inclusion of the REDUCE-IT results would be expected to 

magnify the risk reductions. However, results of meta-analyses that combine VITAL with 

trials in higher-risk cohorts may be of limited use in formulating public-health guidelines 

regarding n-3 FA supplementation in usual-risk populations. Moreover, VITAL’s promising 

findings in African Americans are of interest due to the potential of n-3 FAs for reducing 

health disparities.

Coronary benefits of supplemental n-3 FAs are consistent with data from laboratory 

investigations, animal studies, and/or small trials of intermediate cardiovascular endpoints in 

humans, which suggest that n-3 FAs reduce inflammation, low-density lipoprotein oxidation, 

triglycerides, blood pressure, heart rate, thrombosis, and atherosclerotic plaque growth and 

instability; and improve endothelial function (Figure 4).9, 38–44 Experimental studies 

indicate relevant molecular and gene-regulatory effects.38 The dose-response curve for some 
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effects appears to plateau at n-3 FA doses of 1 g/d or lower.45 Observational studies indicate 

that healthy individuals who regularly eat fish, a rich dietary source of marine n-3 FAs, 

experience significant reductions in fatal CHD and possibly nonfatal MI.46 Such studies also 

report significant inverse associations between dietary intakes of EPA+DHA from food or 

supplements and incident CHD events,26, 47 and between selected n-3 FA biomarkers and 

CHD mortality,48 nonfatal MI,48 and total CHD.47 The data for stroke are less compelling; 

high fish intakes49, 50 show more consistent inverse associations with ischemic stroke than 

do high levels of n-3 FA biomarkers.50–53

For cancer, the VITAL findings agree with those from trials of n-3 FAs for secondary 

prevention of CVD, which have reported neutral effects or slight (but nonsignificant) 

elevations in cancer incidence28, 54 and neutral effects or borderline significant reductions in 

cancer mortality.13, 31, 55 For all-cause mortality, the absence of a significant treatment effect 

in VITAL agrees with results of meta-analyses of earlier trials27, 29 and ASCEND.31 A 2019 

meta-analysis of n-3 FA trials (41 trials, 10,707 deaths, 134,034 participants) that included 

VITAL and ASCEND reported a RR of 0.98 (0.93–1.02) for this endpoint.37 However, 

longer follow-up may be needed to detect a benefit, should such an effect exist.

Future Directions

Racial considerations.—We did not anticipate that African American participants in 

VITAL would experience a greater treatment-associated reduction in coronary risk than non-

Hispanic whites, given that both groups entered the trial with comparable EPA+DHA blood 

levels and fish intakes. This finding requires replication in future trials. As noted above, n-3 

FA supplementation trials for CVD prevention have, with few exceptions,12 been conducted 

in non-Hispanic white populations, precluding an assessment of treatment effects by race.28 

However, a recent pooling project of 19 observational cohorts from 16 countries reported 

racial variation in associations of marine- and plant-derived n-3 FA biomarkers with incident 

coronary disease, including a significantly stronger inverse relationship between α-linolenic 

acid and nonfatal MI in blacks than whites.48 Observational studies also suggest that genetic 

variation in genes encoding key enzymes in FA metabolism, including the FA desaturase 

genes FADS1 and FADS2, the 5-lipooxygenase gene ALOX5, the 5-lipoxygenase activating 

protein gene ALOX5AP, and the cyclooxygenase COX-2 gene, may interact with dietary FA 

intakes to influence risk of CHD and other health outcomes,56–58 and that people with 

African ancestry differ from those with European ancestry with respect to FADS variants.
58–60 Clarifying the role of genetic factors may be key to understanding the significant n-3 

FA-associated reduction in MI in African American participants. In addition, although 

treatment-associated benefits remained more pronounced in African Americans than in non-

Hispanic whites across risk strata defined by the presence or absence of traditional 

cardiovascular risk factors, it is possible that racial/ethnic differences in other clinical, 

dietary, or socioenvironmental factors may help to explain the comparatively stronger benefit 

in African Americans. For example, it has been postulated that n-3 FAs may ameliorate the 

adverse impact of air pollution,61 an exposure that disproportionately affects African 

Americans62 and increases cardiovascular risk.63 Elucidating the reasons for possible racial 

differences in n-3 FA supplementation effects is of interest.

Manson et al. Page 8

Circ Res. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dose, formulation considerations.—VITAL tested only one n-3 FA dose and 

formulation and thus could not assess whether the effectiveness of supplementation varies 

according to these parameters. However, the tested dose has been recommended by the 

American Heart Association for cardioprotection in patients with prior CHD1, 2 and, based 

on fish consumption (1–2 servings/week), is at least twice the dose recommended by this 

organization for cardiovascular protection in healthy individuals.2, 46 That coronary benefits 

of n-3 FA supplementation were limited to participants with low baseline fish intake (in non-

Hispanic white individuals and in the total cohort) suggests that further benefits may not 

accrue beyond a threshold dose. However, as noted above, REDUCE-IT found significant 

benefits with a higher-dose formulation in patients with CVD or at high risk for it. Results 

from the ongoing STRENGTH trial,64 which is testing whether 3 to 5 years of high-dose n-3 

FAs (n-3 carboxylic acids [4 g/d], DHA-EPA ratio of 1:2.75) reduce major CVD events in 

13,000 statin users with hypertriglyceridemia and low high-density lipoprotein cholesterol 

and who have established atherosclerotic disease or are at high risk for CVD, will be useful 

for further assessing the efficacy of a high-dose intervention. However, the generalizability 

of these findings to primary prevention populations is unknown. Future trials of higher doses 

and/or alternative formulations of supplemental n-3 FAs in primary prevention settings are 

warranted.

Other cardiovascular endpoints.—In VITAL, results of ancillary studies addressing 

effects of n-3 FA supplementation on heart failure, cardiac structure and function (2D-

echocardiograms), atrial fibrillation, hypertension, diabetes, and other endpoints will soon be 

available to provide a fuller picture of the impact of n-3 FA supplementation on 

cardiovascular health and perhaps to help clarify underlying mechanisms for protective 

coronary effects. With respect to heart failure, n-3 FAs may be effective in reducing the risk 

of this condition or its cardiovascular sequelae. The placebo-controlled GISSI-HF trial, 

conducted among 6,975 patients with heart failure (>90% with reduced ejection fraction), 

found that supplemental n-3 FAs (1 g/d), added to standard therapy, had a favorable effect on 

clinical outcomes, reducing cardiovascular-related hospitalizations and CVD mortality by 

7% (1–13%) and 10% (1%−19%), respectively, over a median follow-up of 3.9 years.13 

Meta-analyses of small, short-term trials of n-3 FA supplementation in patients with heart 

failure65, 66, showed favorable changes in cardiac function, ventricular remodeling, 

inflammatory markers, and/or fibrosis, as did a 6-month trial in 358 post-MI patients.67 

Supplemental EPA prevented contractile dysfunction and fibrosis in a heart-failure mouse 

model.68, 69 Among a racially/ethnically diverse cohort of 6,562 US adults aged 45–84 

followed for 13 years in the observational Multi-Ethnic Study of Atherosclerosis, high 

baseline plasma EPA levels were associated with a reduced incidence of heart failure.70 

However, in REDUCE-IT, high-dose EPA supplementation did not significantly lower heart 

failure risk (HR=0.95 [0.77–1.17]).32 VITAL is the first large trial of n-3 FAs for prevention 

of this endpoint in a population unselected for elevated cardiovascular risk. Regarding atrial 

fibrillation, observational studies of fish or n-3 FA intakes or n-3 FA biomarkers in relation 

to this endpoint in initially healthy populations have yielded generally neutral results.71–75 

Trials of n-3 FAs have not found benefit for the prevention of recurrent atrial fibrillation76–78 

or postoperative atrial fibrillation in cardiac surgery patients.79, 80 In REDUCE-IT, n-3 FA 

supplementation was associated with a significant increase in risk of atrial fibrillation as 
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compared with placebo (5.3 vs. 3.9%, p=0.003).32 With respect to hypertension, a 2014 

meta-analysis40 of small, short-term n-3 FA trials found that the interventions significantly 

reduced blood pressure, with the greatest reductions in participants with untreated 

hypertension. Regarding diabetes, meta-analyses of small, short-term n-3 FA trials in 

patients with this condition81 or healthy individuals82 have shown neutral or inconsistent 

treatment effects on glucose or insulin-related biomarkers. A 2012 meta-analysis of 18 

observational studies in generally healthy populations found that neither fish, seafood, nor 

EPA+DHA intake, nor circulating EPA+DHA levels, predicted incident diabetes.83

Benefit-risk balance.—Forthcoming results of VITAL ancillary studies of 

noncardiovascular outcomes, including cognition, depression, macular degeneration, 

infections, pulmonary health, autoimmune disorders, fractures, and falls, will help to inform 

the overall benefit-risk balance of n-3 FA supplementation. Post-intervention follow-up of 

the VITAL cohort is ongoing to capture potential latent and long-term treatment effects and 

to increase statistical power, especially for assessment of secondary endpoints and subgroup 

effects.

SUPPLEMENTAL VITAMIN D

VITAL Results

Vitamin D supplementation did not reduce the primary composite endpoint of major CVD 

events (HR=0.97 [0.85–1.12]), nor did it affect the risk of secondary cardiovascular 

endpoints or all-cause mortality (Table 3). Analyses that excluded the first year or two years 

of follow-up or that censored for noncompliance did not materially change these results. 

Vitamin D had no effect on 1-year changes in lipid profiles or inflammatory markers.

Vitamin D did not reduce total cancer incidence (HR=0.96 [95% 0.88–1.06]) but showed a 

promising signal for reduction in cancer mortality (HR=0.83 [0.67–1.02]), especially in 

analyses accounting for latency by excluding the first year (HR=0.79 [0.63–0.99]) or first 

two years (HR=0.75 [0.59–0.96]) of follow-up. The intervention was well tolerated, with no 

significant treatment-associated increases in risk of hypercalcemia, kidney stones, or 

gastrointestinal symptoms.

The association between vitamin D and risk of CVD endpoints or all-cause mortality did not 

significantly vary by age, sex, race/ethnicity, cardiovascular risk factors, serum 25(OH)D 

level, or concurrent randomization to n-3 FAs (results of the latter two analyses are in Online 

Table I); nor did vitamin D significantly reduce CVD endpoints or all-cause mortality in any 

subgroup. Intriguingly, individuals with normal BMI (<25 kg/m2) experienced a significant 

treatment-associated reduction in cancer risk (HR=0.76 [0.63–0.90]), but overweight or 

obese individuals did not (p, interaction=0.002). African Americans assigned to vitamin D 

also had a suggestive reduction in cancer risk (HR=0.77 [0.59–1.01]), although the p-value 

for interaction by race/ethnicity was not significant (p, interaction=0.21).

Discussion and Context of Other Research

VITAL is the first large (N≥10,000) trial of moderate- or high-dose vitamin D for CVD and 

cancer prevention. Although VITAL was designed to overcome methodologic limitations of 
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earlier randomized trials, the observed absence of cardiovascular benefit in VITAL is 

consistent with results of other trials. Among the largest of these trials are the Women’s 

Health Initiative (WHI) calcium-vitamin D trial,84, 85 the Randomized Evaluation of 

Calcium or vitamin D (RECORD) trial,86, 87 and a UK trial by Trivedi et al.88 The WHI 

randomized >36,000 US postmenopausal women to 7 years of daily calcium (1000 mg) plus 

vitamin D3 (400 IU) or to placebo; the intervention did not affect the incidence of CHD84 or 

stroke84 or mortality from these outcomes,85 but the below-RDA dose is a limitation. In 

RECORD, 5,292 UK adults aged ≥70 were randomized to daily vitamin D3 (800 IU), 

calcium (1000 mg), both, or placebo for 2–5.2 years for secondary fracture prevention and 

then followed observationally for 3 years; vitamin D did not reduce the incidence of MI 

(HR=0.97 [0.75–1.26]),86 stroke (HR=1.06 [0.85–1.32]),86 or vascular disease mortality 

(HR=0.91 [0.79–1.05]).87 Trivedi et al.88 randomized 2,686 older adults to vitamin D3 

(100,000 IU every 4 months [~833 IU/d]) or placebo for up to 5 years and found 

nonsignificant reductions in CHD incidence (0.94 [0.77–1.15]), CHD mortality (0.84 [0.56–

1.27]), CVD incidence (0.90 [0.77–1.06]), and CVD mortality (0.84 [0.65–1.10]); however, 

the trial’s modest size and intermittent bolus dosing, which has been associated with 

nonphysiological fluctuations in vitamin D blood levels,89 are limitations. Given such 

results, it is not surprising that meta-analyses of these (and smaller) vitamin D trials, even 

those restricted to trials of RDA-level (800 IU/d) or higher doses,90 have not found 

cardiovascular benefit.86, 90–93 More recently, the 3.3-year Vitamin D Assessment Study 

(ViDA), which tested high-dose vitamin D (100,000 IU/month [~3300/d]) vs. placebo for 

CVD prevention in 5,110 New Zealanders, also reported null results (MI: RR=0.90 [0.54–

1.50]; stroke: RR=0.95 [0.55–1.62]),94 although the short duration and intermittent bolus 

dosing limit definitive conclusions.89 A 2019 meta-analysis of vitamin D trials that included 

VITAL and ViDA found that, compared with placebo, vitamin D supplementation did not 

reduce major adverse cardiovascular events (10 trials, 6243 events, 79,111 participants; 

RR=1.00 [0.95–1.06]), MI (18 trials, 2550 events, 82,576 participants; RR=1.00 [0.93–

1.08]), stroke (15 trials, 2354 events, 82,239 participants; RR=1.06 [0.98–1.15]), or CVD 

mortality (10 trials, 2202 events, 76,783 participants; RR=0.98 [0.90–1.07]).95 Results did 

not significantly vary by baseline 25(OH)D level, vitamin D dose or administration 

frequency, or presence or absence of calcium co-administration. Supplemental calcium, 

often administered concurrently with vitamin D, raises blood calcium levels more rapidly 

than dietary calcium and could theoretically raise cardiovascular risks. However, results of 

calcium or calcium-plus-vitamin D trials do not clearly support this hypothesis.91, 96–98 In 

the WHI, for example, a 22% increase in MI risk occurred in participants who first started 

calcium supplements as part of the trial but not in those already taking them at baseline.99 

As noted earlier, there was no treatment-associated elevation in MI or stroke risk in the total 

study population. In addition, the intervention did not increase coronary artery calcification 

at trial’s end.100 Large trials of calcium plus high-dose vitamin D supplementation are 

lacking, however.

As did VITAL, ViDA found that vitamin D failed to reduce all-cause mortality.94 Lower-

dose vitamin D trials have also shown neutral effects or at most modest reductions in this 

endpoint.91–93 A 2019 meta-analysis of 20 vitamin D trials (6,502 deaths among 83,059 
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participants) that included VITAL and ViDA reported a RR of 0.97 (0.93–1.02) for all-cause 

mortality.95 However, longer follow-up may be needed to detect a benefit.

The lack of benefit of vitamin D for cancer incidence and the suggestive benefit for cancer 

mortality in the overall VITAL cohort is also consistent with findings from previous vitamin 

D trials. In a 2019 meta-analysis of vitamin D trials including VITAL and ViDA, treatment-

associated RRs for cancer mortality (5 trials, 6547 cancer deaths) and cancer incidence (10 

trials, 6,547 incident cancers) were 0.87 (0.79–0.96) and 0.98 (0.93–1.03), respectively.101 

The VITAL findings for cancer mortality are also supported by laboratory research 

suggesting that vitamin D decreases tumor invasiveness and metastatic propensity102 and by 

observational studies showing that higher 25(OH)D levels at diagnosis predict longer 

survival in cancer patients.103–105

Although the reasons for the significant treatment-associated cancer reductions among 

normal-weight participants and suggestive reductions among African Americans require 

further exploration, these benefits sharply contrast with the null cardiovascular findings in 

these groups. It is possible that the divergence may be explained by differing vitamin D 

requirements for CVD and cancer prevention. In observational studies, the 25(OH)D levels 

associated with lowest risks tend to be between 20–25 ng/mL for CVD106 but above 30 

ng/mL for cancer (at least colorectal cancer).107 Thus, it is possible that many participants 

entered VITAL (and other contemporary clinical trials) with their vitamin D requirements 

for cardiovascular health already met. Although neither VITAL nor ViDA found significant 

cardiovascular benefit for vitamin D among participants with low 25(OH)D at baseline, a 

trial among individuals with vitamin D levels well below the 20 ng/mL recommended for 

bone health3 might show stronger risk reductions. However, it would be neither ethical nor 

feasible to target patients with vitamin D deficiency and maintain them in this state for 5 or 

more years (as would be the case for the 50% assigned to placebo).

There are several plausible mechanisms by which vitamin D may prevent CVD (Figure 5). 

Vitamin D, obtained from diet, supplements, or conversion of 7-dehydrocholesterol in the 

skin by ultraviolet-B radiation, is hydroxylated in the liver to 25(OH)D, the major 

circulating vitamin D metabolite, which is then further hydroxylated to the active metabolite 

1,25-dihydroxyvitamin D (1,25(OH)2D), primarily in the kidneys.108, 109 Vascular smooth 

muscle cells, endothelial cells, cardiomyocytes, and macrophages also express the vitamin D 

receptor and/or produce 1α-hydroxylase, allowing for extra-renal production of 

1,25(OH)2D. Laboratory and animal study data suggest that 1,25(OH)2D inhibits vascular 

smooth muscle cell proliferation and vascular calcification, controls volume homeostasis and 

blood pressure via regulation of the renin-angiotensin-aldosterone system, exerts anti-

inflammatory effects, and improves insulin sensitivity and secretion.9, 110–112 In addition, 

observational studies have found inverse associations between 25(OH)D levels and 

cardiovascular risk factors and/or incident CVD.106, 113, 114 However, meta-analyses of 

mostly small, short-term trials in humans have found null or mixed results for effects of 

supplemental vitamin D on intermediate cardiovascular endpoints,115 including blood 

pressure,116–119 glucose or insulin homeostasis and type 2 diabetes,119–122 inflammation,
123–125 and markers of vascular function,118, 126–129 as well as lipid profiles.90, 130 Of 

interest, a hypotensive effect of supplemental vitamin D in normal-weight individuals but a 
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hypertensive effect in those who are overweight has been noted.117 Most recently, the 

Vitamin D and Type 2 Diabetes Study, in which 2,423 adults with mean baseline 25(OH)D 

of 28.0 ng/mL were randomized to 4000 IU/d of vitamin D vs. placebo for a median of 2.5 

years, also found differences in the effect of supplemental vitamin D by BMI, with a 

significant treatment-associated reduction in risk of diabetes in those without, but not with, 

obesity.131

Future Directions

Alternative vitamin D biomarkers.—Although total 25(OH)D has traditionally been 

viewed as the optimal marker of clinical vitamin D status, most 25(OH)D circulates bound 

to vitamin D binding protein (DBP, ~85%) or albumin (~15%). Some studies have suggested 

that alternative biomarkers of vitamin D status, including DBP; bioavailable 25(OH)D, 

defined as 25(OH)D not bound to DBP; free 25(OH)D, defined as 25(OH)D not bound to 

either DBP or albumin; and parathyroid hormone may be potentially useful adjuncts to—or 

more biologically relevant indicators than—total 25(OH)D in characterizing vitamin D 

status132, 133 in relation to various clinical outcomes, including CHD134–136 and cancer.
137–139 However, the data are not entirely consistent.133, 140 Whether baseline levels or 

changes in novel vitamin D markers influence the likelihood of deriving CVD benefit or 

harm from supplemental vitamin D requires further examination.

Obesity.—Obesity is associated with lower levels of both free and total 25(OH)D,141 may 

disproportionately lower the former,142 and may affect the correlation between the two 

markers.143 In a recent mouse study, diet-induced obesity decreased free 25(OH)D but not 

total 25(OH)D, and increased expression of CYP2R1, a key vitamin D-related gene.142 

Among patients with CHD, higher levels of free 25(OH)D predicted reduced cardiovascular 

and all-cause mortality in those with normal BMI but not in those who were overweight/

obese.136 These data suggest that vitamin D bioactivity is altered in obesity and lend 

credence to the aforementioned more favorable treatment effects on blood pressure,117 

diabetes,131 and cancer incidence19 in normal-weight than in overweight/obese participants 

observed in some vitamin D trials.

Vitamin K.—Vitamin K may optimize the benefit-risk ratio of vitamin D supplementation. 

Vitamin K-vitamin D interactions appear to promote bone and cardiovascular health and 

may also protect against possible adverse effects of high-dose vitamin D such as kidney 

stones and vascular calcification.144 Vitamin D stimulates the transcription and translation of 

osteocalcin (OC), matrix Gla protein (MGP), and other proteins in bone, the vasculature, and 

other tissues. Vitamin K then helps to carboxylate and activate these proteins. Carboxylated 

OC is involved in calcium binding in bone, and carboxylated MGP inhibits calcium 

deposition in the vasculature, kidney, and soft tissues. High-dose vitamin D supplementation 

may increase synthesis of OC and MGP, resulting in the need for higher levels of vitamin K 

to fully activate these proteins and achieve maximal bone and cardiovascular benefits. 

Whether vitamin K status modifies effects of supplemental vitamin D on CVD warrants 

further study in a large trial.
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Magnesium.—Magnesium plays a key role in vitamin D synthesis and metabolism,145, 146 

suggesting that adequate magnesium is required for optimal response to vitamin D 

supplementation. Among US National Health and Nutrition Examination Survey 

participants, magnesium intake significantly interacted with vitamin D intake to affect 

vitamin D status, and also interacted with circulating 25(OH)D to influence risk of CVD 

mortality.147 An inverse association between 25(OH)D and mortality was primarily seen in 

individuals with above-median magnesium intakes. In a trial in people without overt 

magnesium deficiency, supplemental magnesium raised vitamin D levels in those with low 

levels and lowered vitamin D levels in those with high levels—a pattern suggestive of this 

mineral’s importance in optimizing vitamin D status.148 In mice with induced chronic 

kidney disease, co-administration of magnesium blunted the adverse impact of vitamin D on 

vascular calcification.149 Whether magnesium status affects the relation between vitamin D 

supplementation and cardiovascular endpoints has yet to be tested in a large trial.

Dose, administration frequency.—VITAL examined only one vitamin D dose and 

administration frequency and therefore could not address dose-response issues or the relative 

efficacy of daily vs. less frequent dosing. Ongoing vitamin D trials150 may help clarify these 

uncertainties. D-Health151—the only large (N≥10,000) trial of high-dose vitamin D other 

than VITAL—is testing a bolus vitamin D dose of 60,000 IU/month for 5 years in 21,315 

Australians aged 60 and older; the primary endpoints are cancer and all-cause mortality, but 

CVD will also be examined. Results are expected in 2021.

Heart failure.—In VITAL, results of ancillary studies of supplemental vitamin D on 

incident heart failure, cardiac structure and function, and other CVD-related endpoints will 

soon be available. Vitamin D deficiency may lead to heart failure through deleterious effects 

on the renin-angiotensin-aldosterone system and cardiac morphology. In the RECORD trial, 

supplemental vitamin D (800 IU/d) was associated with a significant reduction in incident 

heart failure (HR=0.75 [0.58–0.97]).86 A 2014 meta-analysis of seven vitamin D trials, 

including RECORD and six smaller trials, also reported a significant reduction in this 

endpoint (HR=0.79 [0.59–0.99]).86 However, ViDA did not find a benefit of monthly high-

dose vitamin D on incident heart failure (HR=1.19 [0.84–1.68]).94 Small trials in heart 

failure patients suggest that daily high-dose vitamin D (4000 IU) for 1–3 years may improve 

left ventricular structure and/or function,152, 153 although a reduction in all-cause mortality 

has not been found.154

Impaired kidney function.—Individuals with chronic kidney disease, even at early 

stages, have lower vitamin D levels (in part because of reduced conversion to its active 

metabolite) and higher CVD rates than members of the general population. Adequately 

powered randomized trials testing the effect of vitamin D supplementation on cardiovascular 

outcomes in such patients are lacking155 but challenging to conduct because such 

supplementation is routinely prescribed for bone health maintenance in this population. 

Thus, investigation of potential modification of the effect of supplemental vitamin D on 

cardiovascular outcomes according to baseline markers of kidney function in a general 

population is of interest; such analyses are underway and will be soon be reported in VITAL.
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Benefit-risk balance.—Forthcoming results from VITAL ancillary studies of 

noncardiovascular outcomes (e.g., fractures, falls, cognition, depression, and infections) will 

also inform the overall benefit-risk balance of vitamin D supplementation. As noted earlier 

for n-3 FAs, post-intervention follow-up of the VITAL cohort to capture potential latent and 

long-term treatment effects and to increase statistical power, especially for assessment of 

secondary endpoints and subgroup effects, is in progress.

CONCLUSION

In VITAL, n-3 FA supplementation among initially healthy adults led to a small but 

statistically nonsignificant reduction in a composite endpoint of major CVD events, a 

statistically significant 28% reduction in total MI, reductions in other coronary outcomes, 

but no reduction in stroke or cardiovascular deaths not related to heart disease. The reduction 

in total MI supports a possible cardioprotective role for n-3 FAs in a usual-risk setting, 

especially in people with low dietary fish intake or with cardiovascular risk factors, and in 

African Americans. Daily high-dose vitamin D supplementation did not reduce the 

incidence of major CVD events or secondary CVD endpoints in initially healthy adults but 

showed a promising signal for reducing cancer death. VITAL and other recent trials have 

contributed to updated meta-analyses of these interventions and suggest that the benefit-risk 

pattern may vary by subgroup. Additional research is needed to determine which individuals 

may be most likely to derive a net benefit from these supplements.
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Non-standard abbreviations and acronyms:

ASCEND A Study of Cardiovascular Events in Diabetes

CABG coronary artery bypass grafting

CHD coronary heart disease

CVD cardiovascular disease

CTSC Clinical and Translational Science Center

DHA docosahexaenoic acid

EPA eicosapentaenoic acid

HR hazard ratio

MI myocardial infarction

PCI percutaneous coronary intervention

n-3 FA n-3 fatty acid

RDA recommended dietary allowance

REDUCE-IT Reduction of Cardiovascular Events with Icosapent Ethyl—

Intervention Trial

RR relative risk

SD standard deviation

ViDA Vitamin D Assessment Study

VITAL VITamin D and OmegA-3 TriaL

25(OH)D 25-hydroxyvitamin D
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Figure 1: 
VITAL Factorial Design.
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Figure 2. 
Cumulative incidence rates of major CVD events and total MI by year of follow-up, in the 

n-3 fatty acid group and the placebo group.
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Figure 3. 
Hazard ratios (HR) and 95% confidence intervals (CI) of total myocardial infarction 

according to subgroups, comparing n-3 fatty acid and placebo groups. (From Cox regression 

models controlling for age, sex, and vitamin D randomization group.)
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Figure 4. Mechanisms by which marine omega-3 fatty acids may lower cardiovascular disease 
risk.
COX-2, cyclooxygenase-2; CRP, C-reactive protein; EPA, eicosapentaenoic acid; HF, heart 

failure; IL-6, interleukin-6; IL-10, interleukin-10; PG, prostaglandin; TNFα, tumor necrosis 

factor-α
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Figure 5. Mechanisms by which vitamin D may lower cardiovascular disease risk.
COX-2, cyclooxygenase-2; CRP, C-reactive protein; HF, heart failure; IL-6, interleukin-6; 

IL-10, interleukin-10; PG, prostaglandin; RAAS, renin-angiotensin-aldosterone system; 

TNFα, tumor necrosis factor-α
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Table 2.

Hazard ratios (HR) and 95% confidence intervals (CI) of primary, secondary, and other outcomes by 

randomized assignment to n-3 fatty acids (n-3 FAs)
a

Endpoint n-3 FAs (N =12,933) Placebo (N =12,938) HR 95% CI

# of participants w/event

Cardiovascular disease (CVD),
primary and secondary outcomes

  Major CVD event
b,c

386 419 0.92 0.80–1.06

  Expanded CVD event
d

527 567 0.93 0.82–1.04

  Total myocardial infarction (MI) 145 200 0.72 0.59–0.90

  Total stroke 148 142 1.04 0.83–1.31

  Cardiovascular mortality 142 148 0.96 0.76–1.21

Other vascular outcomes
e

  Percutaneous coronary intervention (PCI) 162 208 0.78 0.63–0.95

  Coronary artery bypass graft (CABG) 85 86 0.99 0.73–1.33

  Fatal MI 13 26 0.50 0.26–0.97

  Coronary heart disease (CHD) mortality 37 49 0.76 0.49–1.16

  Total CHD
f

308 370 0.83 0.71–0.97

  Ischemic stroke 111 116 0.96 0.74–1.24

  Hemorrhagic stroke 25 19 1.32 0.72–2.39

  Fatal stroke 22 20 1.10 0.60–2.01

Total invasive cancer
b

820 797 1.03 0.93–1.13

  Cancer mortality 168 173 0.97 0.79–1.20

All-cause mortality 493 485 1.02 0.90–1.15

Excluding the first two years of follow-up:

Cardiovascular outcomes

  Major CVD event 269 301 0.89 0.76–1.05

  Total myocardial infarction 94 131 0.72 0.55–0.93

  Total stroke 103 112 0.92 0.70–1.20

Total invasive cancer 536 476 1.13 1.00–1.28

  Cancer mortality 126 135 0.93 0.73–1.19

All-cause mortality 371 381 0.97 0.84–1.12

a
Analyses were from Cox regression models that were controlled for age, sex, and randomization group in the vitamin D portion of the trial. 

Analyses were not adjusted for multiple comparisons.

b
Primary outcomes

c
A composite of MI, stroke, and cardiovascular mortality

d
A composite of MI, stroke, cardiovascular mortality, and coronary revascularization (CABG, PCI)
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e
Not prespecified as primary or secondary outcomes.

f
A composite of MI, coronary revascularization (CABG, PCI), and CHD death
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Table 3.

Hazard ratios (HR) and 95% confidence intervals (CI) of primary, secondary, and other outcomes by 

randomized assignment to vitamin D
a

Endpoint Vitamin D (N = 12,927) Placebo (N = 12,944) HR 95% CI

no. of participants w/event

Cardiovascular disease (CVD),
primary and secondary outcomes

  Major CVD event
b,c

396 409 0.97 0.85–1.12

  Expanded CVD event
d

536 558 0.96 0.86–1.08

  Total myocardial infarction 169 176 0.96 0.78–1.19

  Total stroke 141 149 0.95 0.76–1.20

  Cardiovascular mortality 152 138 1.11 0.88–1.40

Other vascular outcomes
e

  Percutaneous coronary intervention (PCI) 182 188 0.97 0.79–1.19

  Coronary artery bypass graft (CABG) 73 98 0.75 0.55–1.01

  Fatal MI 24 15 1.60 0.84–3.06

  Fatal stroke 19 23 0.84 0.46–1.54

Total invasive cancer
b

793 824 0.96 0.88–1.06

  Cancer mortality 154 187 0.83 0.67–1.02

All-cause mortality 485 493 0.99 0.87–1.12

Excluding the first two years of follow-up:

Major CVD event 274 296 0.93 0.79–1.09

Total invasive cancer 490 522 0.94 0.83–1.06

  Cancer mortality 112 149 0.75 0.59–0.96

All-cause mortality 368 384 0.96 0.84–1.11

a
Analyses were from Cox regression models controlling for age, sex, and n-3 fatty acid randomization group. Analyses were not adjusted for 

multiple comparisons.

b
Primary outcome.

c
A composite of myocardial infarction, stroke, and cardiovascular mortality.

d
A composite of major cardiovascular events plus coronary revascularization (CABG + PCI).

e
Not prespecified as primary or secondary outcomes.
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