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Learning to predict rewards based on environmental cues is essential for survival. The 

orbitofrontal cortex (OFC) contributes to such learning, by conveying reward-related information 

to brain areas such as the ventral tegmental area (VTA). Despite this, how cue-reward memory 

representations form in individual OFC neurons and are modified based on new information is 

unknown. To address this, using in vivo 2-photon calcium imaging in mice, we tracked the 

response evolution of thousands of OFC output neurons, including those projecting to VTA, 

through multiple days and stages of cue-reward learning. Collectively, we show that OFC contains 

several functional clusters of neurons distinctly encoding cue-reward memory representations, 

with only select responses routed downstream to VTA. Surprisingly, these representations were 

stably maintained by the same neurons even after extinction of the cue-reward pairing, and 

supported behavioral learning and memory. Thus, OFC neuronal activity represents a long-term 

cue-reward associative memory to support behavioral adaptation.

Animals can learn and remember multiple features of cue-reward associations such as the 

specific type of reward predicted by a cue (e.g. banana or apple), the probability of receiving 

that reward given the cue, the magnitude of the reward, the delay to the reward, the average 

value of the cue given its associated reward, and/or the state-space1 of the cue-reward 

association (i.e. the set of rules governing the association; e.g. the cue predicts the reward 

only in a specific context). Multiple such representations have been associated with the 

OFC2–5 and perhaps for this reason, cross-species studies have implicated the OFC in a wide 

array of functions, including reversal learning6,7, contingent learning8,9, value 

representation3,6,8,10,11, state representation1,12,13, uncertainty/confidence estimation14,15, 

reward seeking16,17, imagination of unexperienced outcomes18,19, and more. Nevertheless, 

how representations of distinct features of a cue-reward association evolve during learning 

within individual OFC neurons, and, whether these representations provide a long-term 

memory of the association at a single-neuron and population level even after changes in the 

original association, are unknown.

Investigating these questions requires overcoming two major technical challenges in 

recording neuronal activity. First, to study response evolution during learning and 

subsequent maintenance of learned responses, it is essential to longitudinally track the 

activity of the same set of neurons across days of behavioral learning and/or performance. 

Second, to address whether unique subpopulations acquire distinct memory representations, 

it is important to sufficiently sample such heterogeneity by recording from large numbers of 

neurons, including projection-defined subpopulations. For instance, while it is thought that 

OFC mediates learning by conveying cue-reward information to VTA—a critical regulator of 

learning containing neural correlates of reward prediction error20—it is unknown whether 

select representations within OFC output neurons are relayed to VTA. Thus, in order to 

longitudinally track activity in large numbers of neurons, including projection-defined ones, 

we used two-photon calcium imaging21. We did so during a discriminative Pavlovian trace 

conditioning task that requires both within-trial memory of a previously presented cue 

during the trace interval, and long-term memory of learned cue-reward associations. This 

task is ideal to investigate the aforementioned questions as it can be learned quickly by mice, 

thereby allowing longitudinal tracking of neurons during and after learning22.
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Such large-scale longitudinal recording, along with unsupervised approaches for 

classification of response patterns, allowed us to demonstrate that putative OFC projection 

neurons contain distinct functionally-identifiable subpopulations with different response 

types, and that select associative information is conveyed by direct projections from OFC to 

VTA. The large-scale longitudinal tracking further allowed us to evaluate OFC neuronal 

response dynamics during different phases of learning, including a phase in which the cue-

reward association was experimentally extinguished. This revealed that OFC subpopulations 

convey a long-term memory of the original cue-reward association even after it is changed, 

both at individual neuronal and population level. Additional experiments showed that 

encoding in some clusters was consistent with the forward and reverse probability of state 

transitions between a cue and reward, and that they collectively support learning and 

memory.

Results

Distinct clusters of OFC neurons represent a learned cue-reward association

We trained mice on a Pavlovian cue-reward association task (Fig 1a–c). Mice learned to lick 

in response to an auditory conditioned stimulus (CS+) predicting sucrose reward, but not 

another stimulus (CS-) predicting no reward (Fig 1d)22. Importantly, there was a one second 

trace interval following the offset of these stimuli/cues until reward delivery (CS+ trials) or 

omission (CS- trials). This period allowed us to measure responses indicative of the cue-

reward association after termination of the sensory stimulus. Throughout learning, we 

imaged calcium dynamics from putative OFC output neurons in the medial sub-region of 

OFC (containing medial and ventral orbital; labeled vmOFC henceforth)23. These neurons 

expressed the fluorescent calcium indicator GCaMP6S via viral transduction (AAVdj-

CaMKIIα-GCaMP6S)24 (Fig 1e–i, Supplementary Video 1). We were able to validate ex 
vivo that the fluorescent dynamics of GCaMP6S-expressing neurons allow decoding of 

spiking activity (Supplementary Fig 1). After learning, the activity of individual neurons 

generally showed considerable trial-to-trial variability and heterogeneous time-locked 

responses to cues, which were not merely due to the lick responses previously reported in 

OFC (Supplementary Fig S2)25. To obtain an unbiased evaluation of the heterogeneity in 

responses across the population, we used an unsupervised clustering algorithm15 to group 

the average CS+ and CS- triggered peri-stimulus time histograms (PSTH) of all recorded 

neurons after behavioral learning (n=4813 from n=5 mice, Supplementary Fig 3). This 

approach revealed 9 clusters of neurons based on responses (Fig 1j, Supplementary Fig 3). 

Each of these 9 clusters was generally separable in a high-dimensional principal component 

space from every other cluster (Supplementary Fig 4), supporting the idea that functionally 

distinct cell types differentially encode cue-reward response dynamics.

The responses of clusters 2, 5 and 6 qualitatively replicate prior studies showing elevated 

responses to rewarded cues compared to unrewarded cues, and positive reward 

responses10,26–29. The slight negative CS+ responses of clusters 7, 8 and 9 are consistent 

with additional prior observations of negative responses to rewarded cues16,29. Nevertheless, 

we also observed other unique response patterns. For instance, cluster 1 showed a large 

selective positive response to CS+ throughout the cue-reward delay, but also a suppression 
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after reward delivery. Clusters 2 and 3 showed largely similar responses to CS+ and CS- 

immediately after cue presentation. Cluster 3 also showed non-selective trace interval 

response and a large negative reward response. Lastly, cluster 4 showed sustained positive 

responses following reward that distinguished between CS+ and CS- trials. Overall, these 

findings suggest that there are separable and unique clusters of neurons based on their 

response patterns and that they may have unique roles in learning and memory. Consistent 

with this, the mean spatial locations of these clusters were statistically distinct along all three 

cardinal axes (Fig 1k,l, p<10−10, n=4460 neurons, see Supplementary Table 1 for a 
compilation of all statistical results in the manuscript, including all statistical details). 

For instance, clusters that typically responded with an increase in activity during CS+ were 

found to be more ventral within vmOFC, whereas clusters with lower activity or suppression 

during CS+ were found to be more dorsal (Fig 1l).

While these results suggest the presence of distinct subpopulations of vmOFC output 

neurons, whether these responses arise during the course of learning or exist prior to 

learning is unknown. To investigate this, we compared responses from the same 

longitudinally-tracked neurons before and after learning (n=1435 tracked from n=5 mice, 

Fig 2a, b, Supplementary Video 2). To quantify neuronal responses, we deconvolved 

fluorescence traces to remove changes in fluorescence due to the slow dynamics of the 

calcium indicator30 (Supplementary Fig 5). To account for cue, licking, and reward-related 

activity, we then used a multiple linear regression/general linear model (GLM) fit of 

deconvolved fluorescence (Fig 2c, Supplementary Fig 5, Methods). The responses of all 

clusters of neurons (defined based on responses after acquisition) were largely similar to 

each other prior to acquisition, both during the “cue onset” period (a label to define a one 

second time period after cue onset) and the trace interval (Fig 2d, e, Supplementary Fig 6). 

After learning, cue onset responses, especially of clusters 2 and 3, remained similar to both 

CS+ and CS-, whereas trace responses of most clusters evolved distinct responses to CS+ 

and CS-. We will henceforth refer to neural activity that does not distinguish between a cue 

associated with a reward and another cue that is not associated with a reward as “cue-reward 

association-insensitive” or in short, “association-insensitive”. We will also label activity that 

distinguishes between these cues as “cue-reward associative”, or in short, “associative”. 

Thus, some vmOFC neurons, especially those in clusters 2 and 3 but not 1, convey 

association-insensitive information during the cue onset period. Further, vmOFC neurons 

across most clusters evolved trace responses reflecting associative information.

In order to test whether inhibition of these temporally-specific activity patterns degrades 

behavioral acquisition, we optogenetically inhibited CaMKIIα-expressing vmOFC neurons 

within either the cue onset or trace periods during behavioral acquisition (Fig 2f–h). 

Interestingly, we found that optogenetic inhibition during the cue onset period, but not trace 

interval, blunted initial behavioral acquisition, with neither manipulation affecting 

behavioral performance after acquisition (Supplementary Fig 7). The optogenetic effect on 

behavioral acquisition may be either due to a disruption of association-insensitive cue onset 

responses such as in clusters 2 and 3 or associative cue onset responses of cluster 1. During 

the cue onset period, association-insensitive responses of clusters 2 and 3 contributed much 

more to the variance in activity (32.1% and 37.1% respectively) than cluster 1 (19.3%) 
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(Supplementary Fig 6). Though this suggests that association-insensitive responses of 

clusters 2 and 3 contributed more to the optogenetic effect, directly testing between these 

hypotheses is currently technically infeasible. Thus, we decided to characterize the nature of 

these distinct responses (association-insensitive or associative) using projection-specific 

imaging and longitudinal tracking of these clusters.

Cue-reward associative, but not cue, information is relayed to VTA

OFC is thought to play a role in behavioral learning primarily through its interactions with 

the VTA dopaminergic system31,32. Accordingly, prior studies have shown that inactivating 

lateral OFC disrupts encoding in VTA dopaminergic neurons31,33, and that independently 

inactivating OFC or the VTA, or cross-hemispherically inactivating both, is sufficient to 

disrupt learning based on unexpected outcomes34. However, OFC activity could influence 

VTA dopaminergic activity either through direct projections or indirectly through regions 

such as the nucleus accumbens31. Thus, whether direct projection neurons from OFC to 

VTA convey learning-related signals is unknown.

To test this, we investigated functional encoding in vmOFC neurons projecting to VTA 

(OFC-VTA) (Fig 3a, b, Supplementary Video 3, Methods, n=526 VTA projecting neurons 

from n=7 mice). OFC-VTA neurons largely comprised 6 to 7 clusters from the larger OFC-

CaMKII population (Fig 3c, Methods). Anatomical studies suggested that OFC-VTA 

neurons were enriched more dorsally (deeper layers) in vmOFC (Supplementary Fig 8), 

consistent with the fact that the two clusters considerably impoverished in OFC-VTA 

neurons (clusters 2 and 3) were found ventrally in the OFC-CaMKII population (Fig 1l). 

These clusters were unique as they showed large association-insensitive cue onset responses 

(Fig 1j, Fig 2d, e). Thus, large association-insensitive cue onset responses are not present in 

the VTA-projecting population, as is especially clear from their absence on Day 1 of 

acquisition (Fig 3d, e, n=250 tracked VTA projecting neurons from n=7 mice, 

Supplementary Video 4).

Since association-insensitive cue onset responses, especially in clusters 2 and 3, are absent 

in OFC-VTA neurons, but associative responses, including from cluster 1, are present, this 

presented an opportunity to test which of these responses mediate behavioral acquisition. We 

found that optogenetic inhibition of OFC-VTA neurons did not causally influence behavioral 

acquisition during the cue onset period (Fig 3f, g). Further, this manipulation also did not 

affect reward seeking after learning (Supplementary Fig 7). Hence, activity conveying 

associative, but not association-insensitive cue information, is routed to VTA, with this 

activity not contributing to behavioral acquisition or reward seeking.

Evolution of OFC associative responses generally lag behavioral acquisition

Associative responses reflect a cue-reward memory. Yet, whether these memory 

representations arise before or after behavioral acquisition is unknown. We addressed this 

question by focusing on clusters that showed significant change in their CS+ trace encoding 

during acquisition (labeled “learning-related clusters”), which we identified as clusters 1, 2, 

5 and 6 in OFC-CaMKII neurons, and clusters 1 and 5 in OFC-VTA neurons (Fig 4a,b). 

Since cluster 1 showed evolution of associative responses also during the cue onset period 
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(Fig 2), we investigated this evolution as well. By eye, the responses of most recorded 

neurons appeared to evolve gradually during acquisition without sudden transitions 

(examples shown in Fig 4a), which was confirmed quantitatively (Fig 4c, Methods). 

Therefore, we used a cross-correlation analysis to address whether response evolution for 

each neuron occurred earlier or later than the evolution of anticipatory licking across trial 

blocks (Fig 5a–f, Methods). A negative optimal cross-correlation lag meant that neural 

response evolution led, i.e. was earlier than, behavioral evolution and vice-versa. The 

distribution of lags for all neurons within a cluster for the learning-related clusters revealed 

that the trace interval response of cluster 1 led behavioral evolution whereas other clusters 

lagged behavior (Fig 5g). While this result is consistent with the hypothesis that associative 

activity of cluster 1 contributes to behavioral acquisition, inhibition of activity during the 

trace interval (which also contained these associative responses) did not slow behavioral 

acquisition (Fig 2h). Though inhibition during the cue onset period did indeed disrupt 

behavioral acquisition (Fig 2h), associative cue onset responses of cluster 1 did not 

significantly lead behavior. These results showed remarkable consistency between OFC-

CaMKII and OFC-VTA neurons (Supplementary Fig 9). Thus, associative cue onset 

responses of cluster 1 likely do not support behavioral acquisition. Interestingly, we found 

that even reward responses reflected cue-reward memory, as these responses changed after 

learning (e.g. Fig 2d), with cluster-specific time courses of evolution (Supplementary Fig 9). 

Collectively, these results demonstrate unique learning dynamics for different vmOFC 

neuronal clusters, with most responses lagging behavior.

OFC neurons form distinct memory representations across clusters

The above results raise a fundamental question: what do vmOFC associative responses 

represent? They could in principle represent the identity of reward predicted by CS+, 

magnitude, delay to or probability of the expected reward, or the value of CS+. In order to 

test for these representations, we performed two manipulations that degraded the 

contingency of the cue-reward association (Fig 6a). In one, we reduced the probability of 

reward delivery to 50% after CS+ presentation (50% session). This degradation affected the 

probability of the expected reward and the value of the cue, but not the identity, magnitude 

or delay of the expected reward. In the other, we maintained the probability of reward 

delivery at 100%, but introduced random unpredictable rewards during the inter-trial interval 

(background reward delivery session, henceforth “Background” session)35,36. In these 

sessions, an average of 148 +/− 22 (standard deviation) rewards were unpredictable, while 

60 were predictable, thereby making only 1 in 3.5 rewards predictable by the cue. Thus, this 

degradation changed the value of the cue with respect to the inter-trial interval, but did not 

affect the identity, magnitude, delay to or probability of expected reward.

If the signals encoded in vmOFC generally represent reward probability given the cue, the 

encoding strength of all learning-related clusters should reduce in the 50% session. Instead, 

only cluster 2 showed reduction in associative encoding (Fig 6b–d, Supplementary Fig 10). 

Further, if the signals encoded in vmOFC indeed represented reward probability or other 

value-related features of this association such as the expectation, magnitude or delay of the 

reward given the cue, the Background session should not produce any changes in the 

encoding strength. Instead, all learning-related clusters except 2 showed significant recovery 
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in encoding strength following the Background session (Fig 6b, e, f, Supplementary Fig 10, 

see Methods for rationale of experimental design). Thus, cue-reward associative responses in 

vmOFC clusters 1, 5 and 6, do not encode features such as probability, expectation, 

magnitude or delay of the reward, given the cue. Additional analyses, including of the 

reward receipt and omission responses, also showed that these responses are unlikely to 

represent value (Supplementary Fig 11) or prediction error (Supplementary Fig 12). Thus, 

associative encoding in clusters 1, 5 and 6 is not consistent with commonly assumed 

memory representations regarding cue-reward associations (see Discussion).

OFC memory representations show long-term maintenance after behavioral extinction

The insensitivity of some clusters to partial reinforcement in the 50% session raised the 

intriguing possibility that they might stably represent learned information even when the 

reward probability is extinguished to 0%. The average PSTHs across all neurons within a 

cluster suggested that the mean encoding might indeed be stable after extinction, especially 

in OFC-VTA neurons (Fig 7a). Decades of research show that extinction of a learned 

association is due to new neural learning, instead of unlearning37. Accordingly, some 

neurons become selectively active only during/after extinction or subsequent 

reinstatement38,39. A schematic of such new extinction learning is shown in Fig 7b 

(“Remapping of ensembles”), which results in stability of responses at the population-level, 

but not the single-neuron level. On the other hand, a long-term memory representation of the 

original cue-reward association would be stable both at the population and single-neuron 

level (Fig 7b, “Stable ensemble”). PSTHs for longitudinally-tracked neurons suggested that 

there might indeed be such a long-term memory correlate in OFC-VTA neurons 

(Supplementary Fig 13). To the best of our knowledge, such a direct correlate of a long-term 

cue-reward memory reflected in the activity of individual neurons has not previously been 

observed.

In order to quantitatively test for stability of encoding, we first trained a decoder to decode 

CS+ trace responses on the Day before extinction using neurons tracked across extinction 

and reinstatement, and tested if the same decoder was able to predict CS+ trials on the other 

sessions (Fig 7c, Methods). If the same population of neurons could significantly decode CS

+ trace responses on these test sessions, it would show that a stable ensemble represents cue 

information after extinction. This was indeed the case for the learning-related clusters (Fig 

7c–f, Supplementary Fig 13). After excluding animals relatively resistant to extinction 

(Supplementary Fig 13) to rule out apparent stable encoding due to lack of extinction 

learning, we found that cluster 2 no longer showed significant decoding, but clusters 1, 5 and 

6 did. This is consistent with the earlier result that only cluster 2 (impoverished in OFC-

VTA) is sensitive to probability reduction (Fig 6d). Therefore, OFC-VTA neurons encode a 

long-term cue-reward memory even after behavioral extinction of the original association.

Reward and associative encoding in OFC-VTA neurons guide behavioral adaptation

Despite shedding some light on neural representations, the above experiments did not 

resolve the functional role of associative and reward encoding in OFC-VTA neurons. To 

address this, we optogenetically inhibited OFC-VTA activity during a) the cue-reward delay 

after behavioral acquisition (Supplementary Fig 7), b) cue-reward delay after 50% 
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probability reduction (Fig 8a), and c) reward consumption period after 50% probability 

reduction (Fig 8a). None of these manipulations produced any effect on reward seeking. 

Since earlier results also showed no effect on acquisition (Fig 3g), we hypothesized that 

OFC-VTA neurons may instead mediate behavioral adaptation to changes in learned 

associations.

We first tested whether OFC-VTA neurons mediate within-session learning in the 50% 

probability sessions, as mice showed more baseline-subtracted anticipatory licking on a 

given trial when the previous trial was rewarded (Fig 8b). This presumably reflects updating 

of estimated probability of reinforcement on a trial-by-trial basis. We quantified this learning 

using a Learning Index measuring the difference in mean licking based on previous trial 

outcome (Fig 8c). In individual animals, we observed that within-session learning was 

reduced when OFC-VTA activity was inhibited following reward delivery/omission, but not 

in control animals (Fig 8d). Across the population of mice tested, within-session learning 

was disrupted by OFC-VTA inhibition during the reward period, but not the cue period (Fig 

8e). Thus, OFC-VTA reward, but not cue, encoding contributes to trial-by-trial behavioral 

updating based on previous reward outcome.

Since OFC-VTA cue encoding remained stable even after extinction (Fig 7), we further 

hypothesized that it controls extinction learning and memory. In order to test an effect on 

extinction learning, we inhibited OFC-VTA activity after cue offset while mice underwent 

behavioral extinction (Fig 8f). Mice receiving OFC-VTA inhibition showed slower learning 

of extinction, but eventually learned extinction within a session (Fig 8g). In order to test an 

effect on extinction memory, we tested behavioral performance on a subsequent extinction 

retrieval session without OFC-VTA inhibition. Despite OFC-VTA inhibited mice learning 

extinction by the end of the extinction session, their behavioral memory of extinction was 

degraded on the extinction retrieval session (Fig 8g). Hence, stable maintenance of OFC-

VTA activity contributes to both extinction learning and memory.

Discussion

Historically, studies of OFC have looked for neural correlates of associative encoding by 

conducting per-neuron statistical tests of a priori hypotheses26,29. Instead, the large-scale 

recording undertaken here allowed us to perform an unsupervised clustering of vmOFC 

neurons based on their responses, which could be validated with longitudinal activity 

tracking. Tracking of the same neurons allowed us to demonstrate that the same clusters 

showed similar response profiles on multiple different sessions after acquisition, even after 

changes to the learned association (Supplementary Fig 14). Such stability of cluster 

responses, combined with projection-specificity of clusters, demonstrates the presence of 

distinct functionally-identifiable neuronal subpopulations within vmOFC. Longitudinal 

tracking further allowed us to demonstrate stability of responses even after behavioral 

extinction. To the best of our knowledge, this is the first finding of neuronal activity 

reflective of a long-term memory of a previously learned cue-reward association after 

extinction, anywhere in the brain. Next, we discuss each important finding within the context 

of the existing literature on OFC function.
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OFC cue onset responses support behavioral acquisition

Prior studies observed no effect of OFC lesion or chronic inactivation on Pavlovian 

acquisition40,41. However, it is possible that this apparent lack of effect may be due to 

compensation by other brain regions, since rapid optogenetic inhibition has revealed regions 

involved in behavioral control that produce no behavioral effect when lesioned or 

chronically inactivated42. Thus, we tested the role of vmOFC activity in behavioral 

acquisition using rapid and reversible optogenetic inhibition. Indeed, we found that 

inhibition of cue onset activity in OFC-CaMKII, but not OFC-VTA neurons, degraded 

behavioral acquisition. Though the lack of effect due to OFC-VTA inhibition could 

technically be due to incomplete inhibition, this is unlikely as OFC-VTA inhibition was 

sufficient to cause deficits in two other types of learning (Fig 8).

The cue onset period, during which OFC-CaMKII activity supports acquisition, contained 

association-insensitive responses of clusters 2 and 3, and associative responses of cluster 1. 

Directly testing which of association-insensitive or associative responses mediate the 

observed behavioral effect is currently technically infeasible as it requires selective bilateral 

manipulation of individual functionally-identified clusters in a deep brain area. Nevertheless, 

some aspects of our data favor the hypothesis that behavioral acquisition is mediated by 

association-insensitive, and not associative responses. First, OFC-VTA neurons, despite 

containing the associative responses of cluster 1, do not support behavioral acquisition. 

Second, association-insensitive responses together contributed ~3.5 times the variance in cue 

onset activity compared to associative responses. Third, while association-insensitive 

responses are present prior to behavioral acquisition, associative cue onset responses of 

cluster 1 did not lead behavioral acquisition. Four, only activity during the cue onset period 

(containing association-insensitive and associative responses), but not the trace interval 

(containing associative responses), supports behavioral acquisition. Thus, the parsimonious 

explanation of our findings is that association-insensitive responses of clusters 2 and 3 

contribute to behavioral acquisition.

It may be surprising that cue-reward association-insensitive responses might still mediate the 

acquisition of behavior reflecting these associations. Yet, animals must learn about both CS+ 

and CS-: one predicts reward, whereas the other predicts no reward. Therefore, these 

association-insensitive cue onset responses may reflect attentional/salience signals that are 

known to gate behavioral learning43, possibly relayed by basal forebrain inputs44 or sensory 

cortices3.

Despite parsimony favoring association-insensitive responses supporting behavioral 

acquisition, we cannot rule out a non-VTA-projecting subset of cluster 1 neurons controlling 

behavioral acquisition. For these reasons, a direct test between these hypotheses will need to 

be conducted in the future by manipulating individual functionally-identified clusters45. 

These issues highlight the immense need in the field for careful interpretations and future 

deconstruction of behavioral deficits resulting from bulk neuronal activity manipulation.
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vmOFC responses are stable after learning

Typically, neuronal recording studies do not longitudinally track the activity of the same 

neurons across multiple days. Such recording is important to assess whether a given activity 

pattern within individual neurons reflects a single-cell and population-level correlate of 

memory. Our data show that learned information is stably maintained by vmOFC neurons 

after learning, even after contingency changes (Supplementary Fig 14). These results are 

superficially in contrast with observations suggesting instability (i.e. not perfect stability) in 

individual posterior parietal neuronal encoding during stable behavior after learning46. 

However, without knowing what fraction of neurons in any given brain region control 

behavior, relative instability may just be an indication of a small subset of stably-responding 

neurons controlling behavior, with activity of the remaining ones varying randomly. The 

presence of these distinct stably maintained memory representations raises an important 

question: what features of the cue-reward association are conveyed in these representations? 

To address this, we longitudinally tracked the same vmOFC neurons across different 

contingency changes after learning.

What do vmOFC memory representations encode?

Sensitivity of vmOFC encoding to background unpredictable rewards in clusters 1, 5 and 6 

demonstrates that encoding in these clusters cannot simply reflect probability, magnitude, 

expectation or delay of the reward following the cue. Nevertheless, could it reflect value or 

desirability5? The reduction in associative responses due to random unpredicted rewards 

may reflect a reduction in desirability of sucrose due to temporary satiety. However, this is 

unlikely as mice lick to consume sucrose equally vigorously during the Background, Trained 

or 50% sessions (Supplementary Fig 15), showing that animals do not devalue the reward 

paired with CS+. Thus, this procedure is different from the more commonly used 

devaluation procedure5, and hence, these results are not consistent with a simple encoding of 

desirability.

Another possibility is that encoding in these clusters represents the value of a cue computed 

with reference to a reward rate prior to the cue, as proposed by the Training-Integrated 

Maximized Estimation of Reinforcement Rate (TIMERR) theory47. This theory qualitatively 

fits reward seeking behavior during CS+ and CS- trials in Background and 50% sessions 

(Supplementary Fig 15). However, since OFC clusters encode associations stably despite 

reduction in reward probability to 50% or 0% (clusters 1, 5 and 6), or are not affected by the 

presence of unpredictable rewards (cluster 2), and since they do not show trial-by-trial 

updating of responses based on reward history (Supplementary Fig 10), it is unlikely that 

these clusters encode value as proposed by TIMERR. Though, we cannot rule out activities 

of individual neurons being correlated with value-related quantities.

What feature of the cue-reward association might then be represented by these clusters? 

Associative encoding in cluster 2 is consistent with a representation of reward probability 

given a cue, as its activity is sensitive to this probability but not the presence of 

unpredictable rewards; though this should be quantitatively tested using multiple reward 

probabilities. However, encoding in clusters 1, 5 and 6 is inconsistent with this probability. 

One intriguing possibility is that these clusters may represent the likelihood that a reward is 
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preceded by a given cue (i.e. p(cue|reward)) instead of the posterior probability that a reward 

is delivered after the cue (i.e. p(reward|cue)). The likelihood will only be updated upon 

reward receipt and will be unchanged in the 50% session as all rewards are preceded by the 

cue. It will also be much lower in the Background session as unpredicted rewards, which 

outnumber the predicted rewards, are not preceded by the cue. Perhaps most intriguingly, 

this quantity would not be updated after extinction due to the absence of rewards, thereby 

providing a long-term memory of the original association.

Representing the likelihood that a reward is preceded by a cue, i.e. p(cue|reward), is 

advantageous not just because it could act as a long-term memory, but also because it 

provides a computationally efficient teaching signal for learning the probability of reward 

given a cue, i.e. p(reward|cue). This is because learning p(cue|reward) requires update only 

when rewards are received, which are ethologically much sparser than cues. This learning is 

much more efficient than directly learning p(reward|cue), which requires update on every 

sensory cue. Once learned, p(cue|reward) can be inverted using Bayes’ rule to estimate 

p(reward|cue). In any case, as we did not manipulate reward magnitudes, these probabilities 

might reflect an underlying reward rate instead of pure probabilities of state transitions.

Specific memory representations are conveyed by vmOFC to VTA

Among the learning-related clusters representing associative information, clusters 1, 5 and 6, 

but not 2, project to VTA. This suggests that information contained in these neurons 

(consistent with p(cue|reward)) could influence learning in VTA dopaminergic neurons. 

Consistent with this, long time-scale inactivation of OFC reduces cue responses in putative 

VTA dopaminergic neurons33. However, since cue responses of VTA dopaminergic neurons 

are sensitive to the probability of reward given the cue48, OFC-VTA responses likely 

undergo a Bayesian inversion before affecting dopaminergic neuronal activity. Alternatively, 

cluster 2 might affect VTA dopaminergic activity via indirect projections.

An influential idea about OFC-VTA communication is that OFC conveys the important 

states/variables relevant to represent the current task structure to VTA1. Such OFC signaling 

is thought to be especially useful for behavior during states that are partially observable, i.e. 

not explicitly signaled within the environment13. Some aspects of our data fit with this 

hypothesis. For instance, since our task is a trace conditioning paradigm, there is a memory 

period (trace interval) during which both CS+ and CS- trials are indistinguishable without 

remembering which cue was previously presented. Consistent with the state representation 

hypothesis, neural recordings during the trace interval evolve to distinguish between CS+ 

and CS- trials, implying access to this memory. Further, even vmOFC reward responses 

convey partially observable aspects of the task. For instance, reward response of cluster 1, 

positive early in learning (Fig 2 and Supplementary Fig 6b), becomes negative once the 

reward is fully predicted by an earlier cue (Fig 2, Supplementary Fig 6b and Fig 6b: 

rewarded trials minus unrewarded trials). This suggests that the state of reward receipt is 

distinguished depending on whether or not it was predicted by a temporally-distant past cue. 

This negative reward response might cancel out a positive reward response from elsewhere 

to produce the classic reward prediction error correlate in VTA dopaminergic neurons48.
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Despite this, some key aspects of our data are inconsistent with the state-space hypothesis of 

OFC. First, inhibition of either OFC-CaMKII or OFC-VTA neurons during the trace interval

—a memory period—does not impair Pavlovian reward seeking, despite this requiring 

representation of partially observable states (Fig 8a, Supplementary Fig 7). Additional data 

are also not consistent with the strict form of the hypothesis since OFC-VTA neurons do not 

represent cue states prior to learning (Fig 3e). Of course, one could argue that state 

representation in vmOFC is useful only once the task is well-learned. However, associative 

activity in clusters 1, 5 and 6 that project to VTA, is sensitive to the presence of 

unpredictable rewards in the intertrial interval despite all other aspects of the task remaining 

unchanged. Indeed, animals could use the same state space to learn that the intertrial interval 

now has higher value and that in relation to the intertrial interval, CS+ now has a lower 

value. Therefore, a simple encoding of state space is not consistent with these data. Instead, 

as discussed earlier, a parsimonious account is that OFC conveys the backward probability 

of cue to reward state transitions to VTA (i.e. p(cue|reward)).

Importantly, this proposed function of OFC-VTA neurons is sufficient to explain the deficits 

observed in extinction learning and memory due to OFC-VTA optogenetic inactivation. 

Without a signaling of p(cue|reward) by OFC-VTA neurons, animals would not learn that the 

reason for the lack of rewards during extinction is specifically because p(reward|cue) is now 

zero. Instead, animals might learn through compensatory mechanisms that p(reward) is zero, 

thereby causing behavioral extinction. On the extinction recall day, the estimate of p(reward|

cue) is still high, and could control behavior, thereby resulting in an apparent deficit of 

extinction memory. In simple terms, p(cue|reward) provides a credit assignment signal to 

relate changes in reward probability specifically to the cue. This interpretation is consistent 

with a previously observed deficit in appropriate action-reward contingency learning 

following OFC lesions9. It is also consistent with a prior study showing a hierarchical effect 

of lateral OFC inactivation on reversal learning49. Interestingly, it was previously 

hypothesized that lateral OFC encodes a template of the old association to update behavior 

after changes in the association28. However, this hypothesis was not borne out in lateral OFC 

neuronal recordings during reversal learning29. Our results demonstrate that vmOFC 

neurons directly projecting to VTA do indeed maintain a correlate of the memory of the old 

association after extinction.

Conclusion

Studying the neuronal network basis of learning and memory requires studying evolution of 

responses in the same neurons throughout these processes. Due to technical challenges, such 

a feat has been difficult in deep brain areas50. Here, in a simple yet interesting behavioral 

task, we showed that subpopulations of OFC neurons represent a long-term memory of 

multiple features of cue-reward associations. Despite the simplicity of the task used, we 

found dramatic complexity in OFC neuronal encoding. The complexity of information 

encoding within vmOFC is almost definitely higher than that found here. Thus, these results 

open up the possibility that the dazzling complexity of OFC function may result from 

distinct neuronal subpopulations within OFC contributing to distinct functions. Future 

studies investigating the function of functionally-identified neuronal subpopulations could 

isolate individual functions to individual subpopulations, and map out activity 
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transformations occurring within and outside OFC. Future studies could also investigate 

whether OFC contains long-term memory representations for cue-drug of abuse associations 

and their role in cue-induced reinstatement of drug seeking. Overall, the present findings 

advance a powerful approach to investigate such fundamental questions.

Methods

Subjects and Surgery:

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina and accorded with the Guide for the Care 

and Use of Laboratory Animals (National Institutes of Health). Adult male C57BL/6J mice 

(Jackson Laboratories, 6–8 weeks, 20–30 g) were group housed with littermates, 

acclimatized to the animal housing facility and handled by the experimenter until surgery. 

Stereotactic (David Kopf Instruments) survival surgeries were performed under sterile 

conditions. The general surgical protocol has been described previously22,51. Animals were 

anesthetized during surgery. Induction was carried out by using 5% isoflurane mixed with 

pure oxygen (1 L/min) for thirty seconds or so, after which anesthesia was maintained using 

0.6–1.5% isoflurane. Animal respiratory rate was monitored intermittently by the surgeon to 

ensure appropriate depth of anesthesia. The animals were also placed on a heating pad to 

ensure proper thermal regulation. Pre-operative buprenorphine (0.1 mg/kg in saline, 

Buprenex) treatment was given for analgesia. Dryness of eyes was prevented by using an eye 

ointment (Akorn). 2% lidocaine was topically applied on the scalp prior to incision. 

Subcutaneous injection of sterile saline (0.3 mL 0.9% NaCl in water) was given 

prophylactically to prevent dehydration. Details of viral injection, lens and optic fiber 

implantation are provided below in the 2-photon imaging and optogenetics sections. A 

custom made stainless steel ring (5 mm ID, 11 mm OD, 2–3 mm height) was implanted on 

the skull for headfixation, which was stabilized with skullscrews and dental cement. 

Following surgery, animals received acetaminophen (Tylenol, 1 mg/mL in water) in their 

drinking water for 3 days. Animals were given at least 21 days (and often, many more) with 

ad libitum access to food and water to recover from surgery. Following recovery, animals 

were water deprived to reach 85–90% of their pre-deprivation weight and maintained in a 

state of water deprivation for the duration of behavioral experiments. Animals were weighed 

and handled daily to monitor their health. In rare instances when weight fell below 80%, we 

restored water access and slowly re-introduced water deprivation. The amount of water 

given daily was often around 0.6 mL but was varied based on the daily weight of each 

animal. A total of 83 (12 imaging, 65 optogenetics, 4 patch-clamp electrophysiology, 2 

anatomy) mice were used in this study.

Head-fixed behavior:

Head-fixed behavior was done similar to a previous paper22, with the only difference that the 

inter-trial interval was exponentially distributed with a mean of 30 s. Following recovery and 

sufficient time for fluorescence/opsin expression, the mice were water deprived. Mice were 

habituated to head fixation for at least 3 days prior to behavioral sessions. After the weights 

stabilized around 85–90% of pre-deprivation weight, mice were trained to lick for sucrose in 

a custom-designed headfixed behavior set up (by VMKN) with software written in 

Namboodiri et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATLAB and hardware control achieved using MATLAB and Arduino. In these sessions, 

mice were delivered drops of sucrose (10% in water, ~2.5 μL) according to a truncated 

Poisson process with mean interval of 12 s and maximum interval of 90 s. The sessions 

continued until 100 drops were delivered and thus, lasted 20 minutes on an average. Mice 

were considered trained to lick if they licked at least 950–1000 times over the entire session 

and completed at least two sessions. Once this part of the training was complete, mice were 

run on a Pavlovian conditioning task. Mice received one of two possible auditory tones (3 

kHz pulsing tone or 12 kHz constant tone, 75–80 dB) that lasted for 2 seconds. A second 

after the cues turned off, the mice received a reward to one of the tones (designated CS+), 

whereas the other tone resulted in no reward (designated CS-). The identity of a tone as CS+ 

or CS- was counterbalanced across mice in all experiments. The cues were presented in a 

pseudorandom order and in equal proportion until a total of 100 trials (cue presentations) 

were completed. The intertrial interval between two consecutive presentations of the cues 

was drawn from a truncated exponential distribution with mean of 30 s and a maximum of 

90 s, with an additional 6 s constant delay. Anticipatory licking (Fig 1c) seen in animals was 

an indication of cue-triggered reward expectation. Thus, a behavioral readout of learning 

could be obtained by calculating the change in average lick rate during the cue (3 s after cue 

onset) and the baseline before the cue (1 s). However, this measure is sensitive to outlier 

trials in which the animal may have shown a lot of licks. Thus, to get a better measure of 

reliability of licking induced by a cue, we calculated a score based on the area under a 

Receiver Operating Characteristic curve (auROC) formed by the distributions of lick rates to 

the cue versus the baseline across trials. This score was scaled to get a measure of reward 

seeking to a cue (Fig 2h, Fig 3g) defined as 2×auROC(cue v. baseline)-1, such that lick rates 

at baseline levels produced a behavioral performance score of zero and perfect 

discrimination between cue licking and baseline licking would be a score of 1. In cases in 

which the discrimination of behavioral performance between the two cues was of interest, 

cue discrimination (Fig 1e) was measured as the twice the area under a Receiver Operating 

Characteristic curve (auROC) formed by the distributions between the baseline subtracted 

lick rates to CS+ versus CS- minus 1. Defined thus, cue discrimination is equal to zero when 

animals are licking at an equal rate for both cues. If cue discrimination was found to be 

larger than 0.4 on at least 2 consecutive sessions or larger than 0.7, animals were considered 

trained. See below for specific details on imaging or optogenetic experiments.

2-photon microscopy:

Calcium activity of neurons was imaged using 2-photon microscopy by expressing a calcium 

indicator (GCaMP6S) in cells of interest. This was done using a viral approach. For studying 

putative pyramidal neurons, we injected AAVdj-CaMKIIα-GCaMP6S (~5×1012 infectious 

units per mL, UNC Vector Core, 1:6 diluted in saline) in vmOFC (n=5 mice). For studying 

cells in vmOFC projecting to VTA, we injected AAVdj-EF1α-DIO-GCaMP6S (~3×1012 

infectious units per mL, UNC Vector Core, full strength) in vmOFC (n=7 mice). Two 

injections of 500 nL each were performed (+2.5 mm AP, −1.1 mm ML, −2.3 mm DV and 

+2.9 mm AP, −1 mm ML, −2.3 mm DV from bregma). These coordinates were lateral 

compared to the coordinate for the lens implantation (+2.5 mm AP, −0.75 mm ML, −2.2 mm 

DV from bregma). Lens (1 mm diameter GRIN lens, GLP1040 Inscopix) insertion followed 

a previously described protocol51. In one animal, we implanted both a 1.8 mm stainless steel 
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sleeve (optical cannula) around the lens, and the lens. This animal was excluded from 

analysis of the relative spatial location of cells. For the study of vmOFC cells projecting to 

VTA, we also bilaterally injected a retrogradely transported Canine Adenovirus 2 expressing 

Cre recombinase (CAV2-Cre, ~6×1012 infectious units per mL, Institut de Génétique 

Moléculaire de Montpellier) in the VTA (−3.2 mm AP, +/−0.6 mm ML, −4.5 mm DV from 

bregma, 500 nL). A minimum of 6 weeks was given for proper virus expression in the OFC-

CaMKII group and at least 8 weeks was given for the OFC-VTA group prior to 

commencement of imaging during Pavlovian conditioning.

We used the Olympus Fluoview FVMPE-RS 2-photon microscope. We used a resonant 

scanner (30 Hz frame rate acquisition) and performed an online averaging of 6 times to get 

an effective frame rate of 5 Hz. This was done to minimize size of recorded files as we had 

negligible motion artifacts. A GaAsP-PMT with adjustable voltage, gain and offset was 

used, along with a green filter cube. We also used a long working distance 20x air objective 

that is specifically optimized for infrared wavelengths (Olympus, LCPLN20XIR, 0.45 NA, 

8.3 mm WD) and imaged with a 955 nm laser (SpectraPhysics, ~100 fs pulse width) with 

automated alignment. The animals were placed on a 3-axis rotating stage to precisely align 

the surface of the GRIN lens to be perpendicular to the light path, such that the entire 

circumference of the lens is crisply in focus (within 1–2 μm). We noted down the 

goniometer readings and ensured that the mouse is placed in the head-fixing apparatus in the 

same angle for all imaging days. We then selected the imaging plane with respect to the 

surface of the lens, which could be done to within 1–2 μm. This procedure was followed 

every day and considerably improved the ability to image the exact same plane day after day. 

The imaging acquisition was triggered by a custom Arduino code right before the start of a 

behavioral session, and a TTL output of every frame was sent as an input to the Arduino to 

keep timestamps on a common scale. The imaging acquisition was triggered off at the end of 

the behavioral session (~ one hour).

In every mouse, one z-plane was imaged throughout acquisition so that the same cells could 

be tracked through learning. After mice were trained, other z-planes were also imaged (one 

per session) to get a measure of the total functional heterogeneity in the network. A total of 

2–6 z-planes per mouse were imaged in the OFC-CaMKII group, whereas 1–3 z-planes were 

imaged in the OFC-VTA group. The z-planes were estimated to be at least 50 μm apart from 

each other. Once all the z-planes were imaged in a trained animal, these planes were again 

imaged after the probability of reward was reduced to 50%. Once these sessions were 

completed, mice were trained back on a 100% reward contingency to return to pre-50% 

levels of performance. We also ran sessions with unpredicted rewards mixed in with 

predicted rewards (Background). In the Background sessions, there were 148 +/− 22 

(standard deviation) unpredicted rewards during the ITI and 60 fixed rewards (session 

contained 60 CS+ and 60 CS- trials). There was a minimum delay of 6 s between the last 

unpredictable reward in an ITI and the next cue. This was to reliably separate potential lick 

or consumption responses from the next cue response. After Background sessions, the 

original 100% contingency was re-introduced. Animals showed consistent performance 

across all 100% contingency sessions, given enough time to adapt after changes (1–3 

sessions). Since we generally did not image activity on the behavioral training session prior 

to the Background session, we quantified the change in responses due to the presence of 
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background rewards by quantifying the recovery in activity following the Background 

session. Once mice performed at a trained level in the 100% contingency sessions, we 

extinguished the cue-reward pairing by delivering both cues in the absence of reward 

(extinction). The extinction session was maintained for 2–3 sessions. The last day of 

extinction was analyzed to test the effect of extinction on the network encoding of 

behavioral variables. Following extinction, a reinstatement session was run in which the CS

+-reward contingency was reintroduced at 100%. All animals resumed reward seeking 

within 5–10 trials during reinstatement.

Imaging data analysis:

The Olympus OIR files collected during imaging through Olympus FluoView (FV1200) 

were exported as tif files. Each session was split into multiple tif files so as to limit the size 

of each to 4 GB. These tif files were then combined offline to an HDF5 format using a 

custom code. These HDF5 files were then motion corrected in the x-y plane using a hidden 

Markov model (SIMA v1.352). We had found that the imaging plane showed very little z 

movement in vmOFC (<5 μm based on a random sample of sessions). Following motion 

correction, regions of interest (ROIs) were manually annotated (explained below) using 

ImageJ on the standard deviation projection of activity across time. These ROIs were 

imported into SIMA and then used for signal extraction. A custom code added neuropil 

correction to the SIMA signal extraction (described below). Motion correction, signal 

extraction, and neuropil correction were all implemented on remote Amazon Web Services 

(AWS) EC2 machines using a custom launch code that is now available as part of the SIMA 

master code (excluding neuropil correction). Running analysis on AWS was significantly 

faster (up to 25 times) than on local machines as we could analyze multiple files 

simultaneously.

Two steps from the above pipeline are worth explaining in a bit more detail. Manual 

annotation of ROIs was done by drawing a polygon around each cell using ImageJ. As 

imaging of cells in vmOFC often contained apical dendrites of cells in the imaging plane 

(unlike surface cortical imaging), we had to take care to exclude these dendrites from the 

analysis of somatic activity. In many cases, small dendritic segments could be clearly 

resolved as overlapping with parts of somatic ROIs and in this case, only a part of the 

somatic ROI was drawn that did not overlap with any resolvable structures. This was also 

done in case of cell-to-cell overlap. Since this procedure is likely to still retain significant 

contribution due to unresolved neuropil, we performed neuropil correction. Neuropil 

correction was done by first calculating a neuropil signal around each ROI. This was done 

by calculating a weighted sum of all recorded pixels excluding those falling within a 15-

pixel (~17 μm) radius of all ROIs. The weight for any pixel was calculated using a Gaussian 

function centered on the ROI of interest with a radius of 50 pixels (~45 μm). These 

parameters were obtained after a systematic search of the parameter space in a small subset 

of sessions and visually comparing the obtained fluorescence traces against the raw videos. 

The results in the manuscript are robust against large variation in these parameters. Once the 

neuropil signal was calculated for every ROI, a correction of this signal was done by 

subtracting 0.8 multiplied by this signal from the raw calcium trace of the ROI. The factor 

0.8 was found to generally accord with what was seen by eye. For a few sessions in which 
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we compared this general procedure with results obtained from another package (Suite2p53), 

we found that a neuropil subtraction coefficient close to 0.8 provided good correspondence 

in results and was approximately the average correction coefficient calculated in Suite2p. 

Since neuropil subtraction can produce negative values for the calcium signals of cells on 

some frames, instead of calculating a ΔF/F normalization where the denominator could 

sometimes be really low, producing spuriously high values, we normalized fluorescence 

signals (Fig 1g–j, Fig 3d, e) as the ratio (F-Fmedian)/(Fmax-Fmin). This normalized signal was 

zero for the median value of the fluorescence, which was close to the baseline level of 

fluorescence for most cells as calcium transients were sparse, high amplitude events. This 

scaling ensured that the high amplitude calcium transients were always positive and less than 

1. The closer the maximum normalized signal was to 1, the closer the median value of 

fluorescence was to the minimum value of fluorescence, i.e. the higher the signal-to-noise 

ratio. This scaling was done only to obtain comparable normalized fluorescence signals 

across ROIs for visualization and does not affect analysis of responses to behavioral events 

(see below).

Once a normalized fluorescence signal was calculated as above, we aligned every cell’s 

activity to the cue (3 s before cue to 17 s after cue) to visualize cue-locked activity of the cell 

(Fig 1i). Any overlap with consecutive trials was removed from this matrix (coded as ‘nan’). 

We then calculated the peristimulus time histogram (PSTH) of the cell as the average across 

all trials (Fig 1i, j). We did not analyze the PSTHs directly as a measure of cue or reward 

response. This is primarily because fluorescence measurements from neurons are only a 

proxy for underlying neural activity as they result from an interaction between the neural 

activity and dynamics of the calcium indicator. Due to the slow time course of decay but fast 

onset of GCaMP6s24, fluorescence measured at any given moment could be due to activity 

at that moment or activity seconds ago. A further caveat of using PSTHs to infer cue 

responses is that due to the averaging of all trials, potential changes in neural activity due to 

motor confounds from licking are not separated from cue responses. For these reasons, the 

PSTHs calculated here are only used for visualization and as input for the clustering 

analysis, representing temporal response patterns of neurons.

We performed clustering analysis on the PSTH of all ROIs to test if there were any 

functional clusters. This is an unbiased means to evaluate the heterogeneity in response 

patterns. We largely followed the methodology presented elsewhere15. In our case, we were 

interested in the time course of activity to both CS+ and CS- cues. We used 100 frames (20 

s) measured around each cue, resulting in a 200-dimensional dataset in total (Supplementary 

Fig 3). The PSTH for CS+ and CS- were appended to create a 200-column vector of data 

points for each cell. We first reduced the dimensionality of this data using principal 

component analysis (PCA) (Supplementary Fig 3). To select the number of principal 

components, we used the standard method of finding a bend in the plot of the variance 

explained per principal component—the scree plot (Supplementary Fig 3). As can be seen 

from the plot, beyond the number of chosen principal components (n=8), there was minimal 

variability explained per principal component. After this, the data were projected onto the 

lower dimensional subspace formed by the principal components. These data were the input 

to the clustering algorithm. Considering that even our reduced dimensionality data were 

eight dimensional, we used spectral clustering as it has previously been argued to produce 
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stable results in higher dimensional data sets15. We further found that the optimal silhouette 

score for spectral clustering was better than for other clustering methods such as k-means or 

hierarchical clustering. The clustering was performed using the Scikit-learn function sklearn. 
cluster. Spectralclustering with the affinity matrix calculated using a k-nearest neighbor 

connectivity matrix. The number of nearest neighbors was varied by a factor of 40. The 

number of clusters was also varied systematically. The best parameters were chosen by 

maximizing the silhouette score over a grid search over parameters. After the best 

parameters were found, we estimated the stability of our results across trials by subsampling 

various fractions of trials and calculating the Adjusted Rand Index (ARI). For each fraction 

chosen, we found better than chance (ARI=0) reliability in clustering. Thus, the clustering 

results were generally stable across trials, but did reflect the considerable trial-to-trial 

variability in responses. There were many neurons within each cluster in each of the imaging 

mice. In order to classify neurons in vmOFC projecting to VTA into the clusters identified 

within the OFC-CaMKII population, we used a linear support vector classifier (Scikit-learn) 

to classify each OFC-VTA cell’s PSTH based on the mean PSTH per cluster from OFC-

CaMKII.

Once clustering was performed, neurons were assigned the corresponding cluster label. So, 

if the neuron was imaged on another day, its cluster index determined from the clustering on 

the trained data was used. To register ROIs across days, we used manual registration due to 

the high amount of structural resolution in the imaging data. Structural annotation of ROIs 

limited the dropout of cells on intermittent days due to low activity, when compared to 

functional detection of ROIs.

To analyze neural activity, we first deconvolved the calcium transients to remove 

fluorescence changes purely due to the calcium indicator. This was done using OASIS with a 

first order autoregressive model with L1 penalty30. Deconvolved spikes using this method 

were found to reliably represent true spiking activity in cells ex vivo when firing was sparse. 

However, when neurons were made to fire at a high baseline firing rate (8 Hz), pauses in 

firing were not detected properly (Supplementary Fig 1). This means that suppression of 

firing is likely to be underrepresented in the inferred spikes. It was for this reason that we 

decided to do clustering of cells prior to deconvolution as otherwise, the error in 

deconvolution might have been propagated to clustering as well. To make the deconvolved 

signals comparable across neurons, we also divided it by the estimated noise in the signal, as 

provided by OASIS.

To calculate average change in activity caused by the various behavioral variables, we used a 

General Linear Model (GLM) framework instead of a PSTH approach, which is confounded 

by variable action timings with respect to cue. Since we were primarily interested in 

obtaining interpretable measures of responses to behavioral variables, we defined 

explanatory variables as spanning multiple frames with respect to the variables. Thus, we did 

not use a time-varying kernel approach, which would have provided better model fits but 

would require conversion to an average coefficient for interpretable response measures. The 

explanatory variables were defined as shown in Fig 2c for sessions with full contingency. We 

also included the frame number since the start of the session as an additional variable in the 

model to account for potential instability in responses over time. Each explanatory variable 
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(other than frame number) was coded as 0 on every frame except for the frames in which 

they were present, in which case, their value was coded as 1. Thus, the coefficient of 

response to an explanatory variable measures the average change attributable to the presence 

of that variable, while controlling for other variables. For measuring an action response, we 

tried two approaches: one in which responses locked to lick bout onsets were calculated over 

a 400 ms window and another in which responses to lick count per frame was calculated. We 

defined a lick bout onset as the first lick in a set of licks (possibly containing one lick) 

separated by interlick intervals less than 500 ms25. We found that the lick bout onset model 

was consistently, but slightly better than the lick count model on a random selection of 

sessions and thus, used this model for all data analysis. This is also consistent with a 

previous study on lick responses in OFC demonstrating that lick responses are primarily to 

lick bout onsets instead of individual licks25. We also tested whether the first lick after the 

cue could capture lick related responses and found that this was not the case for the few 

sessions we tested (an example session is shown in Supplementary Fig 2). Thus, we did not 

investigate this model further. For the 50% probability sessions, we also added Reward 

Omission and Reward terms (0–3 s after the first lick after omission or reward respectively), 

along with Reward Omission Late and Reward Late terms (3–6 s after the first lick after 

omission or reward respectively). In addition to these, we also included an interaction term 

measuring the effect of trial reward history (i.e. whether the previous trial was rewarded or 

not) on the responses to cue, reward and omission (Supplementary Fig 11). The GLM 

equation was thus as shown below.

dF(t) = dF0 + βlickonsetIlickonset(t) + ∑
event

βeventIevent(t) + βdri f tt

+ ∑
History

∑
event

βHistory:eventIevent(t)History(t) + ε

where dF(t) represents deconvolved fluorescence on frame t. β’s represent the coefficients, 

I’s represent indicator variables corresponding to either lick onsets or other events such as 

cue onset, cue late, cue trace, reward, reward late, reward omission, and reward omission 

late. These indicator variables were coded 0 or 1 depending on the time periods defined 

above. The second to last term corresponds to an interaction between trial reward history 

(defined above) and these events. Finally, ε corresponds to the error term (see below).

The GLM was solved using least squares regression. This is because on a subset of sessions, 

we attempted generalized linear model approaches with inverse Gaussian and gamma 

distributions and found that these provided considerably worse fits than a model assuming 

normality. Thus, we used an ordinary least squares approach for the GLM used in this paper. 

The coefficients returned by the GLM were converted to a t score by dividing by the 

estimated standard error so as to create a normalized response. The t score measures the 

reliability of the response rather than the magnitude, which is much more susceptible to 

outlier trials. Thus, for standard analyses, we used t scores (Fig 2–5), though we show that 

analyses using coefficients produce similar results (Supplementary Fig 15). Nevertheless, 

since t scores are also dependent on the number of trials, when we compared variables 

across sessions with this change (Background sessions have 120 trials, while other sessions 

have 100), we used the coefficients themselves instead of the t scores (Fig 6, 7). Since we 
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were primarily interested in using the GLM to obtain interpretable response measures to 

behavioral variables and not predictive accuracy, we did not conduct cross-validation of the 

model to compare models with or without the inclusion of variables. If predictive accuracy is 

of interest, a time-varying kernel approach would be an important addition to our model to 

fit time course of activity within a trial.

To test whether neuronal response evolution fitted a sigmoidal or linear model better, we 

fitted the neuronal response with a 4-parameter sigmoidal model 

response =
p0

1 + e
− p1 . trialblock

p2
+ p3, where response is the CS+ trace response (GLM t 

score is shown in Fig 4 but results with coefficients look similar), trialblock is the trial block 

number (5 trial blocks per session of 50 CS+ trials), and p0, p1, p2 and p3 are the parameters. 

We assumed normal errors for both the sigmoidal and linear models (with slope and 

intercept). Least-squares fitting in this case is mathematically equivalent to maximum 

likelihood estimation. Hence, we used the optimize.curve_fit function in Scipy for this 

purpose. The lower bounds for the parameters were (−∞, 0, 0, −∞) and upper bounds were 

(∞, ∞, ∞, ∞). We found that the least squares fitting sometimes approached a sub-optimal 

local minimum based on the initialization of p1. Thus, we tested 10 logarithmically-spaced 

possible initial values for p1, viz. 100, 101,…, 109. We picked the solution with the lowest 

mean squared error. We then calculated the Akaike Information Criterion54 for both the 

sigmoidal and linear models as

AIC = 2k + nln(MRSS) + 2k(k + 1)
n − k − 1

, where k is the number of parameters, n is the number of trial blocks, MRSS is the mean 

residual sum of squares for the model. This is corrected for small samples.

We considered an AIC score of sigmoidal model being less than 6 below AIC score of the 

linear model as showing considerable support for the sigmoidal model, given the nested 

nature of the two models. This corresponds to a relative likelihood of the sigmoidal model of 

95.3%54.

We ran the cross-correlation analysis using the correlate() function of Numpy. In order to 

calculate the normalized cross-correlation, if n corresponded to the neural signal and b the 

behavioral signal, we first normalized these by n = n − n
σnln

 and b = b − b
σb

, where 〈 〉 

corresponds to the mean, σ the standard deviation and ln, the length of n (i.e. number of trial 

blocks). This normalization ensured that the cross-correlation remained between −1 and +1. 

The optimal lag (Fig 5) was calculated as the lag of peak cross-correlation.

We ran the decoding analysis (Fig 7c) using the fluorescence signal on individual trials from 

longitudinally-tracked neurons. We focused on trace interval responses for these analyses 

since cue onset responses might reflect sensory responses in addition to associative 

information (e.g. in cluster 2). We tested whether we could correctly identify the CS+ trace 
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interval response versus the baseline response right before CS+ (1 s). This was to test if the 

CS+ trace encoding of neurons remained stable across sessions. We used a linear support 

vector classifier from Scikitlearn (SVC function with a linear kernel). This classifier was 

trained on a reference session (Day before extinction in Fig 7 and Trained in Supplementary 

Fig 14) and the same classifier was used to test prediction accuracy on other sessions. For 

training, we ran a 10-fold cross-validated grid search (using the GridSearchCV function). γ 
and C for the classifier were tested between 10−2, 10−1, …, 102. The decoder with the best 

cross-validation accuracy was used as the optimal decoder on the reference session. The 

prediction accuracy on the test session was calculated using the score method of the 

classifier. The null distribution for the accuracy was calculated as the accuracy when the true 

trial labels (CS+ versus baseline) were compared against randomly permuted versions of the 

labels. 1000 shuffles were performed. The one-tailed p value (clear a priori hypothesis that 

prediction accuracy is higher than null) was calculated as the percentile at which the true 

accuracy lay. Benjamini-Hochberg correction was used to correct p values for multiple 

comparisons between the different test sessions for each cluster.

In order to decode reward seeking behavior during acquisition from the GLM t scores 

(Supplementary Fig 6c, d), we used ridge regression, as implemented in Scikitlearn. This 

was implemented using a leave-one-out cross-validation scheme per animal. Thus, in order 

to predict the behavior on the nth day of acquisition for one animal, we trained a ridge 

regression model on the cue response t scores (Onset, Late and Trace) of all tracked neurons 

on every other day. This model was then used to predict a behavioral performance score 

(auROC of cue versus baseline lick rates) on the nth day. The goodness of fit of the 

regression was calculated for each animal as the R2 defined by 1-sum of squares around 

model/sum of squares around mean of data. Note that defined in this way, R2 can be 

arbitrarily negative if the mean of the model does not capture the mean of the data. To get a 

single measure of how well the regression performed across all animals, we pooled the true 

and predicted performance from all animals since there was no systematic deviation of the 

mean performance between animals, at least for CS+ decoding. A regression between the 

ground truth and the prediction in this case provided a measure of how well the decoding 

algorithm performed across all animals. The weights of the regression plotted in 

Supplementary Fig 6c, d were those that predicted behavioral performance on the day with 

the most accurate cross-validated prediction.

Estimating anatomical coordinates of imaged neurons

In order to estimate the relative location of cells with respect to each other, our primary 

intent was to calculate a single spatial map across animals by adjusting for the different lens 

placements. To do so, we first calculated the placement of the center of the lens for each 

mouse. To get an approximation for the linear optical properties of the GRIN lens, we 

imaged fluorescent beads in agarose gel with and without lens. We then aligned frames 

which corresponded to the exact same pattern of beads between the images obtained with 

and without the lens. Using the spatial positions of these frames, we estimated the 

transformation between object distance and image distance. This was corrected for the 

refractive index of the tissue (assumed to be the same as sea water, 1.38). We also similarly 

estimated the transverse magnification, which was negative (inverted image). The above 
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procedure was only done for one GRIN lens and hence, we do not know how much 

variability exists across lenses. Since our primary intent was simply to align the fields of 

view across mice, we used these to transform each field of view onto a single relative spatial 

map based on the center of the lens in each animal, and do not specify absolute spatial 

locations of cells.

Testing for differences in Pearson’s correlation between different pairs of sessions:

The stability of neural encoding across sessions can be evaluated by testing whether activity 

is correlated between sessions (Supplementary Fig 14), with the caveat that non-responsive 

neurons may contribute to this correlation. The primary hypotheses we were testing were: is 
there significant correlation in neuronal responses after learning, and, is this correlation 
higher than seen prior to learning?

Thus, it was decided that for comparisons of correlations between session pairs, the relevant 

tests would be against the Day before Trained → Trained correlation, as shown in 

Supplementary Fig 14c. In principle, every possible pair of comparisons could have been 

conducted. However, comparisons other than those shown in the figure were not of interest. 

Thus, the multiple comparisons correction was performed only across the 5 comparisons of 

interest.

In order to test for difference in correlation, we treated non-overlapping pairs of sessions 

(e.g. Day 1 → Day 2 against Day before Trained → Trained) as independent. Overlapping 

pairs of sessions (e.g. Day 1 → Trained against Day before Trained → Trained) were 

treated as dependent measures. For the independent comparisons, we tested for significant 

difference in Pearson r’s by employing Fisher’s r to z transformation55. For the dependent 

comparisons, we used Steiger’s test56.

Optogenetics:

We followed our previously established protocol for conducting behavioral optogenetics 

studies57. Briefly, wild type mice in the OFC-CaMKII group were injected with AAV5-

CaMKIIα-eNpHR3.0-mCherry (n=20 mice, ~ 4×1012 infections units/mL) or AAV2-

CaMKIIα-eNpHR3.0-eYFP (n=3 mice, ~ 2×1012 infections units/mL) for inhibition of cells. 

Control animals in this group were injected with AAV5-CaMKIIα-mCherry (n=11 mice, ~ 

4×1012 infections units/mL). The vmOFC injection coordinates were (+2.6 mm AP, +/−0.83 

mm ML, −2.39 mm DV) from bregma at a 10 degree angle. In all animals, there was 

considerable expression of the virus. The expression was limited to the ventral and medial 

parts of OFC, with no expression in the lateral part of OFC or infralimbic cortex. While 

there was expression in the rostral prelimbic cortex in some mice, the optic fiber was further 

ventral, preventing light from being focused on to the rostral prelimbic cortex. For the OFC-

VTA group, we injected AAV5-EF1α-DIO-eNpHR3.0-mCherry (n=15 mice, ~4×1012 

infectious units/mL) or AAV5-EF1α-DIO-eNpHR3.0-eYFP (n=4 mice, ~8×1012 infections 

units/mL) in vmOFC, and CAV2-Cre (~6×1012 infectious units per mL) in VTA. Control 

animals in this group were injected with AAV5-EF1α-DIO-mCherry (n=7 mice, ~4×1012 

infectious units/mL) or AAV5-EF1α-DIO-eYFP (n=4 mice, ~6×1012 infectious units per 

mL) in vmOFC and CAV2-Cre in VTA. The VTA injection coordinates were (−3.2 mm AP, 
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+/−0.6 mm ML, −4.5 mm DV) from bregma. All injection volumes were 500nL bilaterally. 

In all of the above cases, the optic fibers were placed bilaterally in vmOFC at (+2.6 mm AP, 

+/−0.83 mm ML, −1.89 mm DV) at 10-degree angles from bregma. All animals received 

532 nm laser delivered at 10 mW power at the fiber tip. In all experiments, laser was 

delivered on every CS+ and CS- trial for each session. We waited at least 3 weeks after 

OFC-CaMKII surgeries and 6 weeks after OFC-VTA surgeries to ensure sufficient virus 

expression. Within each experiment, all groups were age-matched. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those typically 

used in the field.

The experiment with inhibition of cells during initial learning was done for both OFC-

CaMKII and OFC-VTA groups (Fig 2g, h, Fig 3f, g). The experiment during initial learning 

addressed whether inhibition of cells during either the first second after cue onset (cue onset 

group) or the one second trace interval (trace group) produced any effect on initial learning. 

The numbers of animals ran on the acquisition experiment were 11 cue onset, 12 trace and 

11 controls for OFC-CaMKII, and 8 cue onset, 7 trace and 7 controls for OFC-VTA. 

Controls were counterbalanced across experiments to either receive inhibition during the cue 

onset period or the trace period and were pooled. Every animal was run with laser present on 

the first 8 conditioning days. The 9th conditioning day was run without laser to test if the 

laser caused any significant change in the expression of behavior, which was also tested after 

learning. Behavioral performance for either cue was measured as the auROC between the 

two distributions formed by mean lick rate during the cue (3 s) versus baseline (1 s).

Optogenetics analysis:

We had decided a priori that in order to test the rate of initial learning (Fig 2h, Fig 3g), we 

would test performance on the first day that the group that attains highest peak performance 

reaches stable performance. This was to ensure that a statistically significant effect on 

behavioral acquisition is due to an effect during learning instead of an effect after learning is 

established. More specifically, this test would separate the following two scenarios: 1) 

differences between groups arising only after all groups reach peak performance (i.e. an 

effect after learning), and 2) differences between groups arising before any group reaches 

peak performance (i.e. an effect during learning). To identify the test day as described above, 

we fit a sigmoid function to the behavioral evolution and identified the day that it reached 

99% of the plateau level. For OFC-CaMKII, this was day 7.05 for the control group and for 

the OFC-VTA group, this was day 6.80 for the trace interval group. Since these were 

fractional, to be conservative, we averaged the performance for the two days surrounding the 

threshold for each animal and performed pairwise comparisons between the cue onset group 

and the control, as well as the trace and the control group. These two comparisons were 

corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate 

correction. Each test was performed by using a bootstrapping procedure to calculate a 

sampling distribution of the difference in means between two groups. The bootstrapping was 

done by resampling with replacement from animals, and within each animal, from trials. In 

order to calculate the expected distribution under the null hypothesis of equal means, the 

above sampling distribution was shifted to have zero mean and then the 2-tailed p value of 

the test was found by calculating twice the percentile of the observed difference.
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One potential caveat exists for the analysis procedure described above. In principle, it is 

possible that the difference between the groups occurs by chance on the test sessions. In this 

case, the difference is not due to any patterned difference in acquisition but due to a chance 

difference on the test day. Thus, if the previous test (i.e. on the day that the best group 

reached peak performance) produced a statistically significant result, we performed an 

additional test to check for a patterned difference. To test for any patterned difference, we 

first calculated the difference in mean performance for each experimental group (cue onset 

and cue trace) from the control group for each session. We then tested if the set of per-

session differences excluding the test sessions has a mean significantly different from zero. 

We then corrected for the multiple comparisons resulting from comparisons for both 

experimental groups.

One of the OFC-VTA control animals died after the initial learning and hence, this animal 

was not included for any further experiment. After the acquisition experiment, we first gave 

animals a break of a few days prior to running further experiments. We next tested if 

inhibition produced any effect on the expression of a learned behavior. In order to perform 

these experiments, we trained all groups of animals to the same level. After equivalent 

performance level was reached for all groups, we ran one session with laser presented on all 

trials during the session and compared performance to the previous session without laser for 

each animal. We ran two separate experiments for laser timings: one with the 1 second cue 

onset-trace-control laser experiment (for both CS+ and CS-) and another with laser during 

the 3 second period between cue onset and reward time (for both CS+ and CS-) 

(Supplementary Fig 7). We found no difference in performance due to the presence of laser 

in any case on the expression of learned behavior. The expression test was run at 100% 

probability for OFC-VTA and 50% for OFC-CaMKII. The numbers of animals run for this 

test were 7 cue onset, 8 trace and 7 controls for OFC-CaMKII; 15 experimental animals and 

7 controls for inhibition during the full 3 second delay; 8 cue onset, 7 trace and 6 controls 

for the OFC-VTA group; and 18 experimental and 10 control animals for inhibition during 

the full 3 second period.

For the OFC-VTA group, in addition to the acquisition and expression experiments 

described above, we also tested if the trial-by-trial adaptation of reward seeking causally 

depended on the signaling of reward within OFC-VTA neurons. Since we did not observe 

trial-by-trial adaptation of CS+ trace interval responses (Supplementary Fig 11), we 

hypothesized that a functional role of OFC-VTA neurons, if any, in driving trial-by-trial 

adaptation would be restricted to the reward consumption period. Thus, we ran two separate 

experiments: one with inhibition during 3 s from cue onset (as a control) and another during 

3 s from reward delivery or omission (Fig 8a). In order to test trial-by-trial adaptation in 

reward seeking, we calculated the net lick rate over baseline for trials in which the previous 

trial was rewarded minus the same measure for trials in which the previous trial was 

unrewarded (Fig 8c). The effect of laser on this measure of trial-by-trial adaptation 

(Learning Index) was then calculated by subtracting the Learning Index on the laser session 

and the previous session without laser (Fig 8e). This change from the pre-laser session was 

compared between the experimental and control groups. The comparison was done using a 

Welch’s t test so as to not assume homoscedasticity. 18 experimental animals and 10 control 

animals were run for this test.
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Lastly, we tested the effect of inhibition of OFC-VTA neurons on extinction of a learned 

cue-reward pairing. Prior to running extinction, we ensured that every animal maintained 

high cue discrimination (> 0.4, i.e. auROC > 0.7) for at least two sessions on a 100% 

contingency. On the day of running extinction, we first ran a pre-extinction session of 50 

trials (25 CS+ and 25 CS-) at 100% contingency to ensure that animals maintained high 

performance on the day. This performance level was equal for all groups (Fig 8g). During 

extinction (0% probability of reward), laser was presented for four seconds after cue offset. 

Since learning about extinction could not have happened until after the first trial, we defined 

the early extinction period as the next 5 trials. Late extinction was defined as the last 5 trials. 

After the extinction session, we ran another extinction session on the next day without laser. 

On this session, the amount of anticipatory licking on the first trial provided a measure for 

how much the animals recalled extinction. If animals licked at high levels during the first 

trial, it suggests a deficit in the memory of having learned the extinction contingency. A total 

of 15 experimental animals and 6 control animals were run on the extinction test.

Patch-clamp electrophysiology:

Whole-cell recordings of GCaMP6S-expressing neurons were performed 5–6 weeks after 

microinjections of AAVdj-CaMKII-GCaMP6S into each hemisphere of vmOFC (500 nL/

side). Following surgery, mice were anesthetized with pentobarbital (50 mg/kg) and perfused 

with ice-cold (0–2 °C) sucrose cutting solution composed of the following in mM: 119 

NaCl, 1.0 NaH2P04, 4.9 MgCl2, 0.1 CaCl2, 26.2 NaHCO3, 1.25 glucose (305–310 mOsm). 

Following perfusion, brains were removed within one minute, and coronal sections 

containing vmOFC (300 μm thick) were taken using a vibrating blade (Leica, VT 1200). 

Sections were then incubated in artificial cerebral spinal fluid (aCSF; 32 °C) containing the 

following in mM: 119 NaCl, 2.5 KCl, 1.0 NaH2P04, 1.3 MgCl2, 2.5 CaCl2, 26.2 NaHCO3, 

15 glucose (305–310 mOsm). After one or more hours of recovery, slices were constantly 

perfused with aCSF and visualized using differential interference contrast through a 40x 

water-immersion objective mounted on an upright microscope (Olympus BX51WI). Whole-

cell recordings were obtained using borosilicate pipettes (3–6 MΩ) back-filled with internal 

solution containing the following in mM: 130 K-gluconate, 10 KCl, 10 HEPES, 10 EGTA, 2 

MgCl2, 2 ATP, 0.2 GTP (pH 7.35; 285 mOsm).

Current-clamp recordings were obtained from GCaMP6S-expressing neurons to determine 

how calcium dynamics in vmOFC neurons correlated with action potential frequency. First, 

to determine how induction of action potentials from a quiescent state affected GCaMP6S 

fluorescence, neurons were held below resting membrane potential (−70 mV), and 4 spike 

trains of 1, 2, 4, and 8 action potentials were evoked in pseudorandom sequences (1 per 

neuron, 4 total sequences) using 2 ms, 2 nA depolarizing pulses (20 Hz). Each spike train 

was separated by 100, 500, 1000, or 5000 ms (all 4 timing configurations per neuron), 

resulting in 16 distinct protocols, which allowed us to identify how different spiking patterns 

might influence the dynamics of our recorded GCaMP6S signals. Next, we determined how 

changes in activity in tonically-firing vmOFC neurons might influence the calcium 

dynamics of those cells. Neurons were held below resting membrane potential (−70 mV), 

but baseline action potentials were evoked using the 2 ms, 2 nA depolarizing pulses (8 Hz). 

During this tonic firing, a short period of inhibition was introduced, wherein no spiking was 
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enforced for 3 seconds. In addition, after another period of tonic firing (8 Hz), we elevated 

the enforced spike rate (16 Hz) for 1 second. Electrophysiological data acquisition occurred 

at 10 kHz sampling rate through a MultiClamp 700B amplifier connected to a Digidata 

1440A digitizer (Molecular Devices). Data were analyzed using Clampfit 10.3 (Molecular 

Devices). GCaMP6S fluorescence dynamics was visualized using a mercury lamp 

(Olympus, U-RFL-T) and microscope-mounted camera (QImaging, optiMOS). Imaging data 

were acquired through Micro-Manager software, and extracted through hand-drawn regions 

of interest for each recorded neuron using ImageJ.

Retrograde tracing:

Retrograde tracing allowed us to identify the anatomical location and organization of OFC-

VTA neurons (Supplementary Fig 8). Mice were injected with retrogradely-trafficked 

viruses encoding eYFP or tdTomato (AAV2retro-hSyn-eYFP; ~2×1012 infectious units/mL; 

AAV2retro-CAG-tdTomato; ~2×1012 infectious units/mL) into the VTA (500 nL/side; AP: 

−3.20 mm, ML: +/−0.60 mm, DV: −4.50 mm from bregma). Five weeks following surgery, 

mice were sacrificed for histology (n=2), and a student blind to all experiments counted the 

number of eYFP or tdTomato expressing neurons in vmOFC. Next, the anatomical location 

of each cell was measured using ImageJ.

Confocal microscopy:

Histological images were captured using a 20x air objective on a confocal microscope 

(model 710) with ZEN 2011 software (Carl Zeiss, Germany). Laser wavelengths and power 

intensities were optimized for each section and fluorophore. Tiled scans were stitched online 

and z-stacks were taken at 1 μm. The resulting stack was then averaged across all sections 

resulting in a maximum intensity projection, which was then presented or analyzed without 

further processing in ImageJ.

Data filtering and potential biases in data collection:

Mice were randomly selected for each of the experimental condition prior to surgery. As 

much as possible, littermates were used as controls for each optogenetic experiment. The 

experimenter was not blind to the virus injections. In the OFC-CaMKII optogenetic 

inhibition study (34 mice total), mice had to be run in three separate cohorts as it was 

practically infeasible to run more than 12 animals at a time due to a limitation on the number 

of behavioral boxes. These cohorts showed similar behavior and hence, were pooled for data 

analysis. In the OFC-VTA experiments, we expected experimental results to be less variable 

as the imaging data showed reduced heterogeneity across neurons (fewer clusters). Thus, we 

decided to run the experiments in a total of 23 mice. In this case, all animals were run in a 

single cohort as we added additional behavioral boxes. The order of running animals on any 

given day was generally fixed for a given animal but the animals run simultaneously across 

boxes were counterbalanced across each group for every experiment. Each experimental 

group was also counterbalanced between behavioral boxes. Every animal was given a 

supplemental water amount in addition to a behavioral session based on the requirement to 

maintain stable weight. This was done immediately after the session. This additional amount 

was different depending on the season during which the experiment was conducted (varying 

between ~0.3–0.9 mL on an average) but was similar across experimental and control groups 
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within a cohort. The only mice excluded during the study were those in which experiments 

could not be conducted properly, either due to death or damage to the optic fiber prior to or 

during experiments, or incorrect delivery of light due to faulty patch cable connection.

Please check the “Life Sciences Reporting Summary” for a compilation of important details 

regarding the experimental and analytical pipeline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. vmOFC CaMKIIα-expressing (OFC-CaMKII) neurons display heterogeneous response 
profiles reflecting cue, reward, and associative information following behavioral acquisition.
a. Headfixed Pavlovian conditioning, b. Task schematic, c. Example behavioral session from 

a trained animal showing anticipatory licking to CS+ but not CS-. d. Evolution of behavioral 

discrimination between cues (Methods) for 5 individual mice from whom imaging data were 

acquired. e. Schematic of imaging, f. Example standard deviation projection of activity 

across time from a trained animal. g. Example calcium dynamics showing normalized 

fluorescence signal (Methods). h. Example neuron’s (arrow) normalized fluorescence signal 

aligned to cue (peristimulus time histogram, or PSTH) with trials sorted by delay to first lick 

(see Supplementary Fig 2 for licking behavior and more example neurons). White bars 

indicate start of next trial. i. PSTH showing mean normalized signal across n=50 trials. 

Shaded region is standard error of the mean. Please note that we show PSTHs only to 

provide a visualization of raw data, and not as a directly analyzable signal (Methods). j. 
Classification of neurons into 9 response clusters based on their trial-averaged activity after 

animals were trained (Methods, Supplementary Fig 3, 4). PSTHs of individual neurons are 

shown and sorted on the y-axis. Bottom traces represent population average within each 

cluster. Clusters are ordered by mean activity between cue and reward. k. Relative spatial 

location across field of view for two example clusters (A: anterior, P: posterior, M: medial, 

L: lateral, Methods). l. Relative percentage shift in the mean location of a cluster with 

respect to the mean of all neurons, normalized to the cluster with the maximum shift along 

each cardinal axis (D: dorsal, V: ventral, raw data in Supplementary Fig 3e). Error bars 
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represent standard error of the mean. Statistical results are in Supplementary Table 1 for all 

figures.
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Fig. 2. vmOFC neuronal activity exhibits cue onset responses, and evolves responses reflecting 
cue-reward associations during behavioral acquisition.
a. Activity projection images from one animal (yellow in Fig 1d) showing that the same cells 

can be tracked across days. b. Example neurons’ PSTH around cues shown for every day of 

behavior from naïve to trained (CS+ solid, CS- dashed) c. Schematic of the epochs analyzed 

using a GLM (Methods) fit to individual neurons’ deconvolved fluorescence. d. PSTHs on 

Day 1 and Trained, recorded from all longitudinally-tracked neurons. Neurons are sorted by 

their responses on Trained, with the same ordering maintained on Day 1. e. Mean GLM t 

scores (Methods) of responses across a cluster to CS+ and CS- during the onset (1 s after cue 

onset) or trace period. Three example clusters are labeled. It is possible that GLM estimates 

are biased against detecting suppression in activity (Supplementary Fig 1c) f. Schematic of 

optogenetic experiment to target OFC-CaMKII neurons. g. Schematic for temporally-

specific disruption of vmOFC activity during either the cue onset or the trace interval 

epochs. h. Behavioral acquisition of reward seeking to CS+ while OFC-CaMKII neurons are 

inhibited during the cue onset or trace period, or in control animals without opsin expression 

(Methods). Inhibition during the cue onset period suppressed learning, but not expression of 

learned behavior (Supplementary Fig 7) Measure of center is the mean and error bars 

represent standard error of the mean. * represents p<0.05 (see Supplementary Table 1 for 

exact p values, sample sizes and tests).
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Fig. 3. OFC-VTA neurons convey information selective to cue-reward associations.
a. Schematic of imaging experiment to record from vmOFC neurons projecting to VTA 

(OFC-VTA). b. Example activity projection maps of OFC-VTA cells on Day 1 and Trained. 

c. Fraction of neurons per cluster in OFC-VTA compared to OFC-CaMKII population. We 

restricted further analysis to those clusters in which we could identify at least 2 cells on 

average per animal in the imaging plane tracked over learning, which also excluded cluster 6 

d. PSTHs during Trained session showing responses of clusters. e. PSTHs of neurons in 

these clusters on Day 1, showing the absence of cue onset responses. f. Schematic of 

optogenetic experiment to target OFC-VTA neurons. g. Behavioral acquisition of reward 

seeking to CS+ during inhibition of OFC-VTA neurons showed no effect during cue onset or 

trace periods. Reduced behavioral performance of all groups compared to OFC-CaMKII 

group is likely due to a difference in age (Methods). Measure of center is the mean and error 

bars represent standard error of the mean.
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Fig. 4. Acquisition of associative responses is gradual and not sudden.
a. The CS+ trace GLM t score of 3 example neurons over trial blocks (~10 CS+ trials per 

block) of behavioral acquisition for three example neurons. Visually, it is apparent that these 

show gradual changes over acquisition. The slope of the best-fit line to these changes was 

used to quantify neuronal learning. b. The distribution of slopes of CS+ trace response 

evolution over acquisition for all neurons within a cluster for both OFC-CaMKII and OFC-

VTA neurons. Clusters 1, 2, 5 and 6, and cluster 1 and 5 were found to have significant mean 

slope for the OFC-CaMKII and OFC-VTA neurons, respectively (“learning-related clusters”, 

see text). c. We tested whether there was sufficient support to claim a sigmoidal (sudden) 

transition in neural responses across behavioral acquisition. The left panel shows possible 

shapes for neuronal response evolution that are consistent with a sigmoidal model as 

opposed to a linear (gradual) model. The right panel shows the percentage of neurons with 

considerable support for sigmoidal evolution (Methods), showing that very few neurons had 

response evolution consistent with a sudden transition in responses. CS+ cue onset responses 

of cluster 1 were also analyzed since these contained associative information (see text).
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Fig. 5. Different time courses of learning across clusters.
a. Behavioral evolution and the neural response evolution of an example neuron whose 

response evolution leads behavior. b. Cross-correlation analysis showing that peak cross-

correlation is at a negative optimal lag, i.e. with neural response leading behavior. c. 

Behavioral and neural response evolution shifted by the optimal lag, showing high 

correlation. d-e. Same as a-c but for a neuron whose evolution lags behavior (positive 

optimal lag). g. Distribution of optimal lags for neurons within a cluster for the learning-

related clusters of OFC-CaMKII and OFC-VTA neurons. Trace interval response of cluster 1 

shows a significant negative mean lag, but no other response, including cue onset response 

of cluster 1, shows significant negative lag.

Namboodiri et al. Page 35

Nat Neurosci. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Differential sensitivities of clusters to two forms of contingency degradation.
a. The CS+-reward contingency was degraded in two ways. In one, the probability of reward 

was reduced to 50%. In the other, all features of the association including probability 

(100%), magnitude and delay of the reward were held constant, but random unpredictable 

rewards were delivered during the intertrial interval (Methods). b. Average PSTH across all 

neurons within a cluster for OFC-CaMKII clusters 1 (n=178 neurons tracked across all 

sessions) and 5 (n=168 neurons tracked across all sessions; shading is 95% confidence 

interval, see Supplementary Fig 14 for individual neuronal PSTHs from all learning-related 

clusters). These show the considerable reduction in CS+ responses in the Background 

session, which recovers in the after Background session (Methods). c. The GLM coefficients 

(see Methods) for every tracked neuron between the Trained and 50% session from clusters 

1 and 5 for both OFC-CaMKII and OFC-VTA neurons. d. Average difference in GLM 

coefficients between 50% and the Trained sessions for both OFC-CaMKII and OFC-VTA 

learning-related clusters. e, f. Same as c and d for comparison between Background and 

after Background sessions. For d and f, measure of center is the mean and error bars 

represent standard error of the mean. * represents p<0.05 (see Supplementary Table 1 for 

exact p values, sample sizes and tests). See Supplementary Fig 10 for results from all 

clusters.
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Fig. 7. Learned associative information is stably maintained after extinction, especially in OFC-
VTA neurons.
a. Average PSTH of all neurons within a cluster (shading is 95% confidence interval) is 

shown for Day before extinction (same as “after Background” in Fig 6b), First day of 

extinction, Last day of extinction and Reinstatement (see Supplementary Fig 13 for PSTHs 

of individual neurons from all learning-related clusters). The magnitude of the CS+ trace 

interval responses is high even after extinction and reinstatement, especially for OFC-VTA 

clusters. n=(178, 168, 27, 23) tracked neurons across all sessions were included for clusters 

1 and 5 from OFC-CaMKII and clusters 1 and 5 from OFC-VTA neurons. b. (Top) 
Schematic for two possible ensemble codes during extinction with each dot representing the 

response of a neuron. In one, there is a remapping of ensembles, such that a new ensemble 

represents the CS+-reward association after extinction. In the other, there is a stable 

ensemble representing the association after extinction. (Bottom) Test for stable ensemble 

coding by checking whether a stable decoder trained on Day before extinction can predict 

CS+ trace responses on a given trial after extinction and reinstatement (Methods). c-e. 

Scatter plot of CS+ trace coefficients on Day before extinction versus First day of extinction 

(c), Last day of extinction (d), and Reinstatement (e). f. Results of decoding on the 
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extinction and reinstatement sessions for clusters 1 and 5 in OFC-CaMKII and OFC-VTA 

neurons (see Supplementary Fig 13 for all clusters, as well as behavior during extinction). 

Cross-validated accuracies for the Day before extinction were 0.83 for OFC-CaMKII 

clusters 1 and 5, and 0.76 and 0.85 respectively for OFC-VTA clusters 1 and 5. Measure of 

center is the mean. * represents p<0.05 (see Supplementary Table 1 for exact p values, 

sample sizes and tests).
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Fig. 8. OFC-VTA reward and trace interval responses contribute to behavioral updating.
a. Disruption of OFC-VTA activity during either the cue-reward delay or the reward 

consumption period (3 s after reward delivery) had no effect on behavioral performance as 

measured by baseline-subtracted anticipatory licking Measure of center is the mean and 

error bars represent standard error of the mean for all panels in the figure. * represents 

p<0.05 (see Supplementary Table 1 for exact p values, sample sizes and tests) for all panels 

in the figure. b. Distribution of baseline-subtracted lick rates on a given trial of the 50% 

session across all OFC-VTA imaging animals, split by whether the previous trial was 

rewarded or unrewarded (see Supplementary Fig 11 for OFC-CaMKII animals). c. 

Calculation of a within-session Learning Index. d. Example control (mCherry/eYFP) or 

experimental (eNpHR3.0) animals showing baseline-subtracted lick rates across n=50 trials 

split by reward history on both a pre-laser and a laser session. This shows a disruption of 

within-session learning due to laser in the experimental, but not the control animal. e. 
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Change in Learning Index due to laser for the population of experimental and control mice. 

Laser was tested during both reward consumption and the cue-reward delay. f. Schematic for 

testing the role of OFC-VTA activity after cue offset on extinction learning and memory. g. 

Baseline-subtracted lick rates show faster extinction learning for controls compared to 

experimental mice (Methods). Baseline subtracted lick rate on the first trial of a subsequent 

extinction session in the absence of laser (extinction recall) shows degradation of extinction 

memory in OFC-VTA inhibition animals.
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