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P H Y S I C S

A model of collective behavior based purely on vision
Renaud Bastien1,2*† and Pawel Romanczuk3,4†

Classical models of collective behavior often take a “bird’s-eye perspective,” assuming that individuals have access 
to social information that is not directly available (e.g., the behavior of individuals outside of their field of view). 
Despite the explanatory success of those models, it is now thought that a better understanding needs to incorpo-
rate the perception of the individual, i.e., how internal and external information are acquired and processed. In 
particular, vision has appeared to be a central feature to gather external information and influence the collective 
organization of the group. Here, we show that a vision-based model of collective behavior is sufficient to generate 
organized collective behavior in the absence of spatial representation and collision. Our work suggests a different 
approach for the development of purely vision-based autonomous swarm robotic systems and formulates a mathe-
matical framework for exploration of perception-based interactions and how they differ from physical ones.

INTRODUCTION
Models of collective behavior often rely on phenomenological inter-
actions of individuals with neighbors [e.g., see (1–8)]. However and 
contrary to physical interaction, these social interactions do not 
have a direct physical reality, such as gravity or electromagnetism. 
The behavior of individuals is influenced by their representation of 
the environment, acquired through sensory information. Current 
models often suggest that individuals are responding to the state of 
movement of their neighbors, their (relative) positions and veloci-
ties, which are not explicitly encoded in the sensory stream. Thus, 
these phenomenological interactions implicitly assume internal pro-
cessing of the sensory input to extract the relevant state variables. 
On the other hand, neuroscience has made tremendous progress in 
understanding various aspects of the relation of sensory signals and 
movement response, yet connections to large-scale collective be-
havior are lacking. Although evidence has been found for neural 
representation of social cues in the case of mice (9) and bats (10), 
details and role of these internal representations remain unclear, 
particularly in the context of coordination of movement. Collective 
behavior crucially depends on the sensory information available to 
individuals; thus, ignoring perception by relying on ad hoc rules 
strongly limits our understanding of the underlying complexity of 
the problem. Besides, it obstructs the interdisciplinary exchange 
between biology, neuroscience, engineering, and physics.

Recently, the visual projection field has appeared as a central fea-
ture of collective movements in fish (11–14), birds (15), humans 
(16), or artificial systems (17, 18). Because of the geometrical nature 
of vision, i.e., the projection of the environment, vision appears as a 
good starting point to explore the relationship between sensory in-
formation and emergent collective behaviors. Some models have 
attempted to relate vision and movement (4, 15, 17, 19). However, 
they use vision as a motivation to refine established social inter-
action models or rely on additional interactions based on informa-
tion not explicitly represented in visual input such as distance or 

heading direction of neighboring individuals. Furthermore, most 
of the above models consider only part of the interaction by assum-
ing constant speed of individuals and focusing solely on their turn-
ing response. A more general modeling approach is required to 
investigate the role of adaptive speed in vision-mediated movement 
coordination.

Here, we propose a radically different approach by introducing a 
general mathematical framework for purely vision-based collective 
behavior. We use a bottom-up approach using fundamental sym-
metries of the problem to explore what types of collective behavior 
may be obtained with as minimal as possible requirements.

MATERIALS AND METHODS
Formally, we can write the movement response of an agent to the 
visual projection field V in three spatial dimensions as the following 
evolution equation for its velocity vector vi (see Fig. 1 for the geom-
etry of the problem)

	​​ ∂​ t​​ ​v​ i​​(t ) = ​F​ ind​​(​v​ i​​ ) + ​F​ vis​​ [ ​V​ i​​(​​ i​​, ​​ i​​, t ) ]​	 (1)

The first term accounts for the self-propelled movement of an 
individual. Here, we used a simple linear propulsion function: Find = 
[v0 − vi(t)]v̂i(t), with v0 being the preferred speed of an individual, 
 being the speed relaxation rate, and v̂i being the heading direction 
vector of the focal individual with |v̂i| = 1. The second term accounts 
for the movement response to the visual sensory input given by the 
visual projection field Vi(i,i,t) experienced by the individual i. i and 
i are the spherical components relative to the individual i, and Fvis 
is an arbitrary transformation of the visual field. This function does 
not have an explicit dependence on the other individual properties.

The physical, visual input corresponds to a spatiotemporal inten-
sity and frequency distribution of the incoming light. In our frame-
work, we considered V to be an abstract, arbitrary representation of 
the visual input. In particular, V can implicitly account for relevant 
sensory (pre-)processing, e.g., it can represent colors or brightness 
of the visual scene. Furthermore, V can also account for higher-order 
processing of visual stimuli such as object identification and classi-
fication. Equation 1 describes the projection of the full information 
encoded in the visual field onto the low-dimensional movement 
response and must hold for any particular choice of visual field.
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To simplify the description, we limited our analysis first to the 
two-dimensional (2D) case. Without any loss of generality, Fvis can 
be written as

	​​ F​ vis​​ [V ] = ​∫−​ 

  ​​d ​​ i​​ G [V(​​ i​​,t ) ] h(​​ i​​)​	 (2)

The functional G[V] encodes what information from the visual 
input influences the movement response and how. An arbitrary G 
can be expanded as a series of derivative in space and time and power 
series of the visual field. This accounts for any function of the visual 
projection field, e.g., specific functions of the visual cortex such as 
detection of edges in all directions or optical flow. The function 
h(i): ℝ → ℝ2, on the other hand, encodes the fundamental proper-
ties of the perception-motor system (“the observer”) independent 
of the specific visual input, e.g., symmetries of the movement re-
sponse, or spatial dependence of perception (e.g., blind angle). Ex-
perimental data in fish have shown that the variation of orientation 
depends on the left-right position of the other individual, while 
variations of speed depend on the front-back position. The compo-
nents of h are therefore expanded as a Fourier series in .

Up to this point, no approximation has been made; the model is 
as general as possible regarding response to an arbitrary visual field. 
To develop a systematic understanding of how collective behavior 

can arise from the visual field, we proposed a minimal model of 
vision-based interactions. First, we assumed that individuals respond 
to an instantaneous, binary visual field, i.e., the visual projection field 
V (, t) only accounts for the presence or absence of objects and no 
other properties. Second, we considered an expansion of an arbi-
trary functional G in terms of the lowest order of retinal space and 
time derivatives in V. The velocity vector of an agent in 2D is deter-
mined by the velocity with respect to the heading direction vi(t) and 
the polar angle determining the heading vector i(t). The simplest 
equations of movements, satisfying the fundamental symmetries 
from (20), read

​​
​​∂​ t​​ ​v​ i​​​(​​t​)​​  =  γ​(​​ ​v​ 0​​ − ​v​ i​​​(​​t​)​​​)​​+​

​  
​​∫−π​ 

π
  ​​ d ​​ i​​ cos ​​ i​​ ​α​ 0​​​(​​ − ​V​ i​​​(​​ ​​ i​​, t​)​​ + ​α​ 1​​ ​​(​​ ​∂​ i​​ ​V​ i​​​(​​ ​​ i​​, t

​)​​​)​​​​ 2​ + ​α​ 2​​ ​∂​ t​​ ​V​ i​​​(​​ ​​ i​​, t​)​​​)​​​
​​ (3)

	​​∂​ t​​ ​​ i​​(t ) = ​∫−​ 

  ​​d ​​ i​​ sin ​​ i​​ ​​ 0​​(− ​V​ i​​(​​ i​​,t ) +  ​​ 1​​(​∂​ i​​ ​V​ i​​(​​ i​​, t ) ) ​​​​ 2​ + ​​ 2​​ ​∂​ t​​ ​V​ i​​(​​ i​​,t ) )​	

(4)

The first terms in the brackets in the integral describe the move-
ment response to the perceived angular area (subtended angle) of the 
objects in the visual projection; the second ones describe the response 
to edges, while the third ones account for dynamical changes such as 
translation or loom. The coefficients m and n are arbitrary constants 
obtained from the expansion of G. In the following, we showed that 
coordinated collective movement can also emerge without considering 
temporal derivatives, i.e., by setting 2 = 2 = 0. In the following, our 
analysis is restricted to a simple case where only a binary projection 
of the visual field is considered (Fig. 1, C and D).

RESULTS
The first terms associated with the angular area of objects in the vi-
sual projection creates a short-range interaction that decreases as 
the object gets further (Fig. 2 and fig. S4). On the contrary, the second 
terms with the first derivative with respect to the visual field coordi-
nate yield long-range interaction due to the nonlinearity of the sine/
cosine function (Fig. 2 and fig. S4). Thus, these lowest-order terms, 
neglecting temporal derivative, are sufficient to generate short-
range repulsion and a long-ranged attraction: The individual is re-
pelled by the subtended angle of the object on its visual field while 
getting attracted by the edges. On the basis of the choice of corre-
sponding interaction parameters, we can define an equilibrium dis-
tance, where attraction and repulsion balance (see the Supplementary 
Materials for details). This equilibrium now introduces a character-
istic metric length scale into the system despite the lack of any rep-
resentation of space at the level of individual agents.

The front-back equilibrium distance is ​​L​eq​ (f b)​ = BL / 2​​ 1​​​, whereas the 
left-right equilibrium distance is ​​L​eq​ (lr)​ = BL / 2​​ 1​​​, with BL (body length) 
being the diameter of individual agents. Here, we will focus on the 
case 1 = 1, i.e., where the attractive terms associated with the edges 
are equal for turning and acceleration, resulting in spatially isotropic 
equilibrium distance ​​L​ eq​​ = ​L​eq​ (f b)​ = ​L​eq​ (lr)​​ in 2D (see the Supplementary 
Materials for details).

A systematic exploration of the collective behavior of multiple 
agents interacting through the minimal vision model reveals the 
emergence of a wide range of collective behaviors for different pa-
rameter sets and group sizes (Figs. 3 to 5). In particular, we observe 
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Fig. 1. Geometry of the system. (A) A set of disks with diameter BL (body length) 
is considered. Each disk is propelled in the direction i with a velocity vi(t). (B) A 
co-moving referential can be defined following the movement of the disk j. This 
referential is centered on the position of the disk, (xj,yj), and oriented so that the 
vertical axis is aligned with the direction j. The position of other objects can be 
recovered through their left-right (dLR) and front-back (dFB) distances relative to the 
disk j.  represents the swiping angle. (C) Representation of the visible field of 
the pink disk through ray casting. The position of the eye is considered to be at the 
center of the disk with a fully circular point of view, i.e., no blind angles. (D) The 
projection of the visual field in two dimensions (2D) is given by a 1D function. On 
top, objects can be represented by their colors. However, on the bottom part, a 
binary visual field is given. It is not possible to distinguish individuals.
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robust self-organized collective movements for a large range of pa-
rameters, emerging from the interplay of visual perception and the 
movement response of individuals. The degree of coordination and 
density of the flocks can be quantified through the normalized aver-
age velocity of the group, also referred to as orientational order or 
polarization, and the average nearest neighbor distance (Fig. 5). We 
note that because of the vision-induced long-ranged attraction, 
fragmentation of groups is negligible for the group sizes considered.

Figure 4 gives a qualitative overview over the location of differ-
ent states in the (0, 0) parameter plane, where 0 controls the overall 
acceleration-deceleration response and 0 controls the overall turning 
response. The exact boundary between the different regions depends 
on the number of individuals N and the equilibrium distance Leq. In 
Fig. 5, we show the corresponding quantitative results for neighbor 
distances and polarization values for different N and Leq.

Some general principles can be extracted. First, when both 0 and 
0 are small, i.e., individuals have a very low overall response to the 
visual projection field, no polarization is observed, and the average 
closest neighbor distance is high. Obviously, in the limit of individ-
uals not reacting to their neighbors, they will just move in straight 
lines, and the interindividual distance will naturally increase up to 
infinity. As long as either 0 or 0 is large enough, then the average 
distance to the closest neighbor decreases. Thus, individuals remain 
close to at least one other individual. This distance becomes smaller 
than Leq when there are more than two individuals.

For 0 = 0, where individuals do not modify their acceleration, 
two transitions can be observed. First, as the turning rate 0 increas-

es, the system reaches a swarm-like state, where individuals perma-
nently change their positions within the group in a fluid-like manner 
(Fig. 3D). When 0 is increased even further, the system remains in 
a disordered state, but the average positions of individuals become 
locked in place (Fig. 3E), i.e., individuals move around fixed relative 
positions resulting in a crystal-like group structure.

On the other hand, when 0 is small, i.e., the individual turning 
response is small, three transitions are observed. First, as the linear 
acceleration rate 0 increases, the system reaches a swarm-like state 
where the position of the individuals remains fluid inside the group. 
In this parameter regime, milling states can be observed (Fig. 3C). 
We note that most of the time, no common rotation direction emerges, 
i.e., individuals turn in both directions simultaneously. When 0 is 
increased further, a polarized state is observed, where individuals 
arrange approximately along a line perpendicular to the direction of 
motion (Fig. 3A). This is close to the trivial steady state with indi-
viduals arranged in a perfect line, where, because of occlusions, an 
individual in the middle interacts only with its two closest neighbors 
to the left and right. The shape of the polarized group can be modi-
fied from this line state to an elliptical shape by increasing the turn-
ing rate 0 (Fig. 3B). If 0 is increased further while 0 remains low, 
the group gets stuck in place. Individuals are oscillating forth and 
back along their heading direction: They approach their neighbors 
but then move back when they come too close. Because of the erratic 
individual motion in this regime, no ordered steady state emerges. 
Note that those patterns are modified when the number of indi-
viduals is modified or when Leq is changed (Fig. 4). In particular, 
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Fig. 2. Effects of the terms of Eq. 3 on a focal observer according to the relative position of another disk. (A and B) The white disk is looking straight at the blue disk 
with an eye positioned in the center. When the object is far (A), the subtended angle of the object on the projection of the visual field, V (), is smaller than when the object 
is close (B). When integrating with a cosine function, the subtended angle of the object (orange) results in a larger integration for a closer object, while the edges (purple) 
sum larger elements of the cosine when the object is far. (C) For different relative positions between both disks (Fig. 1B), the subtended angle of the object produces a 
short-range interaction, while the edges create a long-range interaction. The difference of those two terms can create a short-range repulsion (with the subtended angle 
of the object)/long-range attraction (with the edges of the object).
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groups with small numbers of individuals almost always display 
strong polarization.

Two mechanisms may explain the observed decrease in polar-
ization with group size N (Fig. 5): First, because of occlusions, 
agents only perceive visual projections of a subset of the entire 
swarm, which may lead to decreasing global coordination with in-
creasing N. Second and more likely, it is a consequence of the binary 
nature of the visual projection. With increasing group size, the visu-
al projection becomes less and less informative because of increas-

ing overlaps of projections from different individuals at different 
distances up to (partial) saturation of the visual field. This visual 
“confusion” inhibits the ability of the group to coordinate. The lat-
ter mechanism is also in line with smaller parameter regions where 
large, polarized groups can be observed (P > 0.5, N ≥ 10) for the 
smaller equilibrium distance Leq, resulting in higher flock densities 
(Fig. 5).

Last, for large groups, another collective mode becomes very 
prominent. The group assumes a tube-like geometry by spreading 
out in one spatial dimension, with individuals moving mainly along 
the main axis of the tube (Fig. 3E). This state can also be observed in 
smaller groups for small values of Leq.

Besides the ability to exhibit ordered, directed collective move-
ment, an often neglected property is the ability of agents to avoid 
collisions. This might be particularly critically important for artifi-
cial swarm robotic systems. Here, we can identify extended regions 
of parameter space without any collisions overlapping with the re-
gions of ordered motion (Figs. 4 and 5).

The observation of coordinated motion without any collisions is, 
in particular, remarkable, as our minimal vision model does not 
take any time derivatives of the visual field (i.e., optical flow) into 
account and thus lacks any explicit or implicit alignment mechanisms 
[e.g., see (6, 7, 21)]. Furthermore, individuals do not know where 
they are relative to others; thus, they do not use any information on 
the number or the distance of other individuals.

The absence of collision is observed in two main regions of 
the phase diagram (Fig. 5): when the turning rate is high (individuals 
swarm in a crystal-like configuration) and when the acceleration 
term is high. A balance needs to be found between acceleration rate 
and turning rate to generate noncolliding polarized swarm. Be-
cause of the symmetry of the interaction field, modifying linear 
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Fig. 3. Different collective behaviors observed in the model for N = 50 individuals. Unless stated otherwise, ​​​1​ −1​  = ​ ​1​ −1​  =  12.5BL​. (A) Polarized on a line perpendic-
ular to the movement (0 = 0.2 and 0 = 0.01; movie S1). (B) Polarized in a circular shape (0 = 0.5 and 0 = 0.1; movie S2). (C) Rotating. No preferred direction is chosen 
here, so individuals are turning in both directions at the same time (0 = 0.1 and 0 = 0.02; movie S3). (D) Swarm behavior where individuals are moving freely in the swarm 
(0 = 0.5 and 0 = 1; movie S4). (E) Crystal-like configuration (0 = 0.1 and 0 = 10; movie S5). (F) Tube-like configuration (​​​1​ −1​  = ​ ​1​ −1​  =  5BL​, 0 = 0.5, and 0 = 1; movie S6).
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collisions can be avoided.
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acceleration is crucial for reliable avoidance of direct collisions. 
This emphasizes the importance of the individual speed modulation 
[c.f., (20)] and questions the generality of flocking systems where indi-
viduals move with constant speed and respond to others only 
through changes in their direction of motion. The ability to accelerate 
and decelerate is critical for obtaining noncolliding polarized swarm 
in the absence of explicit velocity alignment forces [see also (22)].

Extension to 3D
Extending the model to three spatial dimensions can be performed 
in a straightforward way yet is not trivial. For this, we consider now 
the full visual projection in spherical coordinates for each individual 
by taking into account the corresponding azimuth angle of i. An 
additional equation is required to account for the variation of veloc-
ity in the third dimension. This could be implemented either with 
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Fig. 5. Results of the simulation. (Top to bottom) The average closest neighbor distance, the polarization of the swarm, and the minimal distance observed in the 
simulations (42) as function of 0 and 0. For different numbers of individuals (from left to right), N = 2, 10, 20, 50, and 100, and for two different values of the equilibrium 
distance, 1 = 1 = 25BL (top row) and 1 = 1 = 5BL (bottom row) (BL corresponds here to the diameter of the disk). For the minimal distance, dashed lines represent 
distances that are less than one BL, so the objects are colliding. Together with Fig. 4, those results can be used as a map to navigate the collection of video simulations of 
the model (42). The phase diagram gives a global overview, while this figure provides a more detailed, quantitative view on the system behavior. The letters a, b, c, d, e, 
and f indicate the parameters of the corresponding panels in Fig. 3.
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cylindrical coordinates, through the variation of velocity in the 
z direction vzi (Fig. 6A), or with spherical coordinates where the 
individuals are able to rotate in all spatial directions.

This modeling choice raises new fundamental questions related 
to kinematics, perception, and neural representation in the context 
of collective behavior. If the individuals can rotate in 3D, should the 
visual projection field be linked to the individual and thus be decou-
pled from the outside reference of left-right and up-down in the real 
world? Or should we rather assume an external reference frame, de-
fined, e.g., via gravity, that anchors the visual projection so that the 
horizon remains horizontal? Here, recent insights from neuroscience 
may help resolve these questions, e.g., for bats, the existence of such a 
gravity-anchored reference frame has been recently suggested (23, 24).

Furthermore, the question of the role of edge detection and re-
sponse along different directions becomes conceptually nontrivial. 
Here, in a simple extension of the 2D case discussed above, we focus 
only on left-right edges with the derivative ∂φiV and neglect, for 
simplicity, the impact of up-down edges, ∂iV.

These conceptual questions require a deeper analysis that is be-
yond the scope of this paper. The simple example discussed here is 
meant as a proof of concept that the minimal model can be extended 
to 3D and already yields potentially interesting dynamics for binary 
visual projections. Specifically, we make the following simplifying 
assumptions: Individuals can move in the z direction without rota-
tion in  and independently in the (x,y) plane. The visual field is 
thus always anchored to the real world. Derivatives are only consid-
ered in the left-right direction to be consistent with the analysis 
performed in 2D. The variation of velocity in the z direction is 
performed by comparing elements that are up and down. The variation 

of movement in the horizontal plane is only defined by the individ-
uals that are contained in that plane. The corresponding equations 
of motion read

​​​∂​ t​​ ​v​ ψi​​(t ) = ​∫−π/2​ 
π/2

 ​​ d ​θ​ i​​ cos ​θ​ i​​ ​∫−π​ 
π
  ​​d ​ϕ​ i​​ cos ​ϕ​ i​​ ​α​ 0​​(− ​V​ i​​(​ϕ​ i​​, ​θ​ i​​, t ) +​    

​α​ 1​​ ​(​∂​ ​ϕ​ i​​​​ ​V​ i​​(​ϕ​ i​​, ​θ​ i​​,t ) )​​ 2​ ) + γ(​v​ 0​​ − ​v​ i​​(t ) )
 ​​	

(5)

​​​∂​ t​​ ​ψ​ i​​(t ) = ​∫−π/2​ 
π/2

 ​​ d ​θ​ i​​ cos ​θ​ i​​ ​∫−π​ 
π
  ​​d ​ϕ​ i​​ sin ​ϕ​ i​​ ​β​ 0​​(− ​V​ i​​(​ϕ​ i​​, ​θ​ i​​, t ) +​   

​
β​ 1​​ ​(​∂​ ​ϕ​ i​​​​ ​V​ i​​(​ϕ​ i​​, ​θ​ i​​,t ) )​​ 2​)

 ​​	
(6)

	​​∂​ t​​ ​v​ zi​​(t ) = ​∫−/2​ 
/2

 ​ ​d ​​ i​​ sin ​​ i​​ ​∫−​ 

  ​​d ​​ i​​ ​​ 0​​(− ​V​ i​​(​​ i​​, ​​ i​​, t ) + ​​ 1​​ ​(​∂​ ​​ i​​​​ ​V​ i​​(​​ i​​, ​​ i​​, t ) )​​ 2​)​	

(7)

We propose that in the z direction, the agents are still attracted 
to edges and repelled by angular area of the objects in their visual 
projection. From the pure point of view of symmetry of the system, 
it is then natural that the focal individual does not respond through 
vertical motion to objects in its horizontal plane. In other words, if 
all individuals are located in the horizontal plane, zi = 0 and i = 0, 
no movement direction in z (up or down) can be chosen unless a 
bias is introduced.

One needs to be careful that when objects are moving further 
away, their apparent size in the visual field is reduced not only along 
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colored spheres is randomly distributed in space. The point of view of the red sphere is considered here with an idealized omnidirectional field pointing inside the image. 
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the  axis but also along the  axis [see Fig. 6 (B and C) for an im-
pression of the visual field in 3D]. This leads to a situation where 
both the attraction and the repulsion strength decrease at infinity 
(see the Supplementary Materials for more details on the comparison 
between the 2D and 3D models). The attraction interaction toward 
the edges of objects acts now only at intermediate ranges. However, 
a linear correlation still exists between the equilibrium distances in 
the horizontal plane (x,y) and the values of ​​​1​ −1​​ and ​​​1​ −1​​. It is expected 
that a similar equilibrium distance is given in the direction z by the 
inverse of the vertical edge attraction coefficient ​​​1​ −1​​.

We focus here only on the effect of the equilibrium distance in 
the z direction by setting the equilibrium distances equal in both 
directions in the plane, ​​​1​ −1​  = ​ ​1​ −1​  =  5BL​. We set 0 = 5 and 0 = 2 
so that polarization is observed in the horizontal plane (x,y) when 
0 = 0. Last, we chose a large value for the vertical response param-
eter 0 to reduce convergence time in the z direction: 0 = 10. With 
these settings, we investigate simple metrics quantifying the shape 
and coordination of the swarm, namely, the maximal extension of 
the swarm in the plane (x,y), rmax, and in the direction z, rzmax, as 
well as the average polarization of the swarm (Fig. 6D).

Looking at the extension of the swarm in the z direction, rzmax, a 
sharp transition is observed. When 1 > 1, the system remains 
mainly in the horizontal plane, rzmax < BL, while if 1 < 1, then the 
swarm expands more in the z direction and rzmax reaches values 
higher than 10BL. This qualitative pattern is independent of the 
number of individuals.

This transition can be intuitively understood through the analysis 
of the two equilibrium distances: When 1 < 1, the equilibrium 
distance in the z direction is small compared to the equilibrium dis-
tance in the horizontal plane. The swarm extends in the direction of 
the larger equilibrium distance, i.e., the group flattens and becomes 
quasi-2D. An analogous explanation can be given when 1 > 1. 
Here, the constraints in the horizontal plane dominate. The system 
becomes effectively more compressed in the x,y directions. As the 
individuals come close together in x and y, they need to increase 
their distance in z and the group extends vertically.

As the swarm extends vertically, i.e., when 1 is small, its extension 
in the horizontal plane is also increasing (Fig. 6D). Large extension 
in z results in the dilution of neighbors approximately in the same 
(x,y) plane as the focal individual. Because of the construction of the 
model, individuals respond strongest to others in the same horizon-
tal plane. The stronger tendency of neighbors being located outside 
of the plane of the focal individual results in weaker overall visual 
attraction, which, in consequence, leads to an increase in the horizon-
tal interindividual distance beyond the theoretical value Leq obtained 
in the pure 2D case.

Last, for strongly anisotropic configurations, polarization seems 
to drop. In large swarms, polarization appears to become maximal 
when both equilibrium distances are of the same order of magni-
tude (1/1 ≈ 1). For large z extensions, the reduced coordination 
can be explained again with the overall reduction in visual interac-
tions due to non-negligible z differences between neighbors. For 
small extension in the z direction, we end up effectively with a 2D 
group. Here, the visual confusion in large groups due to binary visual 
projection, as discussed for the 2D case, leads to lower levels of co-
ordination. Thus, more isotropic groups can be viewed as an optimal 
configuration of quasi-horizontal layers, which maximize in-plane 
coordination while minimizing off-plane dilution of visual interac-
tions, resulting in maximal polarization of the entire group.

DISCUSSION
The central aim of this work is the formulation of a mathematical 
framework for collective movement based exclusively on the visual 
projection field. Following a bottom-up approach, in this work, we 
focused on the simplest possible case: individual motion response 
to a binary visual projection field based on lowest-order expansion 
of the vision processing function G[V].

By relating perception and movement response, we have shown 
how a simple purely vision-based model of collective behavior can 
be constructed directly without the need for explicit ad hoc rules of 
coordination between individuals. This model does not specify spatial 
representation, explicit alignment, or even an explicit representation 
of other individuals. Therefore, these features are not essential in-
gredients of social interactions underlying organized collective be-
havior. It is important to emphasize this last point: The model cannot 
be simply rewritten and reformulated as a “classical” social-force 
model in the referential of an individual. Hence, it also calls into 
question the underlying representations implicitly assumed in social-
force models.

Can animals identify the positions in space of other individuals? 
How many neighbors can be represented simultaneously from the 
vision of an individual? The answer to this question should arise 
from neurophysiological data, but their link to the movement re-
sponse needs to be explicitly stated. Furthermore, a spatial scale is 
introduced in the system through the size of the animal and not 
through ad hoc parameters in the equation. The here-formulated 
mathematical model framework allows us to study the effects so far 
largely neglected in mathematical models of flocking, such as the 
role of the body shape of individuals in the visual projections or the 
role of coloration patterns on vision-mediated collective behaviors.

Eventually, we are convinced that a perception-based model-
ing framework will help build bridges between collective behav-
ior research and sensory neuroscience (4). Specifically, a systematic 
bottom-up approach revealing discrepancies between predictions 
of minimal vision-based models and empirical observations will 
provide fundamental insights into the role of neural representa-
tions and higher-order processing of visual inputs in collective 
behavior.

In general, all theoretical models of flocking, including this one, 
should be critically assessed in terms of their relevance for real-
world biological or artificial flocks. Despite the simplicity of our 
minimal model discussed above, we have shown that it can repro-
duce the social response map reported for pairs of fish (20) while, at 
the same time, producing coordinated movement patterns in larger 
groups of up to 100 agents. Nevertheless, even with this fundamen-
tal agreement, we should be cautious regarding the ability of this 
simple model to account for a broad range of collective behaviors 
observed in vertebrates. It relies only on lowest-order terms in the 
expansion of the visual response function G[V]; thus, it is likely 
more suited for describing coordination in scenarios where higher-
order processing can be expected to play a very limited role, as in 
collective escape cascades in fish schools (12). Low-order, vision-
based interactions are likely more relevant for collective behavior of 
invertebrates, such as insects [e.g., locusts (25) and midges (26)] or 
crustaceans [e.g., soldier crabs (27) and Antarctic krill (28)]. Here, 
juvenile locusts appear to be a promising study system, where we 
observe effective coordination and collective migration (25, 29) of in-
dividuals with stereotypical optomotor responses and a still-developing, 
thus limited, visual system (30–32).
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We note that the estimation of the visual projection field from 
video data requires more information than individual center of mass 
coordinates typically recorded in standard tracking experiments. It 
is essential to quantify the body shapes, head positions, and orienta-
tions. Whereas corresponding advanced tracking methods of animal 
groups are being actively researched (33), currently, available data-
sets lack this information. Hence, substantial additional effort is 
required to extract visual projection fields even for existing datasets, 
which goes beyond the scope of this work. In the future, a partic-
ularly promising avenue for investigating vision-based social inter-
actions is state-of-the-art virtual reality techniques (34).

For minimal vision models with binary visual projection in the 
limit of very large and dense flocks, we may obtain full saturation of 
the visual field for individuals within the flock. In this case, the so-
cial response of individuals with saturated vision vanishes, whereas 
the individuals at the boundary experience a social attraction into 
the flock. Our results suggest that even in the absence of full satura-
tion, overlaps in visual projection may inhibit coordination in large 
groups. These examples show the limitations of the minimal model 
relying on binary vision. However, we note that bird flocks operate 
at marginal opacity, without saturation of visual projection field, and 
the attraction toward edges in the visual projection in the minimal 
model is an effective mechanism for density regulation toward mar-
ginal opacity states (15). Furthermore, extremely high densities 
necessary for saturation of visual projection in bird flocks would 
require interindividual distances, which would make collisions very 
likely for empirically derived parameters (5). These extremely high 
densities are more likely to occur in large schools of pelagic fish, 
such as sardines or herring (35, 36). The simplest solution for avoid-
ing saturation of the visual projection field is to abandon the restric-
tion of a binary visual projection. For example, for plainly colored 
schooling fish, neighbors can be assumed to blend with the back-
ground with increasing distance. A simple way to model decreasing 
contrast with distance is to assume a grayscale visual projection 
field where darkness decreases with distance. Thresholds in con-
trast detection would then naturally result in a visual response only 
to the first shells of nearest neighbors avoiding full saturation of 
the visual field. Ideally, corresponding distance dependencies and 
thresholds can be obtained from the properties of the visual system 
and/or the optical properties of the medium due to attenuation and 
scattering of light (37). Last but not least, for extremely high densi-
ties and corresponding short nearest-neighbor distances, other 
senses, such as touch and lateral line, will play an important role in 
movement coordination (38, 39).

In contrast, at low density, an inaccurate visual system may fail 
to capture other individuals if they are too far away. Individuals 
would then become effectively invisible, and the interaction would 
vanish at infinity. Care needs to be taken when designing artificial 
systems to check that the size of the individuals and the expected 
size of the swarm can be captured by the used visual sensors.

Even if the simple model discussed above does not account for 
the full complexity of sensory and cognitive processing in humans 
or many vertebrates, we have demonstrated its ability to produce 
various modes of collective movement already with minimal assump-
tions on the vision-based interactions. Therefore, it represents an 
interesting reference model for self-organization of flocks, which is 
radically different from similar idealized models widely used in liter-
ature, such as the Vicsek model (7, 21) or more biologically inspired 
models relying on phenomenological social forces (1–3).

We believe that the model framework is also of relevance to the 
theory of dynamical systems from a very fundamental point of view. 
It is a paradigmatic example of a class of models where interaction 
between individual units is not based on physical force fields but 
solely on the perception and internal representation of the social 
environment by the local agent. The coupling between agents is 
based on a lower-dimensional projection of the actual dynamical 
behavior of many agents. The resulting flocking model is neither 
metric nor topological (11); thus, new mathematical approaches are 
needed to explore the emergent collective behaviors at the macro-
scopic scale. Furthermore, the simple vision-only interaction dis-
cussed here has some interesting properties. It does not correspond 
to a simple superposition of binary interactions and does not rely 
on arbitrary cutoffs or thresholds. Thus, it results in a self-consistent 
description of interactions from a single individual up to large 
groups, naturally accounting for effects like self-organized marginal 
opacity (15) due to saturation of the visual field.

This vision-based model can also be useful for the construction 
of terrestrial and aerial robotics swarms. The ability to avoid colli-
sions is given directly to each individual agent without the imple-
mentation of specific algorithms (40). Organized collective behavior 
can emerge from the instantaneous reaction to the visual projection 
field. The whole system is fully decentralized, and the collective or-
ganization does not rely on any explicit exchange of information 
between individuals. Once an omnidirectional, binary visual field is 
available, then the local computational requirements are low. The 
acquisition of a full field of view may pose a technical challenge, but 
the integrative nature of the model can be used efficiently. Expand-
ing on works such as in (41), an array of sensors can perform inde-
pendent computations and only exchange the results of the local 
integration. We show that the reduction of complex environmental 
perception through integration is sufficient for effective coordina-
tion. Minimal information bandwidth is then required between 
parts of the computational system. This final aspect reveals an inter-
esting analogy to the perceptual modularity of our own brain, where 
the scene that we observe with both our eyes does not need to be 
fully exchanged between both sides of the brain.
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