
Price and Gesquiere, Sci. Adv. 2020; 6 : eaax2642     22 January 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 13

H E A L T H  A N D  M E D I C I N E

Animal simulations facilitate smart drug design 
through prediction of nanomaterial transport 
to individual tissue cells
Edward Price1,2 and Andre J. Gesquiere1,2,3,4*

Smart drug design for antibody and nanomaterial-based therapies allows optimization of drug efficacy and 
more efficient early-stage preclinical trials. The ideal drug must display maximum efficacy at target tissue sites, 
with transport from tissue vasculature to the cellular environment being critical. Biological simulations, when 
coupled with in vitro approaches, can predict this exposure in a rapid and efficient manner. As a result, it 
becomes possible to predict drug biodistribution within single cells of live animal tissue without the need for 
animal studies. Here, we successfully utilized an in vitro assay and a computational fluid dynamic model to translate 
in vitro cell kinetics (accounting for cell-induced degradation) to whole-body simulations for multiple species as 
well as nanomaterial types to predict drug distribution into individual tissue cells. We expect this work to assist 
in refining, reducing, and replacing animal testing, while providing scientists with a new perspective during the 
drug development process.

INTRODUCTION
Nanomedicines (NMs) such as antibodies and synthetic nanomaterials 
are an attractive development to complement conventional small-
molecule medicines due to their active tissue targeting, variable circula-
tion time, adjustable biodistribution, and added stability, all stemming 
from their inherent physical properties (1, 2). Current techniques to 
quantify delivered dose rely heavily on animal testing, with sacrifice 
and tissue homogenization being generally required for quantitative 
analysis (of NM per mass of tissue). This approach brings questions 
about ethics and surges in time and cost (3). From a purely scientific 
perspective, the destruction of tissue architecture eliminates critical 
knowledge of NM transport within the tissue cells and vasculature.

For a drug to reach the cells within an infected tissue, it must 
first exhibit optimal plasma pharmacokinetics and reach tissue vas-
culature. Fenestration and NM diameter dictate the critical transport 
of the drug through the microvessel wall into an infected or normal 
tissue cell environment. This complexity is compounded because of 
the fact that the body is a working system filled with tissues of vari-
able vasculature porosity and diameter that are highly dependent 
on diseased state and tissue type. Simulation-based approaches pro-
vide a means of mechanistically tracking the transport of conven-
tional small-molecule drugs in human and animal tissues (4) to 
guide a more efficient drug development process (5). However, NM 
transport within animal systems occurs differently than for small 
molecules, primarily through a flux within endothelial fenestrations 
and active uptake within tissue cells instead of conventional tissue-
blood partitioning (6–10). Efforts have been made using simulations 
to account for paracellular transport processes through vascular re-
flection coefficients (v) representative of fenestrations in endothe-
lial vasculature but are constrained by their optimization to NMs of 
one particular size (11–13), assume only two tissue pore sizes (14), 

and often require fitting to animal datasets. This impedes predictive 
capabilities, as variations in NM diameter, changes in animal spe-
cies, and differences in tissue or diseased states can alter the vessel 
diameters, which then cause the reflection coefficient to change, 
thereby requiring further animal testing (15). Moreover, the unique 
NM transport properties that dictate interactions within cells of a 
tissue (16–19) are currently addressed through time-dependent cell 
permeation (20) and in vitro macrophage rate kinetics (21), but current 
simulation approaches still treat tissues as a “black box” without the 
critical epithelial or endothelial cell content.

Here, we report a coupled in vitro/in silico approach to predict 
NM biodistribution in preclinical species at the single-cell level. 
Our work includes a variable reflection coefficient model that accounts 
for differences in nanoparticle size, animal species, and vasculature 
pore diameters, where the variable reflection coefficient is calculated 
through a fluid dynamic model. This represents a substantial improve-
ment on the two-pore formalism. We also obtained increased reso-
lution in our simulation compared to existing models by extracting 
kinetics of NM–tissue cell interaction in vitro and translating these 
data through mechanistic biology to a fully predictive animal simu-
lation of drug biodistribution, which now affords cellular resolution. 
Our approach solves problems with current in vitro analytical ap-
proaches for quantitation of cellular NM content, where results are 
difficult to translate directly to animal studies and lack mechanistic 
perspective (22–25). We also addressed current issues with cell-
induced degradation of NM fluorescence that is often overlooked, 
which can produce false negatives (26, 27). Validation of our in vitro 
work was performed through simulated lysosomal analysis coupled 
with atomic absorption spectroscopy (AAS). Our in vivo simulation 
was validated against published whole-body animal data for rats, 
mice, and nonhuman primates (NHPs). Quantum dots (QDs) were 
used as a model system because of their known potential in NM 
while also considering their limitations such as degradation under 
acidic conditions with cadmium leakage from the core. We show 
here that we are able to fully account for the complexities in such an 
NM platform, and we extended this capability to antibody- and 
metal/polymer-based NMs.

1Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA. 
2NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, 
USA. 3Department of Materials Science and Engineering, University of Central Florida, 
Orlando, FL 32816, USA. 4The College of Optics and Photonics (CREOL), University 
of Central Florida, Orlando, FL 32816, USA.
*Corresponding author. Email: andre@ucf.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Price and Gesquiere, Sci. Adv. 2020; 6 : eaax2642     22 January 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 13

RESULTS
Concentration data determined from in vitro  
fluorescence assay yield kinetics of NM-cell interactions  
for preclinical predictions
Once an NM has circulated through animal blood supply and 
entered the tissue environment, it will interact with tissue cells via 
adsorption, desorption, and internalization, or active uptake processes 
(28). To quantify this transport and accumulation within tissue cells, 
we exposed a nontoxic QD to cells commonly encountered by NMs 
upon intravenous injection: macrophages, endothelial cells, and 
epithelial (liver and kidney) cells.

Fluorescence signal is highly compatible with high-throughput 
screening (29), and when it is used as an indicator of the number of 
particles present (30), it can be a powerful tool for kinetic analysis. 
In this study, the fluorescence of NMs is used to both quantify NM 
uptake by cells and give insight into cell- or medium-induced 
degradation. Tissue cell NM uptake was captured through a fluorescence 
assay that is composed of four compartments (Fig. 1A, schematic): 
the cell kinetic data (CKD; NM exposure to cells with 2× wash and 
trypsinization), cell system interactions (CSIs; NM exposure to cells 
but no wash), medium and protein effects (MPEs; NM present but 
no cells and no wash), and cell control (CC; cells in medium and 
trypsin and no NM added). From this design, quantitative concen-
trations [nanomolar (nM) quantities] of NM interacting with cells 

in vitro are obtained using Eq. 1. Figure 1A shows the raw fluores-
cence signal of the NM in medium only or NMs exposed to cells 
(IMPEt and ICSIt,, respectively). A significant difference between the 
fluorescence signal observed for IMPE,0ort and ICSI,t compartments sug-
gests that cell- or medium-induced degradation is present, which we 
found to be present with QD for all cell lines. Quantitatively com-
paring ICKD,t to the fluorescence signal observed for these unwashed 
wells can yield a raw or calibrated uptake of NMs depending on 
IMPEt or ICSIt being used in the denominator, respectively, in Eq. 1 
(see Materials and Methods for a more detailed explanation). Raw 
cell uptake signals (ICKD,t; Fig. 1A) were calibrated for QD degradative 
effects through Eq. 1 by inclusion of ICSIt in the denominator. The 
fraction of the total dose remaining, when multiplied by the total 
exposure dose ([Dose]), will yield a nanomolar (nM) concentration. 
This eliminates the need for a calibration curve, as Eq. 1 intrinsi-
cally accounts for any phenomena experienced by the NM upon 
exposure to the cell or medium environment. These results are en-
tered into a cell kinetics simulation to obtain rate constants of NM-cell 
interaction that are translatable to our whole-body (in vivo) simula-
tion (see below). All data were above the limits of detection (LOD) 
and quantitation (LOQ) with minimal trypsin interference (fig. S1).

	​​ [Uptake]​ c,t​​  = ​  
​I​ ​CKD​ t​​​​ ─ ​I​ ​CSI​ t​​​​

 ​ * [Dose]​	 (1)

Fig. 1. In vitro application of assay using multiple cell types with simulation and rate extraction. (A) Fluorescence data and assay setup representing unwashed QD 
(QSH) fluorescence for unwashed wells that contain kidney (MES13), liver (AML12), endothelial (C166), and macrophage (J774a.1) cell types. AU, arbitrary units. (B) Washed 
raw (black) and calibrated (red) fluorescence uptake concentrations (circles, measured) compared to simulation fits (lines) for liver, endothelial, macrophage, and kidney 
cell types. (C) Summary of rate constants optimized by the genetic algorithm for model fit to measured datasets. (D) Time-dependent confocal microscopy images of QD 
uptake, showing saturation (double-sided arrows) for each cell type in the study (blue and red represent cell nucleus Hoechst and QSH fluorescence, respectively). 
Cartoon is a visual representation of QD-cell interaction kinetics.
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where [Uptake]c,t is the total calibrated concentration of NM in-
teracting with cells at time t and [Dose] is the applied in nM. All 
fluorescence data obtained in Fig. 1A were transformed to NM 
concentration profiles (calibrated or raw), shown in Fig. 1B.

As Fig. 1B indicates, [Uptake]c,t values are considerably higher in 
macrophages (J774a.1) than in all other cell types (P < 0.05), with 
macrophages taking up approximately 34% of dose, followed by 
kidney and endothelial (12.59 and 12.56%, respectively) and liver 
(11.93%) cells. Overall, the assay displayed enough precision to 
detect differences in uptake for tissue types expected to interact 
with NMs in vivo.

Cell kinetics simulations were built to use the quantitative data 
obtained from the assay (Fig. 1B) reported here to extract rate kinetics 
of NM-cell interactions. The simulation consists of (i) medium, 
(ii) cell membrane, and (iii) cell space compartments interconnected 
through basic mass transfer equations and first-order rate constants. 
The cell kinetics simulation optimizes for adsorption, desorption, 
internalization, and degradation rate constants using the genetic 
algorithm (GA) (31) in MATLAB. All fluorescence-based concentra-
tion data shown in Fig. 1B were optimized in the cell kinetic model 
for parameters kads, kdes, and kint (calibrated datasets), then to raw 
datasets for kdeg optimization; see Supplementary Materials for details. 
As shown in Fig. 1C, the membrane adsorption rate constant was 
highest for macrophages and lowest for endothelial and liver cells. 
However, the internalization rate was highest for liver tissue cells 
and lowest for endothelial cells. Overall, each cell type had membrane 
adsorption as the rate-limiting step and exhibited different maximum 
capacities of uptake (Bmax; see Materials and Methods). Confocal 
imaging (Fig. 1D) visually supports these data, with rapid uptake 
and saturation by macrophages within 1 hour of exposure, and a 
more delayed uptake for the epithelial and endothelial tissue cells.

Animal tissue cell–induced degradation of NMs must 
be accounted for to accurately predict and translate in vitro 
kinetics to animal biodistribution
NMs can be prone to degradative processes within the cellular envi-
ronment, which can cause fluctuations in fluorescent signal and 
result in inaccurate representation of tissue-level delivered dose. 
This issue has prevented fluorescence from being a useful tool for 
extracting rate kinetics. Here, we show that cellular degradative 
effects are present and accounted for in our in vitro assay and 
corresponding cell kinetics simulation. We ran QD (unstable under 
biological conditions) and PS (polystyrene; stable control) NMs 
against an aggressive murine liver Hepa1-6 cell line (32) and found 
that the NM prone to degradation (QD) exhibited substantial devia-
tions in fluorescence, while PS fluorescence remained constant. Our 
findings in Fig. 2 show that degradative factors must be accounted 
for when aiming to extract rate kinetics for translation toward animal 
studies from in vitro fluorescence data. Degradation and stability of 
fluorescence signal were further observed for washed QD and PS 
cell samples in the well, respectively (fig. S2). Further evidence of 
cell-induced degradation is also supported by lysosomal colocalization 
studies (Fig. 2A, inset), observation of substantial Cd2+ core leakage 
under simulated lysosomal conditions (fig. S2) (33, 34), and fluores-
cence spectral data under cell exposure (fig. S2). In spite of minimal 
export of free Cd2+ from cells to the supernatant (fig. S2), we noticed 
minimal Cd2+ induced toxicity in cell culture (fig. S2) at doses per-
formed in this study. We account for this effect through the design 
of our assay in conjunction with Eq. 1.

Raw QD concentrations exhibited a saturable cell uptake profile, 
with a maximum concentration at approximately 12 hours after cell 
exposure (0.228 ± 0.0852 nM) (Fig. 2C). When calibrated for degrada-
tion, QD concentrations (Fig. 2C) showed a completely different 
profile, with a nonsaturable uptake trend as a function of time and 
significant deviation between calibrated and raw concentrations at 
approximately 4 hours when cell-induced degradation begins (Fig. 2A). 
In comparison, the calibrated and raw PS uptake profiles are not 
statistically different (P > 0.05) and reach saturability within 1 hour 
of exposure (Fig. 2C, blue, solid and dashed). Overall, we find that 
4.78 ± 1.22% QD and 1.07 ± 0.085% PS were adsorbed to/internalized 
by cells after 24 hours with respect to the initial applied dose.

Validation by AAS shows that the calibrated fluorescence 
data delivered by the in vitro assay are critical for accurate 
quantitation of cell uptake
AAS analysis validated the quantification of QD uptake through 
our fluorescence assay. AAS data obtained from the CSI and MPE 
compartments show that the cadmium concentration in both 
scenarios remained relatively constant at concentrations of approx-
imately 3.60 ± 0.0602 mg/liter and 3.54 ± 0.0841 mg/liter (fig. S3D), 
respectively, since no cadmium is removed from the system for 
these samples (unwashed). Parallel studies using a sample vial of 
QD stock diluted equally showed no significant difference (P > 0.05; 
fig. S3G), indicating quantitative collection of Cd2+ from the 96-well 
plates. Extraction and harvest efficiencies for each time point were 
also determined to understand if the full dose of cadmium was 
extracted from the cells and harvested from the wells, with all results 
showing full extraction and harvest efficiency (fig. S3G). AAS data 
obtained from the CKD compartments (Fig. 2E) showed a gradual 
increase in total Cd2+ content, up to an average of 0.164 ± 0.0332 mg/liter, 
which corresponds to 4.56 ± 0.925% of the applied dose. Cadmium 
concentrations from AAS were converted to nanomolar concentra-
tions of QD through a linear correlation of the slopes of the QD and 
Cd(NO3)2 AAS calibration curves (fig. S3C). We also performed a 
standard addition method and six-point calibration method in parallel 
for the 24-hour time point (fig. S3, E and F) for assay quality assurance. 
Results did not differ significantly (P > 0.05; fig. S3F), indicative of 
minimal cell matrix interference on AAS data.

Data in Fig. 2E indicate similar QD uptake for calibrated, raw, 
and AAS methods for up to 4 hours (P > 0.05; Fig. 2F), suggesting 
that no significant degradation occurs. After 4 hours, as cell-induced 
degradation takes effect, raw QD concentrations obtained from the 
in vitro assay begin to saturate and deviate from AAS (Fig. 2E). 
When calibrated for cell- and medium-induced degradation, AAS 
and fluorescence concentration uptake profiles are equivalent for all 
time points and do not differ with statistical significance, indicating 
the critical importance of calibrating for cell- and medium-induced 
degradation when using fluorescence as a tool for quantitative analysis.

In vitro kinetics coupled with mechanistic vasculature 
and tissue modeling can accurately predict tissue 
and individual cell uptake within an animal body for NMs 
of different sizes
An NM located within tissues can accumulate inside the interstitia, 
vasculature, or within variable cell types. To account for accumula-
tion within variable cell types in this complex architecture, in vitro 
cellular kinetics were translated to our in silico animal simulation. To 
determine the quality of the rate constants and simulation resolution, 
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we conducted two pilot studies in which we (i) assessed trends in 
whole-tissue uptake as a function of size and (ii) quantified NM up-
take at the single-cell level. The architecture of the animal simulation 
can be seen in Fig. 3, where each tissue compartment contains four 
subcompartments (epithelial, endothelial, interstitial, and macro-
phage). For an NM to transport to the interstitia of a certain tissue, 
we assumed that it travels through the fenestrations unique to the 
capillaries of that particular tissue (Fig. 3, inset), each with variable 
sizes found in literature. These fenestrations were represented by 
reflection coefficients (v) computed here to include the effects of 

particle drag and frictional hindrance (35) (Fig. 4A) akin to that of 
a sphere through an artificial porous membrane (36). The calculated 
vascular reflection coefficient was then held as a constant in a series 
of ordinary differential equations representing mass transfer kinetics 
from the blood supply to interstitial space where the NM will react 
with tissue cells (Fig. 4B) through first-order rate constants optimized 
to our in vitro data.

Because of the liver and spleen being common targets for NM 
sequestration, we used these tissues as case studies to understand 
and capture the sensitivity and accuracy of the simulation’s tissue 

Fig. 2. In vitro assay development and validation to AAS. (A and B) In vitro assay setup with its coupled unwashed fluorescence signal for (A) QD and (B) PS. Images 
show Hepa1-6 colocalization of QD in lysosomal compartments as well as snapshots of fluorescence under ultraviolet illumination under simulated lysosomal exposure 
conditions with pH 2.5, 3.0, 3.5, 4.0, 4.5, and 7.4 (1 to 6, respectively). (C to E) QD uptake studies using the in vitro technique with (C) fluorescence, (D) AAS, (E) combined, 
and the (F) statistical results using two-tailed t test when comparing raw and calibrated fluorescence uptake to AAS data. The asterisks in figure represent significance at 
the * (P < 0.05), ** (P < 0.01), and *** (P < 0.001) levels.

Fig. 3. An overall schematic of the animal NM simulation. Scheme of the overall tissue and blood compartments that make up the full animal. Each tissue 
compartment is interconnected through blood flow rates and contains subcompartments (zoomed-in area), where an NM will distribute upon internalization through 
endothelial fenestrae.
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and cellular outputs to changes in NM size (37, 38). Figure 4C 
shows that a 33 and 83% increase in particle size will produce an 
increase of 15 and 37% uptake in total liver tissue, respectively. 
When compared to observed data (37), this lies within twofold 
error and follows the same observed positive correlative trends 
between size and uptake. This phenomenon can be explained 
through the fact that as NM size increases, such that it exceeds 
other tissue pore sizes, the NMs from those tissues should then 
funnel toward tissues with larger pores—in this case, the liver. Variable 
(20 to 500 nm) diameter biodistribution analysis using Chen 2015 
datasets (38) (fig. S4) supports this principle. Upon reaching the 
target tissue, the NM will interact with cells through rate constants 
determined in vitro. Here, we can see that liver endothelial cells 
(Fig. 4D) have direct exposure to the blood supply and thus have 
immediate interaction with the NMs at the tissue site, with rapid 
membrane binding and eventual saturation at approximately 24 hours 
(Alalaiwe study). As the NM enters the interstitia of the tissue, it 
quickly interacts with epithelial (liver, Alalaiwe study) and macro-
phage (spleen, Chen study) tissue cells through our in vitro rate 
constants. To validate overall model quantification at the single-cell 
level, we used splenic macrophage uptake data from the Chen study 
(38). When using the in vitro rate constants calibrated for degrada-
tive effects, all simulations show accurate predictions (<2-fold error) 

for NMs ranging from 2 to 500 nm in individual macrophages when 
compared to observed harvested splenic macrophages (Fig. 4E). If 
simulations used rate constants optimized to raw datasets, then all 
simulation predictions would severely underpredict NM uptake in 
macrophages, leading to >2-fold error for most outputs (Fig. 4E). 
These results build confidence in the predictive power of the simulation 
and capability to predict variable-sized drug content at the single-
cell level for animals for the first time, strictly from in vitro data.

Tissue-level uptake of NMs can be predicted for  
multiple species
To further assess the simulation’s predictive power and translational 
capabilities, predictions were compared against measured tissue-level 
content for multiple NM types and species. Complete sets of physio-
logical values (tissue volumes and blood flow rates) were obtained 
(39) for three species including rats, mice, and NHP to scale cellular 
content (epithelial, endothelial, and macrophage). The NM animal 
simulation was validated to 15 preclinical datasets, which included 
different dosing scenarios (0.029 to 64.3 mg/kg body weight), NM 
types (polymer, QD, metal, and antibody), and NM sizes (4 to 197 nm 
diameter), all shown in Fig. 5 (A to E). As most laboratory biodistribu-
tion data only capture total uptake at the tissue level, validation of 
our simulation included total tissue (sum of macrophage, epithelial, 

Fig. 4. NM tracking inside tissues for NM of various sizes. (A) Paracellular transport of NM through the endothelial fenestrae. Frictional hindrance and drag force are 
considered when calculating for the reflection coefficient, which is performed for each tissue type. (B) Schematic of the NM transport process through the endothelial 
lining into the interstitial space from where it will interact with tissue cells through rate constants. (C) Tissue-level (liver) simulation predictions for variable-sized NMs 
compared to observed. (D and E) Examples (D) of cellular-level simulation outputs for variable-sized NMs (E) compared to observed splenic macrophage data for validation 
of rate constants and simulation output. Raw simulated data using rate constants with degradative effects (dashed) show increased error >2-fold for 20 and 100 nm.
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endothelial, vascular, and interstitial) content. Evaluations of predictive 
performance were performed according to World Health Organiza-
tion guidelines (40) as well as standards accepted by pharmaceutical 
and academic consortiums (41) involved in drug development and 
safety. Specifically, 49.78, 33.31, and 16.90% of datasets lay within 
<2-fold, <3-fold, and >3-fold error, respectively, demonstrating 
reasonable model performance.

Antibodies (13, 42, 43) exhibited the highest percentage of dis-
tributions lying within twofold error, followed by metal (37, 44–46), 
polymer (47–50), and QD-based (51–54) NMs (Fig. 5E). Simulated 
plasma outputs generally underpredicted uptake, most likely due to 
lack of immunoglobulin G (IgG)–endothelial FcRn receptor bind-
ing (55). Simulation outputs were slightly overestimated for tissues 
with high FcRn expression, where IgG catabolism is prominent 
(Fig. 5A, skin, muscle, and liver) (56). Major reticuloendothelial 
system tissues (liver and spleen) show differing uptake profiles and 
relative quantities, highly dependent on tissue macrophage content. 
Overall, simulations mostly fell within twofold error of observed 
values for many of these studies, but generally underpredict total 
tissue content primarily due to transcellular transport not being 
accounted for in our simulation (figs. S5 and S6). Peripheral tissues 
like the brain and lungs experienced quick saturation within the first 
hour, with a slight clearance profile most likely due to NM accumu-
lation within tissue vasculature and limited permeation through the 
blood-brain barrier and capillary fenestrations (fig. S7) (45–47). 
Observed transmission electron microscope evidence supports local-
ization within tissue vasculature, and simulation data predict and 
substantiate this finding (46).

For studies where metabolism was observed, our simulation 
either exhibited overestimations or did not fit the observed tissue 
profiles (fig. S8). Although reasonably matched to observed data 
(<2-fold error), simulations underpredicted liver and kidney uptake 
of 21-nm CdSeS-SiOH QD (fig. S9). Contrary to the 21-nm QD, 
3.8-nm mercaptosuccinic acid (MSA)–QD exhibited minimal re-
nal and biliary clearance (fig. S9, C and D), primarily due to con-
siderable QD accumulation within interstitial space (30 min) and 
gradual accumulation within mesangial cells (53) after prolonged 
periods (fig. S9E). Moreover, electrostatic repulsion from the pro-
teoglycans in the basement membrane of the glomerulus fenestrae 
on the small QD is believed to influence minimal renal elimination, 
which can be addressed through additional computational ap-
proaches using surface potential of endothelial cell membranes (57) 
and subsequent (58) repulsion. Overall, deviations between simula-
tion and empirical datasets are due to some factors not being accounted 
for yet, such as additional physiological transport processes (tran-
scellular and electrostatic interactions). Future work may address 
NM size distribution effects by including a fractional NM popula-
tion approach, which would more accurately capture particle trans-
port through vasculature fenestrae when NM physicochemical data 
are available. This would be mostly applicable to deliberate expo-
sure scenarios where NMs are fully characterized, e.g., therapeutics.

Our simulation reasonably predicts biodistribution for polyethylene 
glycol, molecular weight 2000 (PEG-2000)– and PEG-5000–coated Au, 
with plasma concentrations lying within 1.45 and 1.52 average fold 
error (AFE), respectively (fig. S10). However, our simulation does 
not account for blood half-life as a function of trends in PEG chain 

Fig. 5. Simulation outputs for validation to various animal studies. (A) Tissue-level predicted (line) versus observed (points) examples for all species types (rats, mice, 
and NHP) for visual evidence of model capabilities. (B) Heat map of fold error analysis calculated for all tissue, NM, and species types in simulation. Green, yellow, and red 
represent <2-fold, <3-fold, and >3-fold errors. Fold error was calculated according to equations given in Materials and Methods, where simulated dataset averages were 
compared to observed. (C) All data point averages specific to tissue types for simulations and observed were plotted against each other to yield a linear fit (R2 = 0.861). (D) Tissue-
specific fold errors are shown to visualize model accuracy for each tissue in this study. (E) NM-simulated outputs were ranked (1 to 4) according to fold error analysis.
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length (resistance to aggregation by providing minimal protein ad-
sorption), so this effect is not expressed in simulation outputs thus 
far (59). We expect that, as transcellular transport is included as an 
additional tissue uptake mechanism, NM should escape plasma and 
enter the tissues, thereby correcting the 66.67% simulated overesti-
mations.

Overall, NMs between 10 and 100 nm diameter (n = 65) exhibited 
the best predictive capabilities for our simulation (>50% below two-
fold error for all tissues), most likely due to the fact that (i) cellular 
rate constants obtained in vitro translated well to the live animal 
simulation, (ii) paracellular transport through endothelial fenestrations 
was the primary means of tissue transport, and (iii) biliary and/or 
renal clearance of NM minimally affected biodistribution. Approx-
imately 50% of tissues for datasets containing NMs with diameters 
<10 nm (n = 10) lie above threefold error, and 40% lie below two-
fold error. For NMs >100 nm in diameter (n = 16), the simulation 
demonstrated similar errors within all error ranges (36.43, 25.71, 
and 37.86%; <2-fold, <3-fold, and >3-fold error, respectively). Here, we 
suspect NM size to exceed pore diameter, limiting tissue uptake, 
so transcellular transport would be necessary to fully capture tissue 
uptake. Simulated and observed datasets were compared through 
log analysis of the averages of the datasets and plotted against each 
other, as shown in Fig. 5C. Model-predicted averages and observed 
averages were fairly linearly correlated, indicative of reasonable model 
predictivity across all species and NM types (R2 = 0.861).

DISCUSSION
We have demonstrated a viable platform for reduction or refinement 
of animal testing during NM development. The in vitro concentra-
tion data from our fluorescence assay coupled with our cell kinetics 
simulation deliver rate constants for cell-NM interaction (60) that 
show excellent translatability to our mechanistic predictive in silico 
whole-body animal simulation. Our approach does not require fit-
ting to animal biodistribution datasets, as all parameters are optimized 
to in vitro data or calculated (in the case of the variable reflection 
coefficient) through a fluid dynamic model. We have also shown 
that the process works under conditions where the NM experiences 
degradation by the biological environment. Our work expands 
on extensive simulation efforts completed for biologics (39) and 
conventional small molecules, for which a more mechanistic simula-
tion can be beneficial to inform proper dosing scenarios for effective 
treatment. More recent simulations have started to allow modeling 
of biodistribution in animals for NMs but often fit tissue and blood 
partition coefficients to animal data to describe equilibrium partition-
ing between the two phases. Our work makes substantial advances 
on the current state of the field through the implementation of a 
mechanistic fluid dynamic simulation coupled with in vitro cell 
interaction kinetics to provide a much higher resolution of NM dis-
tribution and quantitation.

The combination of in vitro and in silico methods discussed here 
is expected to assist future smart drug design and can be a platform 
to help scientists make better informed decisions while reducing 
live animal testing. For example, NMs sequestered in the interstitia 
of a tissue alone may not have a therapeutic or toxic effect on the 
cells, so it is critical to track cell uptake phenomena. As we can see 
from our simulation results, epithelial tissue cells require substan-
tial time to internalize drug, in some cases up to 48 hours. Further-
more, only 0.94% of the total tissue dose may be located within the 

epithelial cells, even though the total liver tissue would have taken 
up 14.0% of the injected intravenous dose. In this case, perhaps the 
scientist may want to increase the injected dose, change the size of 
the NM, or completely alter the surface chemistry and run the in vitro 
assay/simulations again to obtain higher rate constants.

This work is also important in understanding unintended seques-
tration of NM in peripheral organs, especially when pore sizes are 
influential factors. Fenestrae diameter can change across species 
types as well as differ for normal and diseased states of the same 
tissue (61). Care was taken to ensure that reasonable fenestra diameters 
were chosen for all tissues in the normal state, especially those 
where NMs are commonly known to sequester (e.g., liver and 
spleen). In cases where NM diameter was substantially less than tissue 
fenestrae (e.g., splenic sinusoids), more flexibility was allowed when 
choosing the pore size for the fluid dynamic model, as there is limited 
drag and friction effects present when there are two or more order of 
magnitude difference between the NM and pore diameters. Overall, the 
majority of fenestrae diameters chosen were rodent specific, especially 
for the liver, as liver capillary diameters can differ substantially (e.g., 
280- and 110-nm upper limits for rodents and humans, respectively) 
(62). For the majority of tissue types, upper limits were chosen, as NMs 
are expected to filter through the largest pore, when present (62).

The simulations generally underpredicted the total tissue content. 
This can be addressed through future inclusion of transcellular 
transport of materials through the endothelial cell lining. When this 
effect is accounted for, we expect the simulations to increase predic-
tions and match observed total tissue content. Future work is also 
necessary to consider additional mechanistic processes within whole-
body simulations. Processes like antibody catabolism, metabolic 
(phase I and II) breakdown and clearance of NMs, and transcellular 
transport of NMs through the vascular lining will need to be included 
to provide additional model flexibility and predictive power. NM or 
antibody changes in physicochemistry (e.g., through conjugation of 
drugs to the antibody surface) can be further captured through 
the fluorescence assay via rate constant optimization. Inclusion of 
charge and lipophilicity effects may assist in development of a more 
accurate transport model. Overall, we expect this work to serve as a 
new approach for predictive simulation of NM transport and distri-
bution in animal species.

MATERIALS AND METHODS
In vitro statistical analysis
Statistical analysis was performed on Microsoft Excel 2010. All 
calculated statistical evaluations were performed using the Student’s 
two-tailed t test at the P < 0.05, P < 0.01, or P < 0.001 level.

In vitro quantitation of cellular uptake
To ensure repeatability, the fluorescence assay was completed approx-
imately 2 months apart with a new batch of thawed cells for both 
NM types (n = 2), with reproducible results. Comprehensive analysis 
on toxicity and stability (figs. S1 and S2) revealed minimal toxicity 
and sedimentation for a 10 nM dose of the NMs chosen for this 
study, which indicated minimal cell stress and constant exposure 
dose. All data were within the linear dynamic range, as well as within 
the LOD and quantitation (fig. S1, C and D). The fluorescence as-
say was built starting from the application of cells on a 96-well plate 
in three “compartments”: the CSI compartment [cells + NM (un-
washed), accounts for cell-induced NM degradation], the CKD 



Price and Gesquiere, Sci. Adv. 2020; 6 : eaax2642     22 January 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 13

compartment [cells + NM (washed), measurement of NM uptake], 
and the CC compartment [cells in medium + no NM (unwashed), 
control with untreated cells to subtract background signal]. The MPE 
compartment [no cells + NM in medium (unwashed)] accounted for 
medium- and protein-induced degradative effects on the NM in 
the absence of exposure to cells. Note that the CSI and MPE compart-
ments are never washed and therefore maintain the initial applied 
dose of NM (10 nM). The CKD compartment was washed at each 
time, t, to remove NMs that are not cell membrane bound or inter-
nalized by cells. Control experiments on blank wells showed mini-
mal NM adhesion to the sides and surface of wells, indicating that 
all fluorescence should strictly come from NM interacting with cells. 
For assay development and validation to AAS for QD, we used 18 wells 
per compartment, which resulted in one 96-well plate per time point. 
For the application of this assay to cell types for rate extraction that 
we used in animal simulations, we applied QD at a dose of 10 nM 
to each compartment in triplicate. At the time of application, we 
allowed cells to reach 90% confluence and establish membrane 
integrity (48 hours) (63). At time 0, the CSI, CKD, and MPE com-
partments were dosed with 10 nM QSH or PS [10% fetal bovine serum 
(FBS)/Dulbecco’s Modified Eagle’s medium (DMEM) suspension], 
with one NM type per plate. Comparing (by t test) the fluorescence 
signal for wells in the CSI compartment at time t with the fluores-
cence signal from wells in the MPE compartment at time t gave 
insight into cell-induced degradation. If they were statistically differ-
ent, we concluded that cell-induced NM degradation was present and 
the quantity of fluorescence signal loss due to this effect was de-
termined from the difference of CSI and MPE at time t. Similarly, 
comparing the fluorescence signal (by t test) from wells in the MPE 
compartment at time t with respect to MPE at time 0 gave a descrip-
tion of medium-induced degradation. These critical steps guided NM 
uptake calculations, especially if degradation was present.

In vitro quantitation of degradation
Signals obtained from in vitro assay included

1) ICSI,0
2) ICSI,t
3) IMPE,0
4) IMPE,t
5) ICKDt
6) ICC
Overall, raw fluorescence descriptive of cell uptake (ICKD,t) was 

taken relative to raw fluorescence of unwashed cells at time t (ICSI,t) 
to obtain a calibrated fraction of uptake (fcell,c)

	​​ f​ cell,c​​  = ​  
​I​ ​CKD​ t​​​​ ─ ​I​ ​CSI​ t​​​​

 ​​	 (2)

Raw fluorescence descriptive of cell uptake (ICKD,t) was also taken 
relative to raw fluorescence of unwashed cells at time 0 (ICSI,0) to 
obtain a raw fraction of uptake (fcell,r)

	​​ f​ cell,r​​  = ​  
​I​ ​CKD​ t​​​​ ─ ​I​ ​CSI​ 0​​​​

 ​​	 (3)

These two fractions were then used to obtain concentration of 
NM uptake using the general equation

	​​ [Uptake]​ c,t​​  = ​ f​ cell,x​​ * [Dose]​	 (4)

where fcell,x was the fraction of uptake for x = raw or corrected, [Uptake]t 
was the concentration of NM taken up by cells (nM), and [Dose] was 

the applied dose in nM. To determine if cell-induced degradation 
was present, a two-tailed t test was performed between unwashed 
CSI and MPE compartments at time t (ICSIt and IMPEt, respectively). 
To determine if medium-induced degradation was present, a two-
tailed t test was performed between unwashed MPE at time 0 and 
time t. Cell-induced degradation (Icdegt) was taken as the difference 
between unwashed without (IMPEt) and with (ICSIt) cell exposure

	​​ I​ ​cdeg​ t​​​​  = ​ I​ ​MPE​ t​​​​ − ​I​ ​CSI​ t​​​​​	 (5)

If medium degradation was present, the intensity of this degrada-
tion type was taken as the difference between unwashed wells with-
out cell exposure from time 0 to time t.

	​​ I​ ​mdeg​ t​​​​  = ​ I​ ​MPE​ 0​​​​ − ​I​ ​MPE​ t​​​​​	 (6)

Together, the sum of these values equals the total degradation 
that an NM can undergo for the in vitro assay (Idegt)

	​​ I​ ​deg​ t​​​​  = ​ I​ ​cdeg​ t​​​​ + ​I​ ​mdeg​ t​​​​​	 (7)

Assessment of NM toxicity
MTS (CellTiter 96 Aqueous Non-Radioactive Cell Proliferation, VWR) 
assay was run to determine toxicity of a variety of NMs at different 
doses (QSH and PS) for optimal NM exposure conditions. NMs were 
applied to murine Hepa1-6 cells for a period of 24 hours. Briefly, cells 
were seeded in triplicate onto wells of a clear flat-bottom 96-well 
plate at a density of 34,700 cells per well and left 24 hours for attach-
ment. After 24 hours, medium was aspirated, and 100 l of all NM 
solutions was applied to wells, except controls, for a period of 24 hours 
in 37°C and CO2 incubator. Negative controls were kept in medium 
to retain complete viability, and positive controls were kept in water 
for cell death. All NMs were diluted in DMEM supplemented with 
10% FBS at various doses, ranging from 5 nM to approximately 250 nM. 
After 24 hours of exposure, cells were washed twice with complete 
growth medium and reapplied with 100 l of DMEM with 10% FBS. 
Aliquots (20 l) of MTS were added, and background absorbance 
was captured at 490 nm. Plates were then incubated for 2 hours, and 
absorbance was checked again. Sample absorption values were nor-
malized to that of cells exposed to complete growth medium.

AAS quantification of Cd content within cells
Samples were collected from all compartments in the fluorescence 
assay at each time t, degraded equally in 33% (v/v) aqua regia (AR), 
and measured for absolute cadmium content. AAS measurements 
were referenced to a six-point cadmium calibration curve (fig. S3, A to C) 
constructed with equal % (v/v) AR, as well as lay above LOD and LOQ.

Lysosomal colocalization analysis
Cells were seeded onto 35-mm-diameter tissue-coated petri dishes 
(35mm TC-Treated Culture Dish, Corning) with 2 ml of solution 
(347,000 cells/ml) and left in an incubator at 37°C and 5% CO2 for 
24 hours. Cells were washed once with complete growth medium, 
and 2 ml of 10 nM QSH solutions was added. After 24 hours, petri 
dishes were removed from the incubator and washed twice with 
complete growth medium. LysoTracker Green (DND-26, Thermo 
Fisher Scientific) was added at 1 M concentration, and confocal 
images were obtained. Lysosomal colocalization studies were per-
formed using a spinning-disk confocal imaging system. Z-stacks 
were taken at 2-m step sizes, with a total distance of 40 m.
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Cell kinetic confocal microscopy
A paralleled series of cell kinetic samples containing QSH were 
analyzed for uptake using confocal microscopy. At each time point 
in the study, cells were washed twice, trypsinized, and transferred to 
35-mm petri dishes containing 2 ml of complete growth medium. 
After 24 hours, cells were washed twice with complete growth 
medium, and Hoechst 33257 was applied. Cells were then imaged 
for NM uptake with twenty 2-m step sizes.

Simulated lysosomal buffer analysis
Cellular lysosomal environment was mimicked to determine stress 
induced on fluorescence through lysosomal material exposure. The 
citric acid (>99.5%, ACS Reagent, Sigma-Aldrich)–simulated lysosome 
chelator buffer at pH 2.5 to 5.0 was created and used as the solvent 
for QSH and PS. Controls contained pH 7.4 Dulbecco’s Phosphate-
Buffered Saline (DPBS) buffer solutions. More specifically, stock 
solutions of 0.25 and 0.19 mM solutions of sodium citrate monobasic 
(Anhydrous, Sigma-Aldrich) and dibasic (sesquihydrate, Sigma-
Aldrich), respectively, were made. Stock solutions of 50 and 20 mM 
citric acid stock solution were also made in separate vials. Then, six 
solutions of equal concentrations of 10 nM QSH were made in either 
sodium citrate monobasic/dibasic with citric acid. To achieve the 
desired pH of 2.5, 3.0, 3.5, 4.5, or 5.0, pH was adjusted by combina-
tion of dibasic or monobasic sodium citrate stock solution with small 
aliquots of citric acid solutions. For size analysis, Zetasizer (Malvern) 
DLS measurements were obtained. Here, samples were diluted in 
situ in solvents of desired pH and measurements were obtained 
immediately after. Fluorescent plate readings were run in triplicate 
of 100 l of solutions applied to wells of a 96-well plate system. Fluo-
rescence was taken with 580- or 525-nm excitation and 595- or 620-nm 
emission, respectively, for QSH or PS, using a Tecan M200 plate reader. 
To check for Cd2+ core leakage, 10 nM QSH and PS were analyzed for 
fluorescence in phosphate-buffered solution (PBS), water, and simulated 
lysosomal buffer at pH 2.5, 4.5, and 5.0 at 0- and 24-hour exposure. 
For each time point, samples were collected and centrifuged at 15,000g 
for 20 min through an Amicon Ultra 10-kDa filter to separate possible 
cations from QSH. Filtrate was then analyzed for free cadmium content 
using a PerkinElmer atomic absorption spectrometer with a cadmium 
hollow cathode lamp with a wavelength of 288.65 nm. Flow rate 
was adjusted to 4 ml/min, and samples were run in triplicate.

Prolonged cell exposure analysis
Prolonged exposure to intracellular environment analysis was per-
formed after washing at time t. Here, QSH or PS washed samples at 
time t were left to incubate to an additional 12 − x and 24 − x hours, 
where x is the time of wash for each particular sample. At total ex-
perimental time of 12 and 24 hours, previously washed plates were 
mixed and measured for fluorescence changes from their original 
time t. An example is shown below:

2-hour wash fluorescence ➔ 10-hour post-wash (12 − 2 hours) 
fluorescence ➔ 22-hour post-wash (24 − 2 hours) fluorescence.

Twelve-hour washed sample only contained 24 − x prolonged cell 
exposure data, and 24-hour washed sample contains no prolonged 
exposure, given that cell exposure was only allowed for the duration 
of a total time of 24 hours.

Calculation of fluorescent plate reader LOD and quantitation
LOD and LOQ were calculated from the construction of an eight-
point calibration curve with concentration ranging from 0.10 to 10 

or 15 nM for QSH or PS. LOD and LOQ were calculated on the 
basis of the SD of the response signal of the blank and slope of the 
linear curve through zero (equations below)

	​ LOD  = ​  3 ─ S  ​​	 (8)

	​ LOQ  = ​  10 ─ S  ​​	 (9)

where ​​ is the SD of the blank (NM suspension in trypsin) and S is 
the slope of the calibration curve. All readings were performed on a 
Tecan M200 Pro microplate reader.

In vitro cell kinetics simulation
The overall simulation was a three-compartment model in which 
the laws of mass transfer kinetics were used.
Medium compartment
This compartment included the medium environment from which 
cells receive their respective NM dose. The initial dose condition was 
taken as the 10 nM applied in the fluorescence assay. The medium 
compartment NM dose evolution with time was then described as

	​​  d [ Med] ─ dt  ​  =  − ​k​ ads​​ * [Med ] + ​k​ des​​ * [Mem]​	 (10)

where [Med] was the concentration (nM) of NM in medium, [Mem] 
was the concentration (nM) of NM adhered to the cell membrane, 
and kads and kdes were the first-order rate constants for adsorption 
and desorption to and from the cell membrane, respectively.
Cell membrane compartment
The cell membrane compartment was defined as the outer boundary 
of the cell with which the NM reversibly binds. This compartment 
separated the medium from the internal space of the cell. NMs that 
were internalized by the cell first adsorbed to this compartment through 
the adsorption rate constant, kads. Once adsorbed, NMs (i) left this 
compartment through desorption, kdes, or (ii) entered the cell via 
kint as expressed by

	​​  d [ Mem] ─ dt  ​  = ​ k​ ads​​ * [Med ] − ​k​ des​​ * [Mem ] − ​k​ int​​ * [Mem]​	 (11)

with parameters described above.
Cell space compartment
The cell space compartment received NMs that have transported 
inside the cell via the first-order rate constant for internalization 
(kint). Here, NMs can become degraded if the process occurs (deter-
mined through the fluorescence assay). The cell space compartment 
NM dose evolution as a function of time was then described as

	​​  d [ Cell] ─ dt  ​  = ​ k​ int​​ * [Mem ] − ​k​ deg​​ * [Cell]​	 (12)

where [Cell] was the concentration (nM) of NM in cell interior 
at time t and kdeg was the first-order rate constant for degradation 
of QD obtained from optimization to raw datasets (see below). 
The degradation rate constant was used to track quantities of 
NM degraded over the course of the experiment.

In vitro rate constant structure
First-order rate constants are variables that describe a proportion 
(fraction) of drug entering or leaving a specific compartment at any 
point in time (units of time−1). For purposes of this study, in vitro 
rate constants were scaled according to methods used by Li et al. 
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(8, 64), where a total maximum first-order uptake rate (hour−1) is 
optimized to animal datasets according to a general equation

	​​ k  = ​ k​ max​​ * ​(​​1 − ​  ​A​ t​​ ─ ​B​ max​​ * ​W​ t​​
 ​​)​​​​	 (13)

where k is a net rate of uptake in tissue (hour−1), kmax is a maximum 
optimized rate in tissue (hour−1), At is the amount of nanoparticles 
captured by tissue at time t (mg), Bmax is the maximum cell uptake 
capacity for nanoparticles per organ weight (mg/g tissue), and Wt is 
the weight of the tissue (g). Thus, the net uptake rate will decrease 
as the amount of nanoparticles in cells approaches the total Bmax * 
Wt. We used a version of this method by optimizing maximum cell 
membrane binding and internalization rates (hour−1) to in vitro cell 
uptake data according to

	​​ ​k​ ads​​  = ​ k​ a​​ * ​(​​1 − ​ [​Cell​ tot​​] ─ ​B​ max​​ ​​ )​​​​	 (14)

and

	​​ ​k​ int​​  = ​ k​ i​​ * ​(​​1 − ​ [​Cell​ tot​​] ─ ​B​ max​​ ​​ )​​​​	 (15)

where kads and kint are the net adsorption and internalization (re-
spectively) first-order rates of uptake similar to k from Eq. 12 (hour−1), 
ka and ki are the maximum GA optimized adsorption and internal-
ization rates (hour−1), [Celltot] is the total simulated NM uptake in 
cells (nM), and Bmax is the total cell capacity [maximum concentration 
of NM taken up by cells measured in vitro (nM)]. The value of the 
net first-order uptake is heavily dependent on the maximum total 
capacity of uptake. As more NM is taken up by cells, [Celltot] ap-
proaches Bmax and drives kads toward 0, thus pushing the total up-
take toward an asymptotic maximum. These maximum rates were 
optimized by the GA and held as constant for extrapolation to in vivo 
simulations, where they determined total rates of uptake (kep,ads, kep,int) 
based on total tissue cell composition. Specifically

	​​ ​k​ ​ep​ ads​​​​  = ​ k​ a​​ * ​(​​1 − ​ 
​A​ ep​​

 ─ ​B​ max​​ ​​)​​​​	 (16)

and

	​​ ​k​ ​ep​ int​​​​  = ​ k​ i​​ * ​(​​1 − ​ 
​A​ ep​​

 ─ ​B​ max​​ ​​)​​​​	 (17)

where ka and ki are the maximum adsorption and internalization 
rate constants determined in vitro (hour−1); Aep is the total amount 
in, e.g., epithelial tissue cells (mg); and Bmax is the maximum cell 
uptake capacity per tissue (mg/tissue) as calculated by

	​​ B​ max​​  = ​  
​B​ max,vitro​​

 ─ ​N​ cells,w​​  ​ * ​V​ well​​ * ​10​​ −9​ * MW * ​10​​ 3​ * ​N​ cells,t​​​	 (18)

where Bmax, vitro is the maximum cell uptake capacity in vitro (nM), 
Ncells, w is the number of cells per well (cells/well), Vwell is the applied 
volume of NM solution per well (liter), MW is the NM molecular 
weight (g/mol), and Ncells, t is the number of cell types per tissue 
type. By usage of this equation, we accounted for maximal saturable 
captured in in vitro when using animal simulations. Furthermore, 
the maximal rates of uptake were determined in vitro and are in units 
of hour−1. When accounting for total cell compositions in tissues 
as well as exposure doses, the net rates of uptake will change de-
pending on tissue and cell types in animals. The rate constants rep-
resenting desorption (kdes) and degradation (kdeg) were first order 

(hour−1) and are not directly involved in the internalization process, 
so these maximum constants were directly implemented into the 
animal simulation as optimized in vitro. However, we expect the total 
rate of desorption and degradation to change based on exposure dose 
as well as blood flow rates in animals. However, constant propor-
tions (fractions) are expected to desorb and degrade as determined 
in vitro.

In vitro rate constant optimization
In vitro rate constants (ka, kdes, ki, and kdeg) were optimized using 
the GA, originally developed by Holland in the early 1970s. This was 
typically used as an artificial intelligence algorithm [e.g., it is used 
for training artificial neural networks (65)] for a more robust opti-
mization of parameters based on evolutionary ideas of natural 
selection where it does not rely heavily on initial input and often 
leads to a global minimum (66). For optimization, rate constants 
were supplied by the GA to produce simulation outputs at particular 
time points. When fed to the model equations (described above), 
membrane ([Mem](t)) and cell space ([Cell](t)) simulated outputs 
were summed at each time point and compared to in vitro measured 
values using the residual sum of squares described below. To supply 
model equations (Eqs. 11 and 12) with rate constants, initial vectors 
(“chromosomes”) composed of rate constants (“genes”) were randomly 
populated by the GA, fed to the cell kinetic model, calculated for 
fitness, and underwent selection, crossover, and mutations to maximize 
diversity and produce better fitness at each iteration (“generation”). 
Specifically, Eqs. 11 and 12 were first optimized to the calibrated 
datasets where no degradation was present, holding kdeg at 0. Once 
optimized, we reconsidered QD raw concentration values contain-
ing degradation effects to determine the rate of degradation (kdeg), 
holding the previously optimized adsorption, desorption, and in-
ternalization rates (kads, kdes, and kint) as constant. All simulations 
were performed in MATLAB v2015b. Parameter optimization was 
implemented with the GA optimization function from the Optimi-
zation Toolbox. Parameters for estimation included the following: 
initial population, 300; population size, 50; generations, 100; mutation 
rate, mutation Gaussian; crossover rate, 0.80; selection function, 
stochastic uniform.

The GA was evaluated using the residual sum squares as the 
fitness function (Eq. 19)

	​ RSS  = ​ ∑ i​ n ​​ ​(​y​ i​​ − ​m​ i​​)​​ 2​​	 (19)

where RSS represented the residual sum of squares from model output 
(mi) at time (i) to measured data (yi) for n time points. Standard 
error was computed as

	​ S  = ​ √ 
_

 ​ RSS ─ n  ​ ​​	 (20)

where S is the standard error, RSS is the residual sum of squares, 
and n is the total time points.

Model output upper and lower bounds were evaluated at the 
95% confidence interval through

	​ CL(95 % ) = ​m​ i​​ ± 2 * S​	 (21)

where CL(95%) represented 95% confidence limit. The GA was run 
for 100 generations, enough to allow convergence at a fitness value 
representative of measured data.
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Animal simulation
Nanomaterial transport to cells of a particular tissue was captured 
through the whole-body NM physiologically based pharmacokinetic 
simulation. For a nanomaterial to reach target tissue cells, it must 
first bypass the endothelial cell lining primarily through paracellular 
transport. Here, intercellular gaps are represented by a reflection 
coefficient, v. The reflection coefficient built on previous studies by 
Bungay and Brenner (67), Lightfoot et al. (68), and Lewellen (69), 
where hydrodynamic transport was captured, which included steric 
exclusion (); hindrances to diffusion, drag, and pressure drop across 
the sphere [G′()]; and frictional interactions with the wall [F′()]. 
The NM must travel from the blood vasculature (Cv) to the interstitial 
space (CIS) through equation

	​​  ​dC​ v​​ ─ dt  ​  = ​ 
​Q​ t​​ ⋅ ​C​ ​LU​ V​​​​ ─ ​V​ v​​ ​  − ​ (​Q​ t​​ − ​Q​ L​​ ) ⋅ ​C​ V​​   ─ ​V​ V​​ ​  − (1 − ​σ​ V​​ ) ⋅ ​ ​Q​ L​​ ⋅ ​C​ V​​ ─ ​V​ V​​ ​ 		 

			 
                                     	     − ​k​ ​ad​ endo​​​​ ⋅ ​C​ V​​ + ​ 

(​k​ ​des​ endo​​​​ ⋅ ​A​ mem​​)
  ─ ​V​ V​​ ​ ​	  (22)

where the tissue blood flow (Qt) and lung NM concentration CLUV 
serve as inputs to this compartment. The NM will interact with the 
endothelial cell membrane (Amem) of that tissue’s compartment via 
the adsorption (kadendo) and desorption (kdesendo) rate constants deter-
mined from in vitro data. The vasculature reflection coefficient (V) 
serves as guidance for the NM to enter the interstitial space given by

	​​  ​dC​ IS​​ ─ dt  ​  =  (1 − ​σ​ V​​ ) ⋅ ​ ​Q​ L​​ ⋅ ​C​ V​​ ─ ​V​ IS​​ ​  − ​k​ ad​​ ⋅ ​C​ IS​​ + ​k​ des​​ ⋅ ​C​ mem​​​	 (23)

where the individual tissue cells (epithelial and macrophages) will 
interact with the NM through the predetermined in vitro rate 
constants kad and kdes for their cell membranes (Cmem). The flow 
rate into the interstitial space was set to the lymphatic flow rate, and 
vasculature interstitial volumes (VIS) guided the concentration for 
this compartment. Once the NM enters the tissue cell membrane 
compartment

	​​  ​dC​ mem​​ ─ dt  ​  = ​ k​ ad​​ ⋅ ​C​ IS​​ − ​k​ int​​ ⋅ ​C​ mem​​ − ​k​ des​​ ⋅ ​C​ mem​​​	 (24)

it will desorb via the desorption rate constant (kdes) or will be inter-
nalized into the cell space via the internalization rate constant (kint). 
Once inside the cell space, the NM can be thus degraded or sequestered 
within the cellular environment (Ccell).

	​​  ​dC​ cell​​ ─ dt  ​  = ​ k​ int​​ ⋅ ​C​ mem​​ − ​k​ deg​​ ⋅ ​C​ cell​​​	 (25)

All tissue compartments here were described as a series of differen-
tial equations designed to solve for concentrations using the MAT-
LAB ODE solver.

NMs analyzed in animal studies for simulation
The metal-based particles were composed of PEG-2000–coated (32 nm) 
(37) or PEG-5000–coated Au (28 nm) (45) and PEG-2000–coated 
(33 nm) (46) or Poly 2 Hydroxyethyl Aspartamide (PHEA)–coated 
(66 nm) (44) Super paramagnetic iron oxide (SPIO) NMs. Polymer-
based NMs consisted of Polyarylamide–PEG-2000 (35 nm) (47), 
Poly Lactic-co-Glycolic Acid (PLGA) (197 nm) (48), poly(glycolic 
acid) (PGA) (112 nm) (49), and PS-Polyethylene oxide (PEO) (107 nm) 
(50). QD studies varied substantially, as we analyzed hydroxide-
coated [CdSeS-SiOH, 21 nm (52)], mercaptoundecanoic acid–coated 
[CdSe/ZnS-LM, 25 nm (51)], mercaptosuccinic acid–coated [CdTe/

CdS-MSA, 3.8 nm (53)], and mercaptoproprionic acid–coated [Cd-
Te-MPA, 4 nm (54)] NMs.

NM transport to tissue interstitia from blood
The transport of a nanoparticle from the blood supply to the tissue 
cells was simulated through fluid dynamic theory, primarily obtained 
from a hydrodynamic simulation of solutes through pores captured 
by modeling a reflection coefficient, , originally derived by Curry 
in 1974 (35). The published and validated fluid dynamic approach 
was folded into the body simulation to provide predictive, mechanistic 
method of transport of any nanoparticle from the blood supply 
through pores located within an impenetrable membrane to the 
tissues. Any nanoparticle with a particular size can be predicted to 
enter all tissues of the body based on transport through capillary 
walls of these tissues. In theory, a nanoparticle must travel through 
a pore to enter the interstitial space of a particular tissue. Upon 
encountering a pore, a nanoparticle cannot occupy positions smaller 
than one nanoparticle radius from the pore’s edge in blood vessel 
fenestrae. Nanoparticle entry through pores becomes sterically 
restricted as the nanoparticle approaches the size of the pore (70). 
This effect was described by the solute partition coefficient below

	​ ∅ = ​ 
 ​(​r​ p​​ − ​r​ s​​)​​ 2​

 ─ 
 ​r​p​ 2 ​

  ​  = ​ (1 − )​​ 2​​	 (26)

	​   = ​  ​r​ s​​ ─ ​r​ p​​ ​​	 (27)

where  is the ratio of solute radius to pore radius. The partition 
coefficient above (∅) is the ratio of the area available to the solute to 
the total pore surface area, accounting for the steric hindrance the 
particle has upon entering the pores of the fenestrae in blood 
vessels. However, the particle experiences a frictional hindrance 
from the pore walls upon entering. The frictional hindrance factor 
F() is a factor that defines this phenomenon, capturing reduction 
in diffusion due to hindrance that the wall exerts on the particle 
through the viscosity of the fluid and was captured through the fol-
lowing equation

	​​ F ′ ​( ) = ​  ​(1 − ​​​ 2​)​​ 
​3 _ 2​
​ ∅  ───────────  

1 + 0.2 ​​​ 2​ ​(1 − ​​​ 2​)​​ 
16

​
 ​​	 (28)

Additionally, the difference between the solute velocity and 
water velocity (drag force) was captured through the hydrodynamic 
function G() according to the following equation

	​​ G ′ ​( ) = ​ 
1 − ​2 ​​​ 2​ _ 3 ​  − 0.20217 ​​​ 5​

  ───────────  
1 − 0.75851 ​​​ 5​

  ​ − 0.0431 [ 1 − (1 − ​​​ 10​ ) ]​	 (29)

The reflection coefficient accounts for the hydrodynamics of 
convection and diffusion of hard spheres within a right cylindrical 
pore. The reflection coefficient is independent of the number of 
channels. When the reflection coefficient approaches 0, the nano
particle enters the pathways in the membrane. When it is approach-
ing 1, the pore excludes the nanoparticle and it remains outside the 
pores. The equation for the variable reflection coefficient accounted 
for both the frictional force and drag

	​   =  1 − [1 − ​(1 − ∅ )​​ 2​ ] ​G ′ ​( ) + 2 ​​​ 2​ ∅ F′()​	 (30)
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The above equation for the reflection coefficient builds on previous 
studies by Bungay and Brenner (67), Lightfoot et al. (68), and Lewellen 
(69), where hydrodynamic transport was captured, where they accounted 
for full hydrodynamics including steric exclusion; hindrances to 
diffusion, drag, and pressure drop across the sphere; and torque and 
rotation produced by viscous interactions with the wall. These studies 
all validated the assumptions to measured data for permeability 
across animal tissue. This formula assumes no interactions between 
solute particles.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/4/eaax2642/DC1
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Fig. S2. Cellular and lysosomal degradation studies supporting evidence of cellular-induced 
degradation on fluorescence in kinetic assay.
Fig. S3. Validation of QSH data by AAS.
Fig. S4. Cellular analysis of NM uptake in varying tissues for NM with different diameters.
Fig. S5. Liver and spleen total and cellular uptake of NM for multiple species and NM types.
Fig. S6. Total tissue content for mouse intravenous dosing studies.
Fig. S7. Brain and lung NM subtissue content.
Fig. S8. Analysis of tissues involved in NM metabolism.
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Fig. S10. Plasma NM content and correlation with PEG chain length.
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