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Adolescence is a time of extensive neural restructuring, leaving one susceptible to atypical development. Although neural maturation in humans
can be measured using functional and structural MRI, the subtle patterns associated with the initial stages of abnormal change may be difficult
to identify, particularly at an individual level. Brain age prediction models may have utility in assessing brain development in an individualized
manner, as deviations between chronological age and predicted brain age could reflect one’s divergence from typical development. Here, we built
a support vector regression model to summarize high-dimensional neuroimaging as an index of brain age in both sexes. Using structural and
functional MRI data from two large pediatric datasets and a third clinical dataset, we produced and validated a two-dimensional neural matu-
ration index (NMI) that characterizes typical brain maturation patterns and identifies those who deviate from this trajectory. Examination of
brainsignaturesassociatedwithNMIscoresrevealedthatelevatedscoreswererelatedtosignificantly lowergraymattervolumeandsignificantly
higher white matter volume, particularly in high-order regions such as the prefrontal cortex. Additionally, those with higher NMI scores exhib-
ited enhanced connectivity in several functional brain networks, including the default mode network. Analysis of data from a sample of male and
female patients with schizophrenia revealed an association between advanced NMI scores and schizophrenia diagnosis in participants aged
16 –22, confirming the NMI’s utility as a marker of atypicality. Altogether, our findings support the NMI as an individualized, interpretable
measure by which neural development in adolescence may be assessed.
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Introduction
Brain development during adolescence is associated with pro-
found changes in brain structure and function. The synaptic

pruning and increase in myelination that are hallmarks of this
neurodevelopmental stage are reflected in widespread gray mat-
ter loss (Giedd et al., 1999; Gogtay et al., 2004; Giorgio et al.,

Received Aug. 28, 2019; revised Nov. 15, 2019; accepted Dec. 15, 2019.
Author contributions: M.T.-H., G.E., D.H.W., T.D.S., and C.D. designed research; M.T.-H. and G.E. performed

research; M.T.-H., G.E., V.B., and C.S. analyzed data; E.V., R.C.G., R.E.G., N.K., C.Z., Y.F., and T.D.S. contributed

unpublished reagents/analytic tools; M.T.-H., G.E., V.B., E.V., C.S., R.C.G., R.E.G., N.K., C.Z., Y.F., D.H.W., T.D.S., and
C.D. wrote the paper.

This work was supported by NIH Grants R01EB022573 (C.D.), and R01MH112070 (C.D.), with additional support
from R01MH120482 (T.D.S.), R01MH112847 (T.D.S.), R01MH113550 (T.D.S.), R01MH113565 (D.H.W.).

Significance Statement

The substantial neural restructuring that occurs during adolescence increases one’s vulnerability to aberration. A brain index that
is capable of capturing one’s conformance with typical development will allow for individualized assessment and enhance our
understanding of typical and atypical development. In this analysis, we produce a neural maturation index (NMI) using support
vector regression and a large pediatric sample. This index generalizes across multiple cohorts and shows potential in the identi-
fication of clinical groups. We also implement a novel method for examining the developmental trajectory through data-driven
analysis. The signatures identified by the NMI reflect key stages of the extensive neural development that occurs during adoles-
cence and support its utility as a metric of typical brain development.

The Journal of Neuroscience, February 5, 2020 • 40(6):1265–1275 • 1265



2010). This loss occurs in a spatially heterogeneous manner, be-
ginning in the sensorimotor cortex and proceeding rostrally and
caudally, with regions involved in complex function (i.e., the
dorsolateral prefrontal cortex and superior temporal cortex)
continuing to decrease in volume through late adolescence and
early adulthood (Gogtay et al., 2004). Conversely, regional gray
matter density increases (Gennatas et al., 2017) and an escalation
in white matter and structural connectivity throughout the brain
contribute to increased functional network integration (Giorgio
et al., 2008; Dennis et al., 2013). The default mode network
(DMN) in particular undergoes extensive maturation, integrat-
ing into a more cohesive network (Fair et al., 2008). Structural
MRI (sMRI) and resting-state functional MRI (fMRI) measure
several aspects of this brain maturation process. However,
capturing the complexity and subtleties of brain development
necessitates the use of advanced multivariate analytic methods.
Machine learning algorithms have been efficacious in capturing
consistent patterns of age-related neural change over the lifespan
(Dosenbach et al., 2010; Franke et al., 2010, 2012; Erus et al., 2015;
Habes et al., 2016). Moreover, machine learning algorithms can
encapsulate these complex features in a small number of indices

that allow one to assess brain signatures at an individual level.
Structural and functional brain age are two such indices.

Brain age, as estimated by neuroimaging-based age prediction
models, may accurately reflect one’s deviation, or lack thereof,
from the typical developmental trajectory. Thus, it may be used as
a comprehensive and individualized marker of brain health (Cole
and Franke, 2017). A growing volume of research in adults has
associated advanced brain age with a wide range of disorders,
including schizophrenia (Koutsouleris et al., 2014; Schnack et al.,
2016; Shahab et al., 2019). Although the extensive brain changes
that occur during the critical period of adolescence are thought to
confer vulnerability to emergence of neuropsychiatric symptoms
(Paus et al., 2008), the relationship between brain age and psy-
chiatric pathology has been only sparsely investigated. Existing
work indicates that deviations between brain age and chronolog-
ical age may capture anomalies in structural and functional brain
development (Chung et al., 2018; Hajek et al., 2019). A develop-
mental index based on one’s brain age could provide a standard-
ized measure of risk and contribute to the early detection of
neuropathology at an individual level. In the current work we
derive a comprehensive neural maturation index (NMI) of struc-
ture and function and test its reproducibility across two large
studies of brain development.

To investigate the generalizability of our multimodal NMI, we
first derived separate models for both structural and functional
data from participants in the Philadelphia Neurodevelopmental
Cohort (PNC; Satterthwaite et al., 2016). These models were then

The authors declare no competing financial interests.
Correspondence should be addressed to Monica Truelove-Hill at monica.hill@pennmedicine.upenn.edu or Chris-

tos Davatzikos at christos.davatzikos@uphs.upenn.edu.
https://doi.org/10.1523/JNEUROSCI.2092-19.2019

Copyright © 2020 the authors

Figure 1. NMI group separation by NMI scores across dataset and imaging type. These scatterplots indicate the groups identified using structural NMI scores for PNC (A) and PING (B) and
functional NMI scores for PNC (C) and PING (D). Those with NMI scores �70th percentile were placed in the high NMI group, those �30th percentile in the low NMI group, and the remaining in the
typical NMI group. Percentile rankings were calculated separately for each sex.
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applied to participants from the Pediatric Imaging, Neurocogni-
tion, and Genetics (PING; Jernigan et al., 2016) study, an entirely
independent study whose data were collected under different im-
aging conditions and locations. We hypothesized that machine
learning techniques would identify an accurate and reproducible
index of brain development. In this framework, we examined the
association of the distance between one’s predicted age and their
chronologic age with the respective patterns of brain structure
and function. We understood that differences would exist, as the
NMI model uses brain structure and function as the basis for
assigning one’s position in the chart. Therefore, our intention
was not to identify the existence of differences between the
groups produced by our NMI but to investigate the brain patterns
that the model identified as being the most effective estimators of
development. Finally, we evaluated whether schizophrenia is as-
sociated with deviations from typical patterns of brain develop-
ment summarized by the NMI using a third independent dataset
of schizophrenia patients between the ages of 16 and 22.

Materials and Methods
Participants
Subjects were drawn from the PNC and the PING study. Participants
without appropriate imaging data were excluded from the corresponding
analysis. Three MRI protocols were used to collect data from PING par-
ticipants; only participants following the Siemens MRI protocol were
included. The final sMRI analysis included 1396 PNC participants (731
females, ages 8 –23) and 314 PING participants (160 females, ages 8 –21).
The final fMRI analysis included 968 PNC participants (534 females, ages
8 –23) and 176 PING participants (88 females, ages 8 –21). Data collec-
tion methods for PNC and PING were described by Satterthwaite et al.
(2014) and Jernigan et al. (2016), respectively. For computation of age-
specific brain maps, we used a 4 year sliding window. With so few par-
ticipants older than 22, we were unable to produce representative brain
maps for ages �20. This necessitated the exclusion of participants older
than 22 (n � 12) for this portion of the analysis.

To compare the NMI scores of schizophrenia patients to controls, we
used participants from a multisite schizophrenia study (United States,
Germany, and China). We excluded participants whose age fell outside
the range of our NMI, giving us a final sample of 96 participants (ages
16 –22, 25 females; 43 schizophrenia, 53 control).

Data processing
MRI preprocessing. An automated pipeline was applied for preprocessing
T1-weighted scans of subjects. This pipeline included magnetic field in-
homogeneity correction (Sled et al., 1998) and extraction of the intracra-

nial brain tissues using multi-atlas skull-stripping (Doshi et al., 2013).
Anatomical regions-of-interest (ROIs) were identified using a multi-
atlas label fusion method (Doshi et al., 2016). Volumes of segmented
ROIs were used as input features for the NMI model. For voxelwise
analyses, gray and white matter tissue density maps were computed using
the RAVENS algorithm, a method extensively validated both using sim-
ulated data and on cross-sectional and longitudinal MRI images (Da-
vatzikos et al., 2001; Resnick et al., 2003; Rozycki et al., 2018). The
RAVENS algorithm involved tissue segmentation followed by nonlinear
registration to atlas space for spatial normalization of volumetric images
in a common atlas space. To maximize the accuracy of image registra-
tions from subject to atlas space, we used study-specific intermediate
atlases independently for PNC and PING, selected automatically as the
single most-representative T1 image of each sample. RAVENS maps were
normalized by individual intracranial volume to adjust for global differ-
ences in intracranial size, downsampled to 2 � 2 � 2 mm, and smoothed
using a 2-mm-diameter Gaussian filter.

fMRI preprocessing. Anatomical T1 images were registered to MNI152
Template using ANTS diffeomorphic SyN registration (Avants et al.,
2008). All subjects’ functional time-series were slice-time and motion
corrected using MCFLIRT with six degrees of freedom (3 rotations and 3
translations). Corrected functional data were coregistered to anatomical
T1 and bandpass filtered with passband frequency of 0.01– 0.08 Hz. To
reduce the influence of motion, we applied a validated confound regres-
sion procedure using a 36-parameter regression model (Satterthwaite et
al., 2013). Participants who had a mean relative displacement value of

Figure 2. Significant regional volumetric differences between high and low sNMI groups by
study. Significant regions are shown separately for the PNC (A; p � 0.001) and PING (B; p �
0.05) cohorts, along with the significant regions that were shared between the two sites (C).
Blue/light blue overlay indicates regions where those with high sNMI scores exhibit less volume
than those with low sNMI scores, whereas red/yellow overlay indicates regions where those
with high sNMI scores exhibit more volume than those with low sNMI scores.

Figure 3. Sparse connectivity patterns extracted from the PNC resting-state fMRI data.
Within each SCP, red-yellow shading indicates correlated regions within the network, while
blue shading indicates anti-correlated regions within the network.
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�0.2 mm were excluded from subsequent analysis. ROIs segmented on
the T1-weighted images were transferred to functional image space
through linear alignment and average time series were calculated within
each ROI. Connectivity matrices that represent the correlation of average
time series between each ROI pair were calculated to be used as input to
the functional NMI model.

Quality control protocol. Structural image quality was verified using
automated and manual quality control procedures. Images that failed the
quality control protocol were removed from subsequent analyses. An
image motion score was assigned to each individual based on visual
inspection and agreement between two raters. Motion was corrected for
in each study using a linear model with motion score, age, and sex in-
cluded as covariates, so that all data included in the NMI score calcula-
tion were corrected for motion. fMRI image and processing quality was
controlled using metrics that were automatically calculated during image
preprocessing and registration. No associations were found between par-
ticipants’ mean relative displacement values and their SCP coefficients.

Data harmonization procedures. Derived structural and functional im-
aging variables from PNC and PING were harmonized by correcting each
variable independently for site effects using a linear model that included
age, sex, and intracranial volume of the subjects as covariates. During the
harmonization the model also corrected the values for motion using
individual motion scores for structural and functional data. To eliminate
potential site biases between the PNC data and the multisite schizophre-
nia dataset, we applied the ComBat harmonization procedure (Fortin et
al., 2017).

Statistical analysis
NMI calculation. We used a support vector machine (SVM) regression
method for calculating the NMI (Smola and Schölkopf, 2004). The SVM
model included a nonlinear radial based functions kernel. The structural
model used gray and white matter region of interest volumes from each
scan as input, and the functional model used connectivity matrices. Op-
timization of cost and kernel parameters for each model was done
through grid search in a standard 10-fold nested cross-validation frame-

work. Both structural and functional NMIs were trained using data from
PNC participants. NMI scores for the PNC were derived using tenfold
cross-validation. The NMI that was trained on the complete PNC set was
applied to the PING and schizophrenia study cohorts to estimate NMI
scores for these participants. Therefore, NMI scores for all participants
were derived using a model fit to an external sample. NMI scores for each
participant were computed by taking the residuals from a linear regres-

Figure 4. Significant functional connectivity differences between the high and low fNMI groups in the PNC and PING cohorts. Four SCPs showed significant differences in connectivity between
developmentally advanced and delayed groups. On the brain maps, red/yellow shading indicates correlated regions within the network, whereas blue shading indicates anti-correlated regions
within the network. The segments on the jitterplot indicate the mean of each group. p values reflect the study-specific results of independent t tests between fNMI groups. There was relative
consistency between the studies in the components that reflect the medial regions of the default mode network (A), the sensorimotor network (B), and the frontoparietal network (D). However, in
the component that reflects the dorsal attention network (C), there were significant differences in the PNC, but not the PING cohort.

Table 1. Demographic data for each NMI group by age window

Age window NMI group

sNMI fNMI

Age Sex, M/F Age Sex, M/F

10 High 10.15 � 1.09 68/71 10.48 � 1.09 28/30
Low 10.26 � 1.08 68/71 9.92 � 0.96 28/30

11 High 10.99 � 1.16 76/69 11.38 � 1.15 33/36
Low 11.10 � 1.18 76/70 10.78 � 1.24 33/36

12 High 12.13 � 1.24 81/69 12.35� 1.08 41/39
Low 12.06 � 1.14 81/69 12.09 � 1.27 41/39

13 High 13.27 � 1.19 82/71 13.31 � 1.08 44/46
Low 12.85 � 1.15 82/71 13.13 � 1.05 44/46

14 High 14.35 � 1.10 83/81 14.26 � 1.13 50/57
Low 13.81 � 1.19 83/81 14.02 � 1.13 50/57

15 High 15.21 � 1.12 85/90 15.16 � 1.06 58/67
Low 15.00 � 1.18 85/91 15.12 � 1.20 58/67

16 High 16.09 � 1.14 82/95 15.97 � 1.11 59/75
Low 15.99 � 1.20 82/95 16.15 � 1.13 59/75

17 High 16.90 � 1.13 77/103 16.90 � 1.22 63/81
Low 17.11 � 1.24 77/103 16.95 � 1.10 63/81

18 High 17.68 � 1.07 77/99 17.88 � 1.14 63/81
Low 18.20 � 1.23 77/99 17.99 � 1.17 63/81

19 High 18.53 � 1.05 69/91 18.58 � 0.93 56/75
Low 19.03 � 1.08 69/91 19.06 � 1.17 56/75

20 High 19.25 � 0.97 55/73 19.10 � 0.84 45/59
Low 19.64 � 1.00 55/73 19.76 � 0.97 45/59

Each age window centered at age a includes participants of age a � 2.
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sion of predicted brain age on chronological age, described by Le et al.
(2018). Model effectiveness was evaluated using the mean absolute error
(MAE) and a Pearson correlation between chronological age and pre-
dicted brain age. Participants were grouped based on their estimated
NMI score. Participants with NMI scores �70th percentile of the sample
were placed in the high NMI group and those �30th percentile were
placed in the low NMI group. The remaining participants were classified
as having typical NMI.

Voxelwise analyses of structural group differences. Voxelwise group
comparisons were performed using RAVENS maps of the subjects. For
the age-specific analyses a 4 year sliding age window was applied to the
data, i.e., an age bin centered at age a included participants a � 2. To
maintain balanced sample sizes across age bins, comparisons were con-
ducted for ages 10 through 20. Voxelwise comparisons were applied
using a multivariate discriminative statistical mapping method (MIDAS;
28). MIDAS scans a voxelwise volumetric map using a set of overlap-
ping neighborhoods and conducts regional discriminative analysis
with least-squares SVM. A regional volumetric profile is identified
which maximally discriminates between groups similar to searchlight
analysis (Kriegeskorte et al., 2006). For each voxel, a statistic is calcu-
lated. p values corresponding to each statistic are then computed
using an analytic approximation of permutation tests (Nichols and
Holmes, 2002). Once p value maps were produced, FDR correction
was applied. For the exploratory sNMI/fNMI multidimensional anal-
ysis, we first created a mask based on the MIDAS statistic, and then
performed a standard effect size computation. Areas where the effect
size was �0.3 are shown in Figure 6.

Computation of sparse connectivity patterns. Because of the complexity
of functional connectivity data, group comparisons for fMRI analysis
were performed on a smaller set of variables derived using a validated
method of sparsity-based dimensionality reduction (Eavani et al., 2015).
This data-driven method takes as input a group of connectivity matrices
and calculates a low-rank decomposition into a set of distinct functional
subnetworks or “sparse connectivity patterns” (SCPs). Additionally, co-

efficients are produced for each participant that reflect the degree to
which a respective connectivity pattern captured by an SCP is present in
an individual. SCPs and their coefficients were computed using the
SCPLearn toolbox v1.1.0. As with the previous analyses, SCPs were cal-
culated using the PNC connectivity data as input. SCP coefficients were
then computed for both the PNC and PING groups.

Other analyses. R v3.5.1 was used to evaluate NMI model performance
and perform group comparisons of NMI scores and SCP coefficients.
Group comparison results were evaluated at p � 0.05. To control for
multiple comparisons, p values were corrected using the false discovery
rate (FDR).

Results
MRI data from participants who were imaged as part of the
PNC were used to develop structural NMI (sNMI) and func-
tional NMI (fNMI) models that were tested on unseen PNC
subjects via 10-fold cross-validation, and then applied to par-
ticipants from the PING study. Individual NMI scores were
computed by taking the residuals of a linear regression of
predicted age on chronological age. In this way, typical brain
development would be represented by NMI scores close to 0.
Brain age estimates older or younger than respective chrono-
logical age, i.e., positive and negative NMI scores, respectively,
indicated deviation from typical brain development (Fig. 1).
These thresholds were selected to identify atypical NMI scores
while also preserving similar group sizes to maintain homoge-
neity of variance. Importantly, the NMIs were calculated using
tenfold cross-validation, i.e., an individual’s brain age score
was always calculated from a model fit to a subset of the sample
not including the individual.

Figure 5. Significant volumetric differences ( pFDR � 0.05) in gray matter (A) and white matter (B) between the high and low sNMI groups across adolescence. Blue/light blue overlay indicates
regions where the high sNMI group exhibits less volume than the low sNMI group, whereas red/yellow overlay indicates regions where the high sNMI group exhibits more volume than the low sNMI
group. Each age bin centered at age a includes participants of age a � 2.
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sNMIs and fNMIs generalize across cohorts and sites
In the PNC, the cross-validated correlation between chronologi-
cal age and sNMI score was r � 0.822 (MAE � 1.67). The sNMI
model developed using the PNC as applied to the PING cohort
resulted in a correlation of r � 0.872 (MAE � 1.59). To deter-
mine consistency in model performance between two separate
sites, a comparison of regional volumetric patterns between
sNMI groups was performed. For input, we used the RAVENS algo-
rithm (Davatzikos et al., 2001) to produce gray and white matter
tissue-density maps for each participant and applied voxelwise com-
parisons using MIDAS in which a regional volumetric profile is iden-
tified that maximally discriminates between groups (Varol et al.,
2018). This comparison revealed that similar imaging patterns of
brain maturation differentiated between those with high and low
NMI scores, regardless of site (Fig. 2). These patterns were more
significant in the PNC than in the PING cohort. This could be be-
cause of the pattern being identified using the PNC before being
tested on PING but could also be a result of increased power afforded
by the PNC’s much larger sample.

fMRI data were expected to produce less consistent functional
development trajectories than the sMRI data due to the relatively
higher between-subject variability in functional connectivity pat-
terns. Despite the higher variability, fNMI prediction in the PING
cohort was still comparable to the cross-validated results of the PNC
group, indicating good generalizability of the fNMI across sites. In
the PNC, the correlation between chronological age and fNMI score
was r � 0.615 (MAE � 2.14). The fNMI model as applied to the
PING cohort resulted in a correlation of r � 0.605 (MAE � 2.58).

To compare regional connectivity patterns of functional mat-
uration across cohorts, we decomposed high-dimensional func-
tional connectivity data into 10 SCPs (Eavani et al., 2015; Fig. 3).
SCPs concisely capture brain connectivity in a manner that re-
veals heterogeneity across individuals while also identifying sub-
sets within the data that exhibit similar patterns.

SCPs were derived from the PNC, and participants in both co-
horts were assigned coefficients that indicated the degree to which
each SCP is represented in that participant, with higher coefficients
indicating greater component representation. Similar to the sNMI,
we checked the fNMI model’s consistency across sites by performing
comparisons of the associations of these coefficients with the fNMI.
These comparisons indicated general consistency in subnetwork
presentation between the PING and PNC groups, i.e., the magnitude
and direction of the difference between high and low fNMI groups
was similar across sites in the majority of SCP components (Fig. 4).
Although there was more between-site variance than produced by
the comparison of sNMI groups, it was not unexpected given that
the sNMI was highly successful in capturing brain maturation pat-
terns, whereas the fNMI was less robust.

Both sNMIs and fNMIs characterize expected
developmental trajectory
sNMI across age
To investigate the dynamic patterns that contribute to the sNMI
estimation, we compared the RAVENS maps of high and low
sNMI groups at each age, a. For a � � : 10 � a � 20, a 4-year
sliding age window was applied to the data; each age bin centered
at a included participants of age a � 2. (for descriptive data for
each age bin, see Table 1).

We found a widespread decrease in volume over the course of
adolescence consistent with previous developmental research
(Giedd et al., 1999). Comparisons between the high and low
groups by age indicated that regions with significant group dif-
ferences vary across adolescence (Fig. 5) and follow the expected

developmental trajectory; those with high sNMI scores exhibit
reduced gray matter volume throughout the cortex compared
with those with low sNMI scores. Volume differences in the pos-
terior portion of the brain are most pronounced in young ado-
lescents. These differences advance rostrally, with the frontal and
temporal lobes exhibiting the most significant group differences
during late adolescence and early adulthood.

To determine whether this pattern of gray matter loss was con-
sistent with traditional development, we compared gray matter vol-
ume between older and younger typical developers, i.e., those with
sNMI scores between the 30th and 70th percentiles (n � 682). Com-
parison groups were separated in a manner consistent with the
4-year sliding window applied to the rapid and gradual development
groups. Specifically, for a � � : 10 � a � 20, a 4-year sliding age
window was applied to the data; each age bin centered at a included
participants of age a � 2. Starting at age 13, participants in each age
bin were compared with the participants in the age a–4 (to avoid
overlap between groups). We found similar neural signatures in the
typical developers as those produced by the high/low sNMI compar-
isons, i.e., reduced gray matter volume that is noted in the posterior
regions in the youngest participants and the frontal and superior
temporal cortices in the oldest participants (Fig. 6A). Additionally,
we see a general increase in white matter throughout the brain over
the span of adolescence (Fig. 6B).

Although the spatial patterns are similar between the typical and
high/low sNMI groups, the temporal pattern is shifted. Specifically,
the neural signatures found in the typical group are most consistent
with the high sNMI participants who are a few years older. This

Figure 6. Patterns of development in the typical sNMI group. Significant gray matter (A) and
white matter (B) volume changes ( pFDR � 0.05) across age. Each age bin centered at age p
included participants of age p � 2. Comparisons were made between participants within each
age bin and those in the age bin reflecting p � 4 (e.g., those in the 13-year-old age bin were
compared with those in the 9-year-old age bin). Blue/light blue overlay indicates regions where
participants at age p exhibit less volume than those at age p � 4, whereas red/yellow overlay
indicates regions where they exhibit more volume.
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suggests that, generally, those with extreme sNMI scores are quanti-
tatively precocious or delayed in their structural development rather
than exhibiting a qualitatively different maturation pattern.

fNMI across age
To explore patterns of functional development and identify those
that contribute most strongly to fNMI assignment, we performed
additional analyses on SCPs across adolescence. In general, SCP
coefficients were positively correlated with age, which indicates
that connectivity within the networks represented by these SCPs
increased over the course of adolescence. The SCP that captures
medial regions of the DMN exhibited the strongest correlation
with age, r(1142) � 0.19, reflecting enhanced within-network con-
nectivity over the course of adolescence (Fair et al., 2008). Using
the same sliding window applied to the structural data, we per-
formed comparisons between the high and low fNMI groups
across the span of adolescence (Table 1). Similar to the structural
results, independent t tests indicated that networks with signifi-
cant group differences vary across adolescence, with the high
fNMI group exhibiting significantly stronger connectivity in the
default mode, sensorimotor, dorsal attention, frontoparietal, and
auditory networks (Fig. 7).

Multidimensionality of the neural maturation index
To further investigate the differences identified by our NMI
model and illustrate the use of the brain development chart, we
performed an exploratory analysis by grouping participants
based upon their structural and functional NMI scores jointly.
When stratified in this manner, each quadrant was found to
possess unique neural signatures that separated them from
those who were classified as both structurally and functionally
typical (Fig. 8). Interestingly, differences captured by one mo-
dality were not necessarily associated with consistent differences
in another; those who with high fNMI scores exhibited greater
differences in structural development than those with low fNMI
scores, suggesting an interaction between structural and func-
tional differences.

sNMI in youth with schizophrenia
We next investigated the indicative value of sNMI in identifying
imaging patterns of brain change in disease. We used an indepen-
dent cohort of schizophrenia patients (n � 43) and controls (n �
53) in the age range 16 –22. Previous studies have reported that
patients with schizophrenia exhibit accelerated brain aging com-
pared with normal controls in their age group (Koutsouleris et
al., 2014). Structural NMI scores for both schizophrenia and con-
trol groups were estimated using the original sNMI model de-
rived from the PNC sample (MAE � 2.03) and sNMI scores were
computed from a linear regression of estimated age on chrono-
logical age. An independent t test indicated that participants with
schizophrenia had significantly higher sNMI scores (0.41 � 1.82)
than the controls (�0.33 �2.06), tone-tailed(93.33) � 1.88, p �
0.031, d � 0.38 (Fig. 9A), suggesting that the schizophrenia pa-
tients had brains that looked older than the normative control
group. This difference increased with subjects’ age (Fig. 9B).

Discussion
In this study, we capitalized upon two large neurodevelopmental
datasets and a multisite schizophrenia study to derive and vali-
date a two-dimensional chart of brain development, and to in-
vestigate patterns of structure and function associated with
typical and atypical brain development. Both structural and func-
tional NMIs captured robust and reproducible development pat-
terns, as demonstrated by within-dataset cross-validation and
between-dataset application. Both general NMI performance and
NMI group comparison results were highly consistent between
studies, thereby bolstering our confidence that NMI scores gen-
eralize across sites, a critical factor for these imaging indices to be
adopted broadly. Additionally, sNMI scores were associated with
schizophrenia, which underlines the NMI’s potential utility as a
measure of clinical risk assessment. The results of our study es-
tablish a dimensional neuroimaging system for evaluating brain
development concisely using machine learning methods. They
also shed light on the spatial patterns of reduced cortical volume
and concomitant functional connectivity changes.

When investigating the developmental signatures captured by
the NMIs, we found a widespread reduction in gray matter, an
increase in white matter, and a general increase in within-
network functional connectivity. Moreover, analysis of indepen-
dent age groups showed that the NMI captures age-specific
patterns of change. Early adolescents displayed the greatest dif-
ferences in the posterior parietal cortex, those in middle adoles-
cence displayed the greatest differences in the parietal, frontal,
and superior temporal cortex, and the oldest adolescents and
young adults displayed the greatest differences in the orbitofron-
tal and superior temporal cortex. The posterior to anterior pro-

Figure 7. Mean SCP coefficient values for the significant networks in the high and low fNMI
groups across adolescence. ***pFDR � 0.001, **pFDR � 0.01, *pFDR � 0.05. pFDR � 0.1. p
values reflect the age-specific results of independent t-tests between fNMI groups. Error bars
reflect the SEM. SMN, Sensorimotor network; DAN, dorsal attention network; FPN, frontopari-
etal network; AN, auditory network.
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gression of volume loss is highly consistent with previous
developmental research (Gogtay et al., 2004), was verified in the
typical developers identified by our sNMI, and strongly supports
the sNMI’s characterization of normal development. Addition-
ally, this result suggests that extreme developers identified by the
sNMI are not generally exhibiting abnormal patterns of neural
development but, rather, developing more rapidly or gradually
than their peers. Notably, there were very few differences between
the sNMI groups in lower-order regions such as the visual and
somatosensory cortices. The most prominent differences be-
tween groups were in higher-order regions such as the prefrontal
cortex, supporting the hypothesis that development occurs along
an evolutionary hierarchy (Sotiras et al., 2017), with lower-order
regions stabilizing during childhood and higher-order regions
continuing to develop throughout adolescence. Additionally, the
results suggest that higher-order regions have a greater potential
for developmental variation, which emphasizes the need for in-
dividualized measures of brain maturation (Satterthwaite and
Davatzikos, 2015).

To examine developmental patterns captured by the fNMI, we
produced SCPs reflecting the default mode, dorsal attention,
frontoparietal, salience, visual, auditory, and sensorimotor net-
works. The most robust correlations with age were observed in a
component reflecting the DMN, which undergoes profound de-
velopment during adolescence (Fair et al., 2008). Remarkably,
the single component that was negatively correlated with age also
reflected regions of the DMN. However, this component in-

cluded the superior frontal cortex; connectivity between the
hemispheres in this region decreases with age (Power et al., 2010).
The high and low fNMI groups showed significant differences in
6 of the 10 networks. The DMN showed the greatest differences
over the entire span of adolescence, while differences between
other networks were confined to a limited age range, suggesting
connectivity within the DMN as a key feature of our fNMI model,
and likely one of the most consistent patterns of functional
maturation during this age range. Interestingly, but not unex-
pectedly, the age-constrained functional differences are asso-
ciated with corresponding structural differences between
groups. For example, the auditory network shows no signifi-
cant difference between groups until early adulthood during
which we also see significant structural differences in the su-
perior temporal lobe.

In our multidimensional NMI analysis, we found distinct dif-
ferences between each quadrant and typically developing youth.
In cases where differences are due to individual variance in brain
maturation, we might expect structural and functional brain de-
velopment to correspond, as in Quadrants 1 and 3 (Fig. 8). Less
intuitive are those individuals whose structural and functional
development do not align. Given that volume loss during adoles-
cent brain development primarily reflects increased myelination
(Natu et al., 2019), higher gray matter volume is presumably
associated with either a less mature brain (i.e., less myelination)
or an atypical source. Individuals in Quadrant 2 have more gray
matter and increased functional connectivity, which could indi-

Figure 8. Results of the analyses between each quadrant and typical developers. All differences presented in this figure are those in which d � 0.30. Quadrant membership was defined
by both structural and functional NMI scores. Those with scores �70th percentile were placed in the high NMI group, those �30th percentile in the low NMI group, and the remaining
in the typical NMI group. Participants from each quadrant were then compared with those who fell into both structural and functional typical groups. For the sMRI analyses, the
highlighted regions reflect areas where Cohen’s d � 0.30. Yellow/red shading indicates regions where those in the respective quadrant exhibit greater gray matter volume than the
typical group, whereas blue shading indicates regions where those in the respective quadrant exhibit less gray matter volume than the typical group. For the fMRI analyses, Sparse
connectivity patterns that were significantly different between each quadrant and the typical group are shown, if significant differences exist. Yellow/red shading indicates regions that
contribute to the SCP, whereas blue shading indicates regions that are anti-correlated with the SCP. The corresponding boxplots indicate the degree to which a respective connectivity
pattern captured by an SCP is present in each group.
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cate normal myelination with a lack of corresponding gray matter
loss. Individuals in Quadrant 4 have less gray matter and de-
creased functional connectivity, which might imply a decline in
gray matter that is not associated with increased myelination, as is
the case with patients with schizophrenia (Cannon et al., 1998).
Future longitudinal studies will be able to investigate this result in
greater depth.

Adolescence is a time of increased vulnerability to neural ab-
erration (Paus et al., 2008). NMI scores reflect one’s deviation
from typical development and therefore could be suitable for
determining an individual’s need for observation or further as-
sessment, especially if cognitive and behavioral characteristics
suggest atypical development. As adolescence has been hypothe-
sized to be a critical period in the development of schizophrenia
(Selemon and Zecevic, 2015), sNMI scores obtained during this
time may be useful in assessing risk. In our analysis, schizo-
phrenia patients were assigned higher sNMI scores than the
healthy control group, indicating that elevated sNMI scores
could be a marker of this disorder. Notably, previous research
has associated schizophrenia with particularly prominent vol-
ume loss in the superior temporal lobe and prefrontal cortex
(Gur et al., 2000; Mathalon et al., 2001). In our nonclinical
sample, these regions were identified by the sNMI as the pri-
mary areas of development in late adolescence and early adult-
hood. Indeed, the high sNMI group exhibited significantly

lower volumes in these regions compared with the low group.
This supports the idea that there is some overlap between
typical age-related volume loss and pathological volume loss
(Schnack et al., 2016), but adolescents with schizophrenia ex-
hibit precocious development in these regions to the extent it
becomes atypical. Although further research is necessary to
determine the proposed NMI’s effectiveness in identification
of other clinical groups, previous research indicating atypical
gray matter volume in other clinical cohorts is promising (Na-
kao et al., 2011; Zarei et al., 2011; Grieve et al., 2013).

In addition to producing an NMI that may be used to assess
risk of atypical development, we also implemented a novel
method for examining the developmental trajectory through the
use of data-driven analysis. One criticism of brain age models is
that they are a “black box” in which complex imaging data are
provided as input and a single outcome is derived (Cole and
Franke, 2017), with little understanding of how the input pro-
duces the outcome. In this analysis, we attempted to unpack the
black box by comparing those classified as extremes (i.e., the high
and low NMI groups). The goal was not to determine the exis-
tence of group differences, as we were aware that differences
would inherently exist. Rather, we explored those differences that
the model deemed most effective at estimating brain develop-
ment. By splitting the groups into small age windows, we were
able to identify age-specific patterns of deviation between high
and low groups in a novel manner. Thus, we use an innovative
data-driven method to identify the structural and functional sig-
natures most indicative of typical aging.

Some limitations must be noted. First, previous research has
established sex differences in both structural and functional
development (Satterthwaite et al., 2015; Gennatas et al., 2017).
Because of restrictions in sample size, we did not produce sex-
specific NMIs and were unable to compute separate age-specific
pattern analyses of group differences. We expect that a model
incorporating both males and females will naturally seek com-
mon patterns of brain development or would produce a high
MAE. The relatively low MAE scores produced by each of our
NMI models suggest they successfully captured neural signa-
tures shared between the sexes. Additionally, we attempted to
further compensate for sex differences by (1) using sex-
corrected imaging data in these analyses and (2) performing
NMI group classification separately by sex. However, it is un-
derstood that future studies, if sufficiently powered, could
derive sex-specific models that may yield more detailed re-
sults. Second, cross-sectional data were used to develop the
NMI. However, longitudinal data would undoubtedly provide
a richer picture of brain development across adolescence and
would allow for the investigation of how one’s NMI score
changes with time and other factors, such as disease. NMI
scores could potentially be used to show one’s rate of decline
or as an indicator of treatment effectiveness.

Together, our results delineate a dimensional imaging sys-
tem of adolescent brain development based on structural and
functional brain age, validated across multiple samples. Fur-
ther analysis indicated that the signatures identified by the
NMI for brain age prediction reflect key stages of the neural
restructuring that occurs during adolescence, suggesting that
the NMI is a concise summary of typical brain development.
Additionally, we confirmed the NMI’s efficacy as a marker for
atypicality in patients diagnosed with schizophrenia. In sum,
the NMI is a useful and interpretable metric by which neural
development in late childhood and adolescence may be
assessed.

Figure 9. Differences in sNMI scores in schizophrenia patients and a control group. A, Schizo-
phrenia patients were generally assigned higher NMI scores than those in the control group. B,
The difference in sNMI between groups increased across adolescence, such that control partic-
ipants exhibited brain patterns consistent with typical development regardless of age, whereas
schizophrenia patients exhibited increasingly atypical neural development with age.
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