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Human induced pluripotent stem cells (hiPSCs) have revolutionized research on human diseases, particularly neurodegenerative and
psychiatric disorders, making it possible to study mechanisms of disease risk and initiation in otherwise inaccessible patient-specific
cells. Today, the integration of CRISPR engineering approaches with hiPSC-based models permits precise isogenic comparisons of
human neurons and glia. This review is intended as a guideline for neuroscientists and clinicians interested in translating their research
to hiPSC-based studies. It offers state-of-the-art approaches to tackling the challenges that are unique to human in vitro disease models,
particularly interdonor and intradonor variability, and limitations in neuronal maturity and circuit complexity. Finally, we provide a
detailed overview of the immense possibilities the field has to offer, highlighting efficient neural differentiation and induction strategies
for the major brain cell types and providing perspective into integrating CRISPR-based methods into study design. The combination of
hiPSC-based disease modeling, CRISPR technology, and high-throughput approaches promises to advance our scientific knowledge and
accelerate progress in drug discovery.
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Introduction
The ability to apply human induced pluripotent stem cells
(hiPSCs) to generate, and Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) engineering to manipulate, a
multitude of cell types from either patients or controls has trans-
formed our ability to model human diseases and to probe the
mechanisms underlying disease. Genetically engineered rodents
have played a critical role in understanding the relationship be-
tween genotype, circuit function, and behavior. For genes con-
served between humans and rodents, these genotype–phenotype
relationships frequently well inform human studies. However,
rodent models struggle to recapitulate complex genetic disorders
arising from the interactions of dozens of risk variants, particu-
larly when human-specific disease-associated variants or their
regulation are not well conserved between species. Moreover,
strain-specific genotype–phenotype effects observed in rodent
studies highlight the need to study mutations and variants in the
context of diverse genetic backgrounds (Sittig et al., 2016).
Donor-dependent and human-specific regulatory processes and
cellular functions are at least partially to blame for observed vari-

ability and the failure of promising treatments developed in ani-
mal models to show efficacy in humans. Therefore, there is a clear
need to study human diseases in human models derived from
diverse genetic backgrounds.

Today, a combination of hiPSCs and CRISPR editing of
disease-associated variants enables the functional evaluation of
genetic risk in diverse genetic contexts, toward understanding the
effect of genomic variability across a population. Even for com-
plex genetic disorders, such as schizophrenia (Brennand et al.,
2011), bipolar disorder (Mertens et al., 2015a), and autism spec-
trum disorder (Marchetto et al., 2010; Mariani et al., 2015), de-
velopmental phenotypes and drug treatment responses can be
modeled in vitro (Silva and Haggarty, 2019).

Overall, hiPSCs are remarkable tools that enable us to move
toward precision medicine, while at the same time challenging
our basic assumptions about how to best design in vitro experi-
ments. Considering the genetic heterogeneity among individuals
(both patients and controls), the variable penetrance of many
rare disease-causing variants, and the small effect sizes of common
variants associated with brain disease (for review, see Sullivan
and Geschwind, 2019), a rigorous hiPSC-based study requires
thoughtful consideration of cohort size, donor (case and control)
selection, and patient stratification to reduce experimental vari-
ability. Although most studies to date have been conducted in
one cell type in isolation, there is a growing need to functionally
combine diverse neuronal (e.g., glutamatergic, GABAergic, and
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dopaminergic neurons) and glial (astrocytes, oligodendrocytes,
and microglia) cell types into defined “circuits,” to model the com-
plex interactions underlying, for example, neuropsychiatric dis-
eases (Figure 1). Ultimately, hiPSCs-derived neurons and glia
represent an important source of cells for future drug screening
and cell replacement therapies. Here we provide an introduction
to hiPSC-based modeling, noting not just the potentials of this
approach, but also pointing out potential pitfalls, and striving to
provide guidelines for designing these studies in a meaningful
way. By applying CRISPR editing to hiPSCs from diverse human
genetic backgrounds, and state-of-the-art methods to generate
specific neural cell types, hiPSCs represent a new model enabling
the study of gene function and disease variants in a human-
specific context. Furthermore, hiPSCs serve as a nearly limitless
source of cells for personalized drug screening and cell replace-
ment therapies.

Advantages of hiPSC-based disease models
Perhaps the greatest advantage of hiPSC-based disease models is
the ability to generate and manipulate otherwise inaccessible cell
types for the study of human neurodegenerative and psychiatric
disorders. The earliest of such studies focused on disorders likely
involving single genes, such as Rett syndrome (MECP2) (Mar-
chetto et al., 2010), autism spectrum disorder (SHANK3)
(Kathuria et al., 2018), and schizophrenia (DISC1) (Z. Wen et al.,
2014; Srikanth et al., 2015). Among other phenotypes, these stud-
ies reported fewer synapses in patient-derived neurons, provid-
ing strong proof-of-concept evidence that hiPSC-based studies
could identify disease phenotypes that were reproducible across
cohorts and laboratories.

Because hiPSCs enable researchers to examine the impact of
rare and common genetic variants across distinct genetic back-
grounds, they are extremely well suited for modeling complex
genetic disorders. Due to the differences in penetrance and effect
size between risk loci, the most appropriate experimental strate-
gies vary between genetic variants. Although the clinical impact
of rare variants can be pleiotropic, rare variants tend to be asso-
ciated with larger effect sizes, which are thought to be easier to

resolve in vitro than common variants with often small effects or
incomplete penetrance. There are several examples for the mod-
eling of rare variants: an engineered conditional heterozygous
truncation of neurexin1 (NRXN1, associated with SZ, autism,
and Pitt-Hopkins-like syndrome 2), in hiPSC-derived neurons
led to reduced synaptic transmission (Pak et al., 2015), and
C9orf72 (associated with ALS and FTD; patient-derived motor
neurons showed evidence of neurodegeneration) (X. Wen et al.,
2014; Shi et al., 2018). Identifying and recruiting a sufficient
number of patients with rare penetrant variants can be difficult,
but variants can now be introduced by CRISPR editing (Tai et al.,
2016), making it possible to test their penetrance across different
genetic backgrounds.

Studies of common variants have been informed by genome-
wide association studies (GWAS) of single nucleotide polymor-
phisms (SNPs), which have identified hundreds of common
variants of small effect that are associated with schizophrenia
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014; Pardiñas et al., 2018) and other neuropsychi-
atric disorders. Several studies have used hiPSCs to explore the
impact of GWAS-significant loci within patient cohorts (e.g., the
involvement of the complement component 4 locus in synaptic
elimination) (Sellgren et al., 2017, 2019), but the effect of com-
mon variants can also be directly evaluated by applying CRISPR
editing to introduce the precise SNP(s) identified through
GWAS. Functional validation can demonstrate whether SNPs
play a causal role in gene regulation through, for example: alter-
ations in enhancer-promoter looping, as shown for CACNA1C
(Roussos et al., 2014); 3D-genome folding, as shown for PCDH�
(Rajarajan et al., 2018); or miRNA levels, as shown for miR-137
(Forrest et al., 2017) and FURIN (Schrode et al., 2019).

Environmental factors with clear biological effectors are also
amenable to in vitro study in hiPSC-derived cells. One such ex-
ample is congenital Zika syndrome; hiPSC-based models were
among the first to reveal that neural progenitor cells were the
most susceptible to Zika-mediated cell death (Tang et al., 2016)
and that infection was mediated by infiltrating microglia (Muffat
et al., 2018). Furthermore, hiPSC Zika models were used to

Figure 1. Approaching hiPSC disease modeling. The general human population exhibits high genetic variability, which can be overcome by stratification of the cohort or by CRISPR editing
approaches. Generated iPSC lines can be differentiated or induced into several neural cell types, comprising neurons and glia, which can be modularly combined into cocultures for complex genetic,
phenotypic, or functional analysis. Components of schematic were adapted from Servier Medical Art (https://smart.servier.com/#) and BioRender (created with www.BioRender.com).
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screen for novel drugs that could prevent infection and promote
neural survival (Zhou et al., 2017). Indeed, even the clinical dis-
cordance between affected and unaffected dizygotic twins could
be recapitulated in vitro following Zika infection of patient-
derived neural progenitor cells (Caires-Júnior et al., 2018).

One of the most immediate clinical applications of hiPSC-
derived cells will occur through drug screening (for review, see
Moffat et al., 2017). Already, hiPSC-based drug screening has led
to the discovery of novel compounds that reduce endogenous
human tau (relevant for Alzheimer’s disease) (Wang et al., 2017;
van der Kant et al., 2019) and confirmed the functionality of
drugs identified in mouse models in a human context (Yang et al.,
2013). We recently described a proof-of-concept application of
transcriptomic drug screening to schizophrenia, wherein we
demonstrated cell-type-specific and donor-dependent drug-induced
gene expression changes (Readhead et al., 2018).

The full promise of hiPSC-based models lies in the possibility
of patient-specific drug screening, the ability to predict clinical
treatment response in vitro. The extent to which clinical drug
responsiveness is heritable and/or stable throughout the lifetime
across the spectrum of neuropsychiatric disease needs further
investigation, but promising examples have been reported. For
instance, the lithium response of hiPSC-derived neurons from
known lithium responders and nonresponders differed in vitro
(Mertens et al., 2015a), and clinical lithium response could be
accurately predicted by examining as few as five patient-derived
neurons (Stern et al., 2018).

In addition, hiPSCs represent the possibility of donor-specific
cells for transplantation into patients with neurodegenerative
diseases. However, the utility of cell replacement therapy is likely
limited to a narrow subset of diseases defined by the loss of a
single cell type that is well characterized, surgically accessible, and
capable of being generated at high-purity in vitro. Nonetheless,
the first clinical trials for retinal disease (Mandai et al., 2017) and
Parkinson’s disease (Barker et al., 2017) are now underway (for
review, see Barker et al., 2018). In either case, being able to con-
duct drug screens or transplantation therapies using patient-
matched cells promises to make possible a move toward precision
medicine.

Disadvantages of hiPSC-based disease models
Studying hiPSC-derived neurons has tremendous benefits and
advantages for studying disease; however, their very nature raises
challenges and limitations to their use, and these clear disadvan-
tages have to be considered when approaching hiPSC studies. The
limited sample size that can yet be achieved is one critical disad-
vantage of hiPSC-based studies, relative to genetic and postmor-
tem studies. During the reprogramming process, epigenetic
marks are mostly removed and somatic cells are reverted to an
embryonic-like state. To ensure the generation of a reliable hiPSC
line, extensive validation is needed, including confirmation of
differentiation potential, absence of residual reprogramming fac-
tor expression, and exclusion of additional mutations (Schlaeger
et al., 2015). The generation and validation of hiPSCs are time-
consuming and expensive, limiting sample size. We hope that
automation (Kiskinis et al., 2014; Paull et al., 2015) and stem cell
banking initiatives (https://www.nimhgenetics.org/; https://www.
cirm.ca.gov/researchers/ipsc-repository; http://hpscreg.eu) will
overcome this obstacle, enabling multiple laboratories to share
hiPSCs for comparative studies, reducing costs, and increasing
scientific fidelity and possible sample size.

Another difficulty with hiPSC studies is that a perhaps unex-
pected level of variability occurs between and within donors, re-

flecting variation in genetic background coupled with stochastic
differences during the reprogramming and neuronal differentia-
tion protocols (Hoffman et al., 2017), limiting resolution of ge-
netically regulated donor effects. Interdonor variation can be well
countered by the application of CRISPR-mediated genetic (for
review, see Adli, 2018) and/or epigenetic (for review, see Pulecio
et al., 2017) perturbations, resulting in isogenic pairs (same ge-
netic background with or without the perturbation) with which
to functionally validate the impact of specific disease-associated
loci.

Finally, the physiological relevance of hiPSC-derived neuro-
nal populations can be limited by functional immaturity, a failure
to form complex neuronal circuits, and lack of myelination and
microglia pruning. hiPSC-derived neural cells most resemble fe-
tal counterparts (Nicholas et al., 2013; Brennand et al., 2015),
suggesting that they are most appropriate for modeling disease
risk rather than end-stage disease processes. While mechanistic
studies and drug-based screening in hiPSC-based studies may be
better suited to identify drug targets that prevent disease, this
offers the possibility of an earlier window for therapeutic inter-
vention. One attempt to improve maturity is the establishment of
multicellular systems enabling functional interactions (e.g., my-
elinating oligodendrocytes) (Douvaras et al., 2014), neuromus-
cular junctions (Puttonen et al., 2015), and synaptic pruning
(Sellgren et al., 2019), even though these systems still lack the
maturity and stability of their in vivo counterparts. Ongoing work
to advance 3D organoids (Amin and Pasca, 2018; companion
Dual Perspectives article), promises to improve the maturity,
functionality, and fidelity of hiPSC-based models by incorporat-
ing functional vasculature (Mansour et al., 2018), myelination
(Madhavan et al., 2018), blood– brain barriers (Vatine et al.,
2017), and increasing the diversity of neuronal cell types (Xiang
et al., 2017, 2019; Sloan et al., 2018). Interactions among cell types
(e.g., cocultures or organoids) are now being explored in higher
throughput drug screens (for review, see Miranda et al., 2018).

Although hiPSC-based disease models can be limited by small
sample sizes, high interdonor and intradonor variability, lack of
maturation, and the limited circuit complexity yet attainable,
they represent a path to more accurate modeling of human-
specific disorders and identification of novel therapeutic targets
and drugs. hiPSCs offer us the unique opportunity to study hu-
man diseases using patient-derived cells. When coupled with
CRISPR engineering, they provide the ability to model and ma-
nipulate risk factors linked to both monogenic and complex
genetic disorders, and the heterogeneity between cases (and con-
trols) allows us to explore the effect of variable penetrance and
genetic background.

Major considerations in study design
Although hiPSCs are a powerful tool to unravel phenotypes and
mechanisms of human diseases, to achieve meaningful results
and statistical resolution, cohort size, patient stratification, and
suitable cell types must be carefully considered. For example,
complex diseases can be modeled by reprogramming patient-
derived samples or by engineering specific disease-associated
variant(s). For the former, a larger cohort consisting of multiple
patients and controls is needed, necessitating stratification of pa-
tients and controls selected based on shared genetic, clinical, or
pharmaceutical response traits. For the latter, one must choose to
either introduce a disease-associated variant in a control donor
background or reverse it in a patient-derived hiPSC, with poten-
tial issues of penetrance and unknown epistatic interactions in
either case.
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Achieving statistical significance in phenotypic comparisons
is frequently problematic for one of two reasons: (1) limited experi-
mental size owing to the time-consuming and expensive nature of
these studies and (2) increased experimental noise arising from both
interdonor variability in genetic background and intradonor sto-
chastic heterogeneity in cell type composition between experimental
replicates. Nonetheless, with thoughtful experimental design with
respect to cohort size, donor selection, cell type(s) of interest, and
phenotypic assay(s), both case–control and hiPSC-based studies
yield novel insights into disease and drug response.

What size of cohort is large enough?
Given the genetic heterogeneity within patient and control pop-
ulations, it is important to consider the size of case– control stud-
ies (i.e., the number of patients and healthy controls to enroll and
the number of hiPSC lines to characterize per donor) and the
number of independent genetic backgrounds across which
CRISPR-based isogenic comparisons should be conducted.

Reprogramming, differentiation, and phenotypic analyses of
hiPSC-derived neural cells can be cumbersome, time-consuming,
and expensive. One reprogramming experiment produces several
clones per donor, which are very similar and carry in principle the
same genetic background; however, preexisting somatic muta-
tions or alterations during the reprogramming process can lead
to slight variations between clones. When studying idiopathic
disease, genetic analyses have increasingly revealed that, given the
costs involved, it is always preferable to add additional indepen-
dent donors rather than duplicate hiPSC clones per donor, due to
the limited knowledge about variation in idiopathic diseases
(Hoffman et al., 2017). For rare variant studies, where the num-
ber of available patients is limiting, increased statistical power can
be acquired by generating multiple hiPSCs per donor. Recent
idiopathic hiPSC cohorts have reached �10 cases and 10 con-
trols, with multiple hiPSC clones per donor (Topol et al., 2016;
Hoffman et al., 2017; Lang et al., 2019), while studies of isogenic
pairs typically use just one or two donor backgrounds for editing
(Yi et al., 2016; Forrest et al., 2017; Kiskinis et al., 2018). The
largest hiPSC cohorts (711 hiPSC lines from 301 individuals)
have been applied to expression quantitative trait loci analyses,
linking genomic SNP data to expression data of a specific locus,
revealing that up to 50% of variability arises from different ge-
netic backgrounds (Carcamo-Orive et al., 2017; DeBoever et al.,
2017; Kilpinen et al., 2017). With current methodologies, hiPSC-
based recall-by-genotype studies, which recruit patients on the
basis of genetic variation, require at least 20 – 80 donors to detect
the effects of regulatory variants (Schwartzentruber et al., 2018).

Overall, both attaining an appropriate cohort size to achieve
statistical significance and incorporating isogenic comparisons
are crucial for making biologically meaningful conclusions. Al-
though recent papers have described relatively small sample sizes
across which molecular and cellular readouts have been possible,
current thinking is that cohort size should always be maximized,
even at the expense of replicated hiPSC clones from each donor
(Germain and Testa, 2017; Hoffman et al., 2017).

Which patients should be recruited?
Given the substantial costs associated with generating a large
case– control hiPSC cohort, it is important that one carefully con-
sider issues associated with accurate diagnosis, patient stratifica-
tion, and appropriately matched controls, together with the
inclusion of isogenic comparisons.

Because a single clinical designation can apply to a collection
of phenotypes resulting from distinct genetic perturbations (e.g.,

influenced by the affected gene, genetic region, expression signa-
ture, polygenic risk score), genetic stratification can improve
study design by focusing on shared underlying mechanisms. One
must strive to carefully select representative and meaningful do-
nors, given the limited samples sizes currently possible with
hiPSC-based disease models. This can either be based on match-
ing the underlying genetic cause, or if unknown, on shared
clinical (e.g., imaging, ENIGMA; http://enigma.ini.usc.edu/)
(Thompson et al., 2014), pharmacological (e.g., drug responsive-
ness) (Stern et al., 2018), or genetic information (e.g., polygenic
risk score) (for review, see Hoekstra et al., 2017; Hoffman et al.,
2019) of donors.

Another useful design is to specifically recruit or CRISPR-edit
donor-specific cells to assess the impact of variable penetrance
across genetic backgrounds. For example, carriers of the APOE4/4
risk variant are substantially more susceptible to Alzheimer’s dis-
ease than APOE3/3 carriers (Lin et al., 2018); a cohort comprised
of APOE4/4 resilient controls and Alzheimer’s disease cases could
inform on the biological pathways limiting disease progression.
An example of selection based on clinical presentation is NRXN1,
where copy number variations are strongly associated with both
autism spectrum disorder and schizophrenia (Matsunami et al.,
2013; Marshall et al., 2017).

As an alternative to case– control design, rare or common
variants identified by GWAS can either be introduced into con-
trol hiPSCs or repaired in patient hiPSCs. For rare variants, the
precise mutation to be engineered is generally straightforward to
identify; with common variants, selection is much more nu-
anced. First, putative causal common variant SNPs can be in-
ferred by demonstrating that they are associated with gene
expression in the cell type(s) relevant to disease. For example, by
directly integrating schizophrenia-associated GWAS SNPs to
those linked to gene regulation in the postmortem brain, disease-
associated common variant risk loci associated with both gene
expression and disease liability could be identified (Fromer et
al., 2016). Second, although SNPs are frequently inherited
together via linkage disequilibrium, linkage disequilibrium
blocks can sometimes be resolved to a single putative causal
SNP via fine-mapping analyses (Dobbyn et al., 2018). De-
pending on the number of putative causal SNPs identified at a
given loci (and their hypothesized mechanism of action), a
variety of CRISPR-based tools are available to enable isogenic
comparisons.

In summary, the design of an ideal hiPSC cohort for disease
modeling should be based on accurate diagnosis, which can be
further refined by genetic characterization and/or clinical patient
stratification. An alternative approach is the targeted genome
engineering of known variants or risk factors.

Who is the ideal “control?”
The generation of isogenic controls (i.e., the introduction or re-
pair of a disease-associated mutation) allows the comparative
analysis of variants in the same donor background, vastly reduc-
ing variability confounded by difference in genomic background.
Furthermore, CRISPR editing can facilitate the study of pen-
etrance of risk variants across genetic backgrounds (e.g., a high or
low polygenic risk score for disease) and can be particularly
valuable when no patient material is available. To evaluate pen-
etrance, isogenic studies can be conducted across different ge-
netic backgrounds from donors with high and low polygenic
disease risk scores. At the same time, potential additive effects of
additional variants can be directly tested, to explore the molecu-
lar and functional convergence of risk factors.
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When isogenic comparisons are not possible, unaffected rela-
tives or age- and sex-matched controls are typically used as a
point of comparison. Unfortunately, there is often little known
about healthy donors, and there is usually no possibility to track
disease state after the time of donation, leaving uncertainty about
whether the young “healthy donor” will remain healthy. Old do-
nors provide the advantage of a known clinical history, but the
disadvantage of a lifetime of possible accumulation of somatic
mutations that might be present in donor hiPSCs and could in-
fluence gene expression and phenotypes of hiPSC-derived cells
(Lo Sardo et al., 2017). Thus, we should probably be acquiring
donor material as part of longitudinal studies, ultimately yielding
hiPSCs derived from old, healthy donors that were generated in
their younger years and frozen as somatic cells or hiPSCs for
future studies.

In summary, when developing hiPSC-based disease models, it
is crucial to choose an appropriate cohort size and to incorporate
the recruitment and/or isogenic editing of suitable controls. In
addition, it is beneficial to focus on genetically characterized pa-
tients sharing common risk factors. By integrating hiPSC-based
approaches with CRISPR engineering, in vitro studies can explore
the impact of disease-associated risk factors across a range of
genetic backgrounds, which may help us to improve genetic-
based diagnosis, prognosis, and treatment.

Which cell types should be studied?
Because neurological diseases often stem from effects on specific
cell types, it is crucial to consider the impact of disease-associated
variants within and between the diverse cell types that make up
the brain. Which cell type(s) to study for a given disease might be
answered by relying on clinical data, imaging studies, animal
studies, and publicly available expression data of in vivo and
hiPSC-derived cells (e.g., www.brainrnaseq.org; http://cortecon.
neuralsci.org/), to determine which cell types express the gene of
interest or are affected by disease.

Advances in directed differentiation protocols largely reflect
an improved understanding of, and ability to recapitulate, the

growth factors and regionalization factors present during neuro-
development. To date, efficient differentiation protocols for most
of the major neural cell types, including cortical neurons, dopa-
minergic neurons, astrocytes, oligodendrocytes, and microglia
have been established and validated across multiple sites
(Schwartzentruber et al., 2018). Using these classical differentia-
tion protocols, the purity of differentiated neural cell populations
can reach 80%; however, extensive variability can occur between
hiPSC lines of different genetic backgrounds, both in the yield of
the desired cell type and in the composition of the undesired cells
(Hoffman et al., 2017).

Extrinsic growth factors applied during the course of these
differentiation protocols ultimately result in changes in signaling
and transcription factor activity within the differentiating cells.
Identifying the key transcription factors regulating specific neu-
ral fates, either through screening of candidates (Vierbuchen et
al., 2010; Pang et al., 2011) or unbiased genomewide screening
(Liu et al., 2018; Tsunemoto et al., 2018), enables the direct in-
duction of neural fate by overexpression of critical transcription
factors. Today, several protocols are widely used: for example,
overexpression of NGN2 rapidly generates a nearly pure neuronal
population with glutamatergic forebrain identity (Zhang et al.,
2013; Ho et al., 2016), whereas overexpression of DLX2 and
ASCL1 produces GABAergic neurons (Sun et al., 2016; Yang et
al., 2017).

A comprehensive overview of some of the most reliable differ-
entiation and induction protocols for the major neural cell types
is provided in Table 1, including a comparison of the yields and
timelines. Although classical differentiations can achieve en-
riched cultures, as noted above, they often produce impure,
mixed populations of different cell types with varying composi-
tions and maturities over more protracted time courses. Ad-
vanced transcription factor induction-based protocols, on the
other hand, generate cell types at higher purities, effectively re-
ducing the variability within and between experiments. This
higher purity enables the assembly of more complex, defined
populations with known cell-type compositions to study cell-

Table 1. Overview of 2D differentiation and induction protocols of neural cell types from hiPSCs, including timing, efficiency, and induction factors

Cell type Differentiation Induction

Timing Efficiency Factors Timing Efficiency

Glutamatergic neurons 80 d
Shi et al. 2012

80%–100% NGN2
Zhang et al., 2013

�2 weeks �100%

GABAergic neurons 6 weeks �95% DLX2, ASCL1 4 weeks �80%
Liu et al., 2013; Maroof et al., 2013 Sun et al., 2016; Yang et al., 2017

Dopaminergic neurons 35 d 90% ASCL1, NURR1, LMX1A 21 d �93%
Kriks et al., 2011; Zhang et al., 2014 Caiazzo et al., 2011; Theka et al., 2013

Serotonergic neurons 6 weeks 60% NKX2.2, FEV, GATA2, LMX1B, ASCL1, NGN2 3 weeks from fibroblasts 60%
Lu et al., 2016 Vadodaria et al., 2016

Motor neurons 4 weeks �90% LHX3, NGN2, ISL1 2 weeks �85%
Du et al., 2015 Goto et al., 2017

Astrocytes �30 d 90% SOX9, NFIB 2 weeks 96%
TCW et al., 2017 Canals et al., 2018

Oligodendrocytes 75 d 45%–70% SOX10 and OLIG2 20 d almost
Wang et al., 2013; Douvaras et al., 2014;

Douvaras and Fossati, 2015
Pawlowski et al., 2017
SOX10, OLIG2, NKX60.2

100%

Ehrlich et al., 2017 28 d 60 –70%

Microglia 5 weeks
Muffat et al., 2016; Abud et al., 2017

�90% — — —
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type interactions. Another advantage of induced neurons is an
accelerated functional maturation, achieving electrophysiologi-
cal maturity at earlier time points than their classically differen-
tiated counterparts (Meijer et al., 2019; Rhee et al., 2019).

Nonetheless, neurons differentiated and induced from hiPSCs
most resemble fetal cells (Nicholas et al., 2013; Brennand et al.,
2015), whereas neurons directly induced from aged somatic fi-
broblasts maintain aged markers (Pang et al., 2011; Mertens et al.,
2015b), suggesting that the choice of neural generation methods
might reflect whether the experimental objective is to query de-
velopment, disease risk, or later aspects of disease state.

In contrast to 2D differentiation or induction methods, 3D
organoids techniques generate a self-organizing brain-like struc-
ture containing several different cell types (see companion Dual
Perspectives article; Li et al. 2020). While these models reflect
improved cellular complexity and are valuable for studying self-
organization, migration, and certain aspects of brain architec-
ture, they often display a high degree of variability between
donors and experiments (Quadrato et al., 2017; de Souza, 2018),
limiting their potential for studying small effect sizes or defined
cell types and compositions. More recent protocols achieve
higher reproducibility between organoids and experiments
(Velasco et al., 2019), and 3D culture makes it possible to use
extended differentiation protocols (up to 1 year), facilitating
maturation in organoid cultures (Pasca et al., 2015). Overall, by
developing a toolbox of methods by which to generate a growing
number of cell types in 2D, our collective ability to generate more
complex “circuits” is being advanced.

The necessity for modeling the interactions between different
cell types is exemplified by schizophrenia, where the genetic data
strongly point to an enrichment of genetic risk in glutamatergic
and different subsets of GABAergic neurons (Skene et al., 2018).
hiPSC-based schizophrenia models have not only reported defi-
cits in glutamatergic neurons (Yu et al., 2014) and GABAergic
neurons (Shao et al., 2019), but also neural progenitor cells
(Brennand et al., 2015), dopaminergic neurons (Hook et al.,
2014), astrocytes (Windrem et al., 2017), oligodendrocytes (Mc-
Phie et al., 2018), and microglia (Sellgren et al., 2019). There are
consistent difficulties in resolving the primary cell type underly-
ing disease and the complex interactions of cell types that pro-
duce clinical phenotypes, which may be better addressed using
defined coculture populations.

Ultimately, the ability to separate cell-type-specific signatures
from these complex populations, by single-cell analyses (Skene et
al., 2018; Lang et al., 2019), FACS-based physical separation (Ar-
lotta et al., 2005), biochemical ribosome-tagged separations
(Sanz et al., 2009; Lesiak and Neumaier, 2016), and/or computa-
tional strategies (for review, see Avila Cobos et al., 2018), will
allow the deconvolution of cell-type-specific effects, alone and in
coculture with other cell types.

Overall, a variety of protocols for the generation of distinct
subtypes of neurons and glia have now been reported, using both
differentiation and induction approaches. By developing an ex-
panded set of methodologies by which to generate increasingly
defined neural cell types, we are progressively able to construct
cocultures of more advanced and complex neuronal models to
tackle underlying mechanisms and interactions in disease rele-
vant readouts.

Assays for resolving disease-relevant insights
Experimental readouts can comprise a variety of unbiased omics
(transcriptomics, epigenetics, and proteomics) approaches, func-
tional evaluation of populationwide activity and single-cell elec-

trophysiology, and/or disease-specific cellular and biochemical
assays (Fig. 1). Recent advances, particularly at the single-cell
level, have begun to yield remarkable insights linking genotype,
gene expression, and function. For example, single-cell RNAseq
of hiPSC-derived dopaminergic neurons derived from patients
with Parkinson’s disease yielded a pseudo-time analysis that tem-
porally ordered differentially expressed genes and prioritized the
transcriptional repressor histone deacetylase 4 (HDAC4) as a pu-
tative driver gene (Lang et al., 2019). Single-cell electrophysiolog-
ical analyses can also resolve genotype-associated presynaptic
and postsynaptic deficits, particularly when low numbers of dis-
ease and control isogenic neurons are “sprinkled” onto a shared
neuronal lawn to generate sparse connectivity cultures (Schrode
et al., 2019; Zaslavsky et al., 2019). New methods, such as “opto-
patch,” will hopefully yield increased scalability of single-cell re-
cordings of neuronal activity (Kiskinis et al., 2018).

In conclusion, hiPSCs represent a powerful platform with
which to observe important biological characteristics and cellular
interactions in the context of disease or drug treatment.

Advances in CRISPR-mediated strategies
Isogenic comparisons reduce the variation introduced by genetic
background and enable focused investigation of the impact of
one or more variants. Advances and widespread application of
CRISPR technology enable rapid manipulation of the genome
(e.g., generation of isogenic controls) but also facilitate transient
manipulations and changes to the epigenome (for review, see
Pulecio et al., 2017; Adli, 2018).

The CRISPR/Cas systems are widely used for efficient KO of
genes in a heterozygous and homozygous manner, through indel
formation via nonhomologous end joining, homology directed
repair, or knock-in (for review, see Powell et al., 2017). To re-
move or invert larger genomic loci, multiplexing CRISPR ap-
proaches can be applied. CRISPR systems function through a
catalytic or nuclease null “effector” protein that is guided via a
synthetically derived RNA. The Cas9 effector is most promi-
nently used in CRISPR-based applications; however, new effec-
tors, such as Cpf1 identified in different bacterial species, have
been adapted to increase editing specificities or broaden targeting
ranges (Zetsche et al., 2015; Singh et al., 2018).

CRISPR activation or inhibition (CRISPRa/i) can directly
modulate endogenous expression levels of one or more genes,
through the recruitment of an additional effector protein by an
inactive dCas9 (for review, see Vora et al., 2016). Interestingly,
the efficiency of CRISPRa/i can vary by donor and cell type, em-
phasizing the need to carefully validate the platform for each
experiment (Ho et al., 2017). New CRISPR systems (CasRx) can
modulate RNA, rather than DNA, making possible the perturba-
tion not just of mRNA levels, but also alternative splicing patterns
(Konermann et al., 2018). By coupling incompatible Cas9-,
Cpf1-, and CasRx-based CRISPRa/i approaches, bidirectional
and combinatorial perturbations should be feasible. For a more
permanent modulation that can be passed onto daughter cells,
effectors targeting the epigenome (Hilton et al., 2015; Liu et al.,
2016) can be used. CRISPR can even be used to modulate and
study the 3D genome via CRISPR-GO, redirecting specific loci to
nuclear compartments (Wang et al., 2018). Ultimately, unbiased
genomewide CRISPR KO, CRISPRa, and/or CRISPRi screens will
make the discovery of novel regulators of cell fate, neuronal func-
tion, and disease processes possible (Kurata et al., 2018; Sanson et
al., 2018; Tian et al., 2019).

In conclusion, hiPSC-derived neural cells are an invaluable
tool for the study of human neurodevelopment and neuropsychi-
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atric diseases, enabling the modeling of monogenic as well as
complex genetic disorders and interacting biological factors. In-
corporating rigorous diagnostic criteria and further patient strat-
ification, as well as isogenic controls, can add further value to
disease models. Ultimately, elucidation of the genetic factors un-
derlying disease risk, of the cellular processes of disease initiation,
and of the associated pathological mechanisms, offers the possi-
bility to interfere with disease risk before clinical disease onset.
Overall, hiPSC-based models represent an important tool with
which to advance genetic diagnosis and to optimize drug-screening
platforms for drug discovery.
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ren A, Kuhlmann T (2017) Rapid and efficient generation of oligoden-
drocytes from human induced pluripotent stem cells using transcription
factors. Proc Natl Acad Sci U S A 114:E2243–E2252.

Forrest MP, Zhang H, Moy W, McGowan H, Leites C, Dionisio LE, Xu Z, Shi
J, Sanders AR, Greenleaf WJ, Cowan CA, Pang ZP, Gejman PV, Penzes P,
Duan J (2017) Open chromatin profiling in hiPSC-derived neurons pri-
oritizes functional noncoding psychiatric risk variants and highlights
neurodevelopmental loci. Cell Stem Cell 21:305–318.e8.

Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM,
Ruderfer DM, Oh EC, Topol A, Shah HR, Klei LL, Kramer R, Pinto D,
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