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Abstract

Cochlear implants are one of the most successful neuroprosthetic devices that have been developed 

to date. Profoundly deaf patients can achieve speech perception after complete loss of sensory 

input. Despite the improvements many patients experience, there is still a large degree of outcome 

variability. It has been proposed that central plasticity may be a major factor in the different levels 

of benefit that patients experience. However, the neural mechanisms of how plasticity impacts 

cochlear implant learning and the degree of plasticity’s influence remain unknown. Here, we 

review the human and animal research on three of the main ways that central plasticity affects 

cochlear implant outcomes.

INTRODUCTION

Hearing loss is a disabling condition affecting many tens of millions of people worldwide 

[1]. Deafness can impact quality of life beyond loss of a sensory system fundamental to 

social communication, and is now identified as a risk factor for a number of conditions 

including dementia and Alzheimer’s disease [2,3]. Human subjects with profound deafness 

can be treated with cochlear implants, which are neuroprosthetic devices that directly 

electrically stimulate the auditory nerve [4]. However, there is a large amount of variability 

in learning rates and peak levels of speech perception across individual cochlear implant 

users [5-7]. Learning to hear with cochlear implants is proposed to require plasticity within 
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the central auditory system [8-12], but the mechanisms by which real-world experience or 

explicit behavioral training enables plasticity and improves outcomes is poorly understood.

Cochlear implants were developed in human subjects over a period of decades, evolving 

from a single wire to the multi-electrode devices of today [13]. Thes devices are placed 

within the cochlear and interface directly with the spiral ganglia of the auditory nerve, 

bypassing any earlier deficits in the hearing pathway such as hair cell damage or conductive 

hearing loss. However, our understanding of how cochlear implants interface with the 

auditory system beyond the auditory nerve, how they activate the higher-level central 

auditory neuraxis, and how these neural systems adapt over time to reinterpret the signals as 

meaningful sounds is still limited. Central auditory processing is required for patients to be 

able to use the auditory information provided through cochlear implants [14], and 

experience-dependent adaptation to cochlear implant input is important for patient 

outcomes. Most patients require months or even years to reach maximal perceptual 

performance [5, 15-18], and targeted training improves both speech and music perception in 

patients [19], suggesting that neural plasticity is a major determinant of patient outcomes. 

Additionally, for patients with sub-optimal outcomes, few predictive markers exist, and there 

are no widely accepted methods to affect those outcomes once patient performance has 

plateaued.

The neural and perceptual adaptation to cochlear implants can also be studied in animals, to 

reveal fundamental mechanisms and principles by which training affects auditory processing 

and perception in a way that cannot easily be examined in human subjects. To identify 

neurobiological factors contributing to successful implant use and inter-subject variability in 

learning and performance, animal models of cochlear implants have been developed [20-22]. 

There is a wide body of literature implicating neuroplasticity in cochlear implant 

performance in both humans and animals. This plasticity can be broken down into either 

adaptive or cross-modal. Adaptive plasticity is how the central auditory system changes in 

response to the cochlear implant. Cross-modal plasticity is the idea that one sensory 

modality can activate a separate sensory system’s central processing areas, in particular 

when one type of sensory input has been reduced such as in deafness or blindness. Cross-

modal plasticity occurs after a period of auditory deprivation, such that the auditory cortex is 

is re-organized to support other sensory processes, including visual and somatosensory 

input. Much of the research on cross-modal plasticity in deaf patients focuses on visual 

stimuli evoking activity in the central auditory system. Depending on the extent of this 

reorganization and the capacity of the auditory cortex to revert to primarily auditory 

processing, this can be detrimental to cochlear implant outcomes. Furthermore, cross-modal 

plasticity occurs differentially in prelingually deaf patients (who have had no auditory 

experience) and postlingually deaf patients, whose auditory system development was 

normal. In contrast to the unclear benefits and even potentially disruptive effects of cross-

modal plasticity, training and experience with the cochlear implant is important in adaptation 

to the new form of auditory stimulation. Speech perception performance improves with time, 

even when there is a reduction of residual unaided hearing, suggesting an adaptive process in 

the central auditory system. These types of plasticity that occur and interact surrounding 

cochlear implant use are the topic of this review.
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ADAPTIVE PLASTICITY

Following loss of auditory input and cochlear implantation, the central auditory system and 

perhaps other parts of the brain need to change post-operatively in order to adapt to the 

electrical input provided by cochlear implants. This is of particular importance when hearing 

loss occurs in the mature auditory system, which has experience with previous auditory 

signals. In addition to the spectral degradation of the information provided by cochlear 

implants, there is presumably some degree of “frequency mismatch” in stimulation. This 

mismatch refers to the fact that most cochlear implants only cover the most basal turn of the 

cochlea and thus may not stimulate neurons with low characteristic frequencies. Instead, low 

frequency stimuli stimulate cochlear locations that are more basal (higher frequency) than 

the locations that were stimulated by the same sound prior to hearing loss [23]. Over time, 

the perception of this frequency shift can normalize. Studies using normal hearing subjects 

listening to acoustic models of cochlear implants suggest that gradual introduction of the 

shift over several training sessions can result in faster adaptation and perhaps better 

generalization to new talkers [24-26]. The adaptation of the auditory system over time with 

cochlear implants has been observed in a longitudinal positron emission tomography (PET) 

study in both pre- and postlingually-deaf patients. Postlingually-deaf patients. Postlingually-

deaf patients showed an increase in PET activation of Broca’s area during speech perception 

post-implantation, but this was not observed in prelingually-deaf patients. The observation 

was coupled with increasing speech perception capabilities in the postlingually-deaf group, 

but not the prelingually deaf [27]. These findings are supported by an earlier study that 

Broca’s area activation by speech-reading in cochlear implant patients increases with time 

post-implantation [28]. In a unique case study, intracranial electrocorticographic recordings 

were conducted in a bilateral cochlear implant user with refractory epilepsy. Results showed 

activation of the auditory cortex comparable to that of normal hearing patients in this 

experienced cochlear implant user, but lacking in tonotopicity (or “electrodopicity”) [29].

However, neuroimaging approaches pose some limitations, such as slow temporal dynamics 

and poor spatial resolution on human studies of adaptation to hearing loss and cochlear 

implantation. Therefore, several models of hearing loss and cochlear implantation in animals 

have been developed. These include established procedures for cochlear implantation in the 

cat, ferret, guinea pig, and marmoset, as well as newer studies of cochlear implants in 

rodents. These rodent systems present the added utility of transgenic animals for examining 

mechanisms of plasticity [30,31*].

Auditory studies conducted in ferrets have shown that following monaural deprivation, 

plasticity is engaged in order to adapt to the new and altered cues for sound localization. 

Extracellular recordings in the ferret auditory cortex showed that there were distinct neural 

processes underlying reweighing and remapping localization cues, which mirrored the 

different types of behavioral adaptations observed in intermittently monaurally deprived 

humans [32]. Furthermore, the ferret has been used to study sound localization after bilateral 

cochlear-implantation [33]. Bilaterally implanted animals with early onset deafness had 

more difficulty with sound localization than those with lateonset hearing loss. However, 

multisensory training improved performance in implanted ferrets with early-onset hearing 

loss, and this improvement was correlated with increased responsiveness of the auditory 
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cortex (Figure 1) [34**]. The benefits of training with the implant are further highlighted by 

studies in congenitally deaf cats, where behavioral training combined with cochlear 

stimulation induces more improvement in temporal processing than stimulation alone in the 

primary auditory cortex, but not in the inferior colliculus [35*].

Marmosets have been useful for studying the neural mechanisms of cochlear implant use, as 

they are non-human primates with sophisticated vocal communication abilities [36]. 

Furthermore, technical advances enable chronic recordings in behaving animals and possible 

transgene expression [37,38]. In unilaterally deafened cochlear implanted marmosets, tone-

evoked and implant-evoked auditory cortical responsiveness were monitored. A large 

proportion of neurons that responded to acoustic stimuli did not respond to cochlear implant 

stimulation (Figure 2) [39**]. Notably, primates in this study received no training with the 

implant, which might in part account for the limited cortical activation. This was also the 

case for temporally modulated electrical and acoustic stimuli. Single-unit recordings 

revealed that cochlear implant electrical stimulation produced both stimulus-synchronized 

and nonsynchronized firing, with individual units responding similarly to acoustic and 

electrical stimulation [40].

PRELINGUAL CROSS-MODAL PLASTICITY

Cross-modal plasticity can be categorized based on the cochlear implant users experience 

with sound. Early evidence of cross-modal plasticity came from studies on congenitally deaf 

patients, whose auditory system had no acoustic input prior to cochlear implantation. A link 

between the degree of cross-modal plasticity and speech perception outcomes after cochlear 

implantation has been suggested. Lee et al. showed early evidence of cross-modal plasticity 

using PET in a small study of congenitally deaf children [41,42]. Hypometabolism of the 

pre-operative auditory cortex (measured bilaterally) was positively correlated with cochlear 

implant outcomes, suggesting that activity in the auditory cortex by other sensory inputs is 

maladaptive for ultimate auditory processing. In follow-up studies, the degree of auditory 

cortical PET activation by visual stimuli was negatively correlated with cochlear implant 

outcomes, but only in the right hemisphere. Decreased visual responsiveness of the auditory 

cortex post-implantation was positively correlated with behavioral outcomes [42,43]. 

Separate EEG studies conducted post-implantation showed that visually-evoked potentials, 

measured as the negative-going evoked potential N1, in auditory cortical areas of cochlear 

implant patients were correlated with speech perception [44-46]. However, the effect was 

observed only in the right hemisphere, and sometimes in terms of N1 amplitude (but not 

latency) or in other cases N1 latency (but not amplitude). These studies suggested a link 

between cross-modal plasticity and performance with cochlear implants in the pre-lingually 

deaf population. A recent study examined differences in visually evoked potentials and 

auditory evoked potentials between normal hearing and congenitally deaf children. Auditory 

N1 latency and amplitude, as well as visual N1 latency were reduced, but these changes 

were not associated across sensory modalities, indicating intra-modal rather than cross-

modal plasticity [47].

To understand the changes that are occurring in congenitally-deaf patients, animal studies 

have been conducted to assess the changes in the auditory system due to sensory deprivation. 
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Developmental hearing loss results in hyperexcitability and decreases in inhibitory synaptic 

strength in the auditory cortex, changes which persist into adulthood, as shown by studies of 

conductive hearing loss in gerbils [48]. In neonatally deafened cats with no sensory 

restoration, there was a loss of tonotopy in the auditory cortex, but if cochlear implant 

intervention was used after an extended period of deafness (6 months), this tonotopy could 

be rescued [8,49]. However, even if auditory input was fully restored, there were deficits in 

performance on auditory tasks [50].

Animal studies have confirmed the presence of cross-modal plasticity after developmental 

hearing loss. Congenitally deaf cats exhibited enhanced performance on a range of visual 

psychophysical tasks. This improvement in visual behavior in deafened animals seemed to 

depend on activity in the auditory cortex [51]. However, the degree to which cross-modal 

plasticity is detrimental to cochlear implant outcomes is not clear. In congenitally deaf cats 

with cochlear implants, there was an increase in visual responsiveness in higher order 

auditory cortical areas However, the activation of auditory cortex by cochlear implants was 

similar between congenitally deaf and normal hearing cats [52]. Furthermore, auditory 

evoked potentials in visual areas could be evoked in congenitally deafened cats both 

implanted late in deafness [53**]. While this does not rule out the possibility that speech 

comprehension could be negatively impacted by cross-modal plasticity it does question the 

interpretation that increased visual activation of the auditory cortex reduces the ability of the 

auditory cortex to respond to future auditory stimuli.

POSTLINGUAL CROSS-MODAL PLASTICITY

Cross-modal plasticity likely occurs in postlingually deafened patients as well, but the 

degree to which it occurs and the effects on performance are less understood. Limitations of 

neuroimaging techniques restrict the necessary longitudinal studies to fully characterize 

these effects. Magnetic resonance imaging (MRI) can be used only with significant 

limitations in cochlear implant users, as the implanted magnet introduces imaging artifacts. 

The invasiveness of PET limits its utility. The recent development of functional near-infrared 

spectroscopy (fNIRS) has helped advance imaging in cochlear implant users, overcoming 

these invasive/electrical interference issues. This may help clarify issues surrounding cross-

modal plasticity in postlingually deaf patients, as it will allow more intra-subject tests to 

compare cortical activity pre and post implantation [54-56]. The spatial resolution of fNIRS 

is quite limited, however, more so than that of MRI. In order to address the limitations of 

individual imaging modalities, more recent studies simultaneously used different techniques, 

such as EEG and fNIRS to increase resolution [57*].

A series of EEG studies in human subjects showed evidence that cross-modal activation 

(visually evoked potentials in the auditory cortex) negatively correlated with speech 

outcomes in post-lingually deafened cochlear implant users, as was observed in pre-lingually 

deaf cochlear implant users [58-60]. Additionally, increased coupling between the occipital 

lobe and the temporal lobe as measured by fMRI may predict poor cochlear implant 

outcomes [61*]. Conversely, studies using alternative neuroimaging techniques proposed 

that this cross-modal plasticity was not maladaptive, but instead can be beneficial post-

implantation by optimizing audiovisual integration [28,62,63**]. Another potential 
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hypothesis is that the type of cross-modal plasticity is important. Visual activation of the 

auditory cortex may be maladaptive, but auditory activation of the visual cortex promotes 

performance [64]. Perhaps this distinction reflects that visual inputs to auditory cortex are 

abnormal, whereas auditory cortical inputs to the visual cortex are normal and serve some 

adaptive function in healthy subjects.

Over the past several decades, various animal models of adult onset deafness to investigate 

the cortical changes that occur after sensory deprivation, overcoming some of the limitations 

of human imaging studies. Cortical reorganization occurs even when sensory input is 

deprived after normal auditory development, across model organisms. Changes in tonotopy, 

best frequency, and spontaneous and evoked activity have been observed [65]. For instance, 

in cochlear ablations and noise-induced trauma in cats, a tonotopic reorganization of the 

auditory cortex towards intact frequencies was observed [66,67]. In ferrets with adult onset 

deafness, extensive cross-modal reorganization was observed, with the auditory cortex 

becoming responsive to somatosensory input [68]. It seems that changes in cortical 

inhibition underlies many of the functional changes observed. Scholl and Wehr found that 

acoustic trauma led to complex changes in cortical inhibitory and excitatory responses 

across frequency tuning curves [69]. A recent study in mice investigated the effects of 

reduced inhibitory signaling and hyper excitability of the auditory cortex after peripheral 

auditory nerve damage on recovery of sound processing, revealing that excitability returned 

to baseline, but the reduction in inhibitory signaling was sustained [70**]. However, in the 

same study that showed negative impacts on inhibitory synapses in developmental hearing 

loss, adult onset hearing loss showed no long-term impacts on inhibitory function [48].

CONCLUSIONS

The success of the cochlear implant is evident through the restoration of hearing and speech 

perception across patient populations. However, an increased ability to predict outcomes is 

needed to help understand and address the persistent variability in outcomes [6]. The central 

auditory system seems to first adapt to the loss of sensory input and then to the restoration of 

auditory input. It is clear that early intervention in prelingually-deaf patients improves the 

possibility for functional use of cochlear implants, and is related to enabling normal auditory 

development and reducing development of potentially maladaptive cross-modal activation of 

the auditory cortex. In a normally-developed auditory system, the adaptive or maladaptive 

nature of cross-modal plasticity is poorly understood, and further longitudinal studies that 

include pre- and post-implant time points are necessary. Human studies are complemented 

by emerging animal models of cochlear implant use that reveal mechanisms of adaptation 

and plasticity. Knowledge of the optimal or suboptimal conditions for engaging plastic 

mechanisms can be potentially harnessed to predict and improve outcomes in cochlear 

implant patients.
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HIGHLIGHTS

• There is a period of adaptation after cochlear implantation that impacts 

ultimate utility of the implant.

• In prelingually deaf patients, there is visual activation of central auditory 

areas, but there is limited evidence that this has negative effects on cochlear 

implant performance.

• Cross-modal activation is present in postlingually deaf patients, but this may 

provide benefits in cochlear implant use.
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Figure 1. 
Cumulative probability functions showing the relative magnitude of the stimulus-evoked 

responses of A1 neurons, grouped by age of onset of hearing loss and training history in 

animals with BiCIs. A, Mean sound-evoked firing rates. B, Peak sound-evoked firing rates. 

C, ILD discriminability index computed from rate-level functions. Insets, Modified box-

plots showing the means and 95% confidence intervals of each spike rate measure, grouped 

in the same fashion as the probability functions. The probability functions and bars 

indicating that the means have been color-coded to identify the different groups. The 

horizontal lines indicate significant intergroup differences, as revealed by Tukey HSD tests 

for post-ANOVA pairwise comparisons. Figure is from Ref 34, with permission.
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Figure 2. 
Topographic maps of auditory cortex responses to acoustic and CI stimulation. A, Acoustic 

BF maps of left and right auditory cortex (AC) of a marmoset implanted unilaterally in the 

right cochlea with a CI electrode array (inset plot). Dashed lines indicate approximate 

positions of the lateral sulcus. Each circle represents a single neuron recorded at that cortical 

surface location, color-coded by its BF. Black open circles represent neurons nonresponsive 

(NR) to acoustic tones and bandpass noise. Crosses indicate neurons only tested with CI. B, 

CI best electrode maps show the same neurons as in A, with color corresponding to CI best 

electrode. Stimulation was between adjacent contacts in the electrode array, indicated by the 

pair of numbers on the y-axis. Symbols are the same as in A. Crosses indicate neurons only 

tested with acoustic stimulation. Figure is adapted from Ref 37, with permission.
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