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Abstract

Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and 

efficiently induces complete remission; however, many patients relapse and die of their disease. 

Relapse is caused by leukemia stem cells (LSCs), the cells with self-renewal capacity. Self-

renewal and proliferation are separate functions in normal hematopoietic stem cells (HSCs) in 

Corresponding author: Zohar Sachs, 420 Delaware Street, SE, MMC 480, University of Minnesota, Minneapolis, MN 55455; 
Phone: 612-626-7055, Fax: 612-624-6919; sachs038@umn.edu.
*These authors contributed equally to this manuscript.
†Author’s current address

Conflict of interest: Karen Sachs had been paid consulting fees by Fluidigm in the past for analyses that predate the data in this 
manuscript. The authors declare no other potential conflicts of interest.

HHS Public Access
Author manuscript
Cancer Res. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Cancer Res. 2020 February 01; 80(3): 458–470. doi:10.1158/0008-5472.CAN-18-2932.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



steady state conditions. If these functions are also separate functions in LSCs, then 

antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated 

whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. 

Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified 

using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also 

differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of 

these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes “LSC-

specific” genes in human AML. To assess the differences between these profiles, we identified cell 

surface markers, CD69 and CD36, whose genes were differentially expressed between these 

profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of 

self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant 

leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations 

of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and 

suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical 

to prevent relapse and improve survival in AML.
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Introduction

Acute myeloid leukemia (AML) is a lethal malignancy with a dismal overall survival rate. 

Standard AML chemotherapy induces complete remission in 60–80% of patients; however, 

because of high relapse rates, only 20–30% of patients survive during the following two 

years[1]. Relapse is caused by the ability of a small subset of cells, called leukemia stem 

cells (LSCs), to recapitulate disease; these leukemia cells are endowed with long-term self-

renewal potential[2]. Self-renewal is a process distinct from proliferation in that it can give 

rise to pluripotent progenitors (stem cells) in addition to daughter cells that differentiate into 

effector cells. Experimentally, self-renewal is defined as the ability to transplant leukemia to 

secondary recipients. Most leukemia cells have high proliferative rates, but lack self-renewal 

capacity: they cannot transplant leukemia to secondary recipients. In contrast, LSCs are a 

minor leukemia cell population that can give rise to the full spectrum of leukemia 

subpopulations, including highly proliferative daughter cells[2]. Initial therapy for AML is 

efficient at eliminating rapidly dividing leukemia cells (the bulk of the leukemia population), 

but self-renewing LSCs that survive can cause relapse. Our work seeks to identify molecular 

features of self-renewal so that we can therapeutically target LSCs and prevent AML 

relapse.

A major challenge to studying LSCs is that the precise immunophenotypic profile of true 

LSCs (leukemia cells that self-renew) varies by leukemia subtype and individual patients[3–

6]. The LSC-enriched compartment in AML has been identified immunophenotypically by a 

cell surface protein expression profile. Thus far, many studies that query the molecular 

features of self-renewal have relied on cell surface proteins to identify an LSC-enriched 

population for evaluation. Relying on immunophenotypic markers of stemness may mask 
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true features of self-renewal. In immunophenotypically identified normal hematopoietic 

stem cells (HSCs), oncogenic NRAS induced either proliferation or self-renewal, but these 

two functions were mutually exclusive[7]. We previously demonstrated that oncogenic 

NRAS (NRASG12V) enforces a self-renewal gene expression profile and is required for self-

renewal of LSCs in a murine model of AML (Mll-AF9/NRASG12V)[8, 9]. In this model, 

NRASG12V is a tetracycline repressible transgene under the control of the Vav1 
promoter[10, 11]: treatment with the tetracycline analog, doxycycline, causes loss of 

NRASG12V expression and leads to disease remission. Moreover, in comparing the gene 

expression profiles of human and murine AML, we found that the NRASG12V-enforced self-

renewal gene expression profile was expressed in multiple human AML self-renewal 

datasets[8].

This report demonstrated that NRASG12V directs self-renewal in LSCs as it does in normal 

HSCs[7]; however, these studies did not distinguish the gene expression profile of self-

renewal within the immunophenotypically-defined LSC compartment.

If self-renewal and rapid proliferation are separate functions in LSCs as they are in normal 

HSCs, then therapeutically targeting mediators of rapid proliferation would fail to target 

self-renewing LSCs, allowing for disease relapse. In this report, we tested whether these 

functions are likewise separate in LSCs. We used whole transcriptome single-cell RNA 

sequencing of the LSC-enriched subpopulation in Mll-AF9/NRASG12V murine AML and 

found distinct transcriptional profiles within these LSCs. To investigate whether these 

transcriptional profiles are clinically relevant, we performed single-cell gene expression 

profiling of normal human bone marrow and primary human AML precursors. We found 

that the genes we identified in the murine model are expressed in a similar pattern in primary 

human LSCs. Importantly, we found a subset of this signature that was higher in human 

AML LSCs at the single-cell level; this represents a single-cell LSC-specific gene list. 

Finally, we identified genes that encode cell surface markers (Cd36 and Cd69) that delineate 

these gene expression profiles for functional assays. Using CD36 and CD69 protein 

expression to label and detect cellular subsets within the murine LSC-enriched 

compartment, we performed in vivo mouse reconstitution assays and found that these 

subpopulations differ in their self-renewal and proliferative capabilities. We also found that 

these markers delineate human AML subsets with different proliferative capacities. These 

findings define and validate a leukemia self-renewal gene expression profile at the single-

cell level. Furthermore, these studies demonstrate that proliferation and self-renewal are 

separate functions in immunophenotypically-defined LSCs of this mouse model, as they are 

in HSCs, and suggest that curing AML requires therapeutically targeting self-renewal in 

addition to rapid proliferation.

Materials and Methods

Experimental Design

Our study uses single-cell RNA sequencing to identify transcriptional heterogeneity within 

LSCs and define the self-renewing subset within this compartment. See Experimental 

workflow figure (Supplementary Fig. S1A–B). We performed single-cell RNA sequencing 

on the LSC-enriched compartment of our murine leukemia model. As we previously 
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demonstrated that self-renewal is dependent on NRASG12V activity in this model, we also 

performed single-cell RNA sequencing on the LSC-enriched compartment after turning off 

NRASG12V transgene expression. To identify the functional contribution of each single-cell 

transcriptional profile, we performed in vivo assays of proliferation (using CellTrace 

labeling) and self-renewal (using in vivo leukemia reconstitution assays). We also performed 

single-cell qPCR on primary human LSCs and normal bone marrow HSPCs to determine 

whether these cells express components of this single-cell self-renewal signature. Finally, we 

analyzed the TCGA gene expression data to determine whether elements of the single-cell 

self-renewal gene expression signature that we identified are associated with survival in 

AML.

Murine single-cell RNA sequencing analysis

FPKMs were modified by adding 0.1 to each value (to minimize the effects of dividing by 

zero). Genes with FPKMs >0.1 in 50% of the cells were log2 transformed. The cells were 

hierarchically clustered using average linkage clustering using Pearson Correlation. In 

Figure 1A–B, the values were mean centered prior to clustering. Cell surface markers (Cd36 
and Cd69) corresponding to different groups were identified by unsupervised clustering. 

Groups composed of samples with high Cd36 (>16 FPKM) or high Cd69 (>16 FPKM) were 

compared using a two-group (Group 1: CD36LowCD69High, Group 3: CD36HighCD69Low) t-

test to compare transcript levels for all genes where 4 or more non-zero abundance estimates 

were present. A list of differentially expressed genes in each dataset was defined as genes 

with an average fold change ≥ 2 between the two groups and a p-value of ≤ 0.05 in each 

dataset. This comparison was carried out independently in both the discovery and validation 

datasets; the overlap of genes with a fold change of ≥2.0 and a p value of ≤ 0.05 in both data 

sets was defined as the murine single-cell differentially expressed gene expression profile. 

All RNA sequencing data can be accessed at GSE140896.

SingleScore: a computational approach designed to quantitate the levels of a gene 
expression profile within single cell RNA sequencing data.

We developed SingleScore, a single-cell transcriptional scoring system that assesses the 

expression of a gene expression profile in a single-cell transcriptional dataset. SingleScore is 

designed to overcome the sparsity and frequent gene drop-outs inherent to single-cell data. 

SingleScore reports a composite score that reflects each cell’s average expression of a gene 

list as a deviation from the median expression of those genes in the entire dataset. To 

account for dropout, we use the dataset’s nonzero median expression of each gene in the list. 

Z-scores are computed for each cell to reflect the deviation of the fold change of the gene set 

of interest relative to the typical deviation observed across all cells in the dataset. A positive 

z-score indicates that an individual cell over-expresses the genes of interest compared to 

other cells in that dataset; a negative z-score indicates a cell expresses few genes of interest 

or expresses them at a lower expression level, relative to other cells in the dataset. To 

calculate a SingleScore z-score:

1. The L2 Norm of each cell is calculated by taking the square root of the sum of 

the FPKMs squared for each gene in that single-cell.

Sachs et al. Page 4

Cancer Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L2 Norm of  a cell = ∑i = 1
genesgene i FPKM2

2. The L2-normalized expression value of each gene in each cell is then calculated 

by dividing the FPKM of each gene by the L2 Norm of the cell.

L2 − Normalized gene expression = gene i FPKM
L2 Norm

3. To calculate the fold change value for each gene, the nonzero median of each 

gene is first identified. The nonzero median of each gene is the median 

expression value of that gene among all of the non-zero expression values of that 

gene in the dataset (the median expression value among the cells that express that 

gene). The log2 fold change for each gene is then computed as follows:

Fold change = log2
normalized gene expression+ 0.01 * nonzero median

1.01 * nonzero median

4. The average fold change for each cell is calculated by taking the mean of the 

log2-transformed fold change values for all of the genes in the gene set of interest

Average  fold change =
∑i = 1

genesgene i  fold change

number of  genes

5. The overall z-score for each cell (the SingleScore z-score) is calculated by 

subtracting the average of these average fold changes values computed across all 

cells from the average fold change of the single cell of interest and dividing this 

number by the standard deviation of the fold changes calculated for all cells in 

the dataset.

Z − score = Avg .   fold change  for a single cell − Avg .   fold change across all cells
Standard deviation of  average  fold change across all cells

Human single-cell qPCR data analysis

Clustering.—The normalized data were clustered using K-means (k=2) and hierarchical 

agglomerative clustering, using cosine as the distant metric (k-means and clustergram 

functions, respectively, in MATLAB, Mathworks Inc, Natick, MA), yielding similar results. 

Overall mean expression of each gene was compared between clusters by calculating the 

difference between the mean expression vector for each gene in each cluster (by 

subtraction).

Enrichment analyses.—Enrichment was calculated as the expected fraction (of G1 or G3 

genes) divided by the observed fraction. Housekeeping genes were omitted for these 

analyses. P values for enrichment per sample were calculated exactly using the 

Hypergeometric function (hygecdf function, Mathworks Inc.). Due to the symmetry of the 

Hypergeometric function, the p value for Clusters A and B are identical. The enrichment 

Sachs et al. Page 5

Cancer Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probabilities of AML samples were compared to those of the normal samples with the 

Wilcoxon Rank Sum test (ranksum function, Mathworks Inc.) for each cluster, then 

combined using the formula p1p2(1-log(p1p2)), where pi represents the p-value obtained for 

each cluster individually.

Determination of LSC-specific genes.—To identify LSC-specific genes, the rank-

based values were assigned in the 95–0 range in each sample, the top gene in each cell was 

assigned rank 95. This adjustment allow direct comparison of the most highly expressed 

genes across all samples. Cells with the top 10% rank of each gene were selected in all 

samples and compared between pooled AML and pooled normal bone marrow cells. 

Statistical significance of the difference of expression of genes between AML and normal 

cells was calculated using the Wilcoxon Rank Sum test, performed using the ranksum 

function in MATLAB (Mathworks, Inc).

Comparison of gene expression in pooled AML relative to pooled normal 
bone marrow samples.—All of the cells from all of the AML samples were pooled to 

generate a single group of AML cells. Likewise, all of the cells from all of the normal bone 

marrow samples were pooled to generate a single group of normal bone marrow cells. Genes 

that passed quality control (as described in the quality control section, above) and that were 

expressed by at least one AML sample and one normal bone marrow sample were included 

in the analysis. The expression distribution of each gene was compared between the pooled 

AML samples and the pooled normal samples using a Student’s t test and Rank Sum 

analysis (ttests2 function, ranksum function, Mathworks, Inc).

Assessment of gene expression distribution of AML cells.—The Kolmogorov-

Smirnoff test (kstest2 function, Mathworks, Inc.) was used to assess the degree of 

divergence of each gene in each AML sample from a reference distribution. All of the 

normal bone marrow samples were pooled to generate a normal reference distribution. All of 

the AML samples, excluding the sample being tested, were pooled to generate an AML 

reference distribution. Resulting values from each reference distribution were analyzed using 

the Rank Sum test (ranksum function, Mathworks, Inc.).

Human Samples

All human samples were obtained with written informed consent in accordance with the 

policies of the Institutional Review Board of the University of Minnesota (IRB study 

#1506E72802 and 0611M96846). They were provided as de-identified specimens.

Mice

Mice were handled in accordance with protocols and procedures approved by the University 

of Minnesota Institutional Animal Care and Use Committee.

Additional information, including single-cell capture and data processing, are described in 

Supplementary Materials.
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Results

Single-cell RNA sequencing identifies three distinct gene expression profiles in 
immunophenotypic LSCs

We performed single-cell RNA sequencing of the Mac1LowKit+Sca1+ (MKS) subpopulation 

of Mll-AF9/NRASG12V AML, the LSC-enriched compartment of this leukemia[8]. We 

obtained MKS cells as we previously described[8]. Briefly, primary Mll-AF9/NRASG12V 

murine leukemia cells were transplanted into a mouse and allowed to engraft. Eighteen days 

after transplant, the mouse was sacrificed, and leukemia cells were harvested from the spleen 

and sorted to isolate the MKS cells. We previously demonstrated that self-renewing stem 

cells reside in the spleen in this model[8]. Sorted MKS cells were submitted for single-cell 

capture (C1, Fluidigm) and RNA sequencing. Unsupervised, two-dimensional hierarchical 

clustering of the single-cell data revealed that the MKS subpopulation expressed three 

distinct gene expression profiles (Fig. 1A). We defined three groups of cells based on these 

profiles (Group 1, 2, and 3). Next, we searched for genes that encode cell surface markers 

that could distinguish cells from each of these groups. We reasoned that we could use such 

markers to isolate cells that express each of these transcriptional groups. We found that Cd36 
and Cd69 were the most differentially expressed cell surface markers between the single-cell 

transcriptional groups (Fig. 1A bottom panel, Supplementary Fig. S2A–B). Group 1 was 

Cd36LowCd69High, Group 2 was Cd36LowCd69Low, and Group 3 was Cd36HighCd69Low.

Next, we sought to define a reproducible single-cell-based gene expression signature 

associated with these groups. To generate a validation dataset, we repeated the experiment 

and performed single-cell capture (C1, Fluidigm) and RNA sequencing of the LSC-enriched 

subpopulation (MKS) of another leukemic mouse. As in the first dataset (the “discovery 

dataset”), Cd36 and Cd69 were the most differentially expressed cell surface markers. We 

generated a list of genes that were differentially expressed between Group 1 

(Cd36LowCd69High) and Group 3 (Cd36HighCd69Low) with a p-value <0.05 separately in 

each dataset. There were 899 such differentially expressed genes in the discovery dataset and 

916 such genes in the validation dataset. There were 198 such genes that were differentially 

expressed in both datasets. Of these 198 genes, 197 were concordantly differentially 

expressed: 174 genes were upregulated in Group 1 (Cd36LowCd69High) and 23 genes were 

upregulated in Group 3 (Cd36HighCd69Low) in both datasets (Fig. 1B, Supplementary Table 

S1). This list of 197 differentially expressed genes represents the murine LSC single-cell 

gene expression profile. We hypothesize that this concordance and reproducibility indicates 

that these differentially expressed genes likely represent relevant biology.

Because activated NRAS enforces self-renewal and increased proliferation in normal HSCs, 

we investigated the effect of NRASG12V-withdrawal on the expression of the LSC single-

cell gene expression profile. We treated a leukemic mouse with doxycycline to abolish 

NRASG12V transgene expression and harvested its “Ras-Off” leukemia cells. Ras-Off MKS 

cells were isolated by sorting and submitted for single-cell capture and RNA sequencing. As 

expected, Ras-Off MKS cells expressed significantly lower levels of NRASG12V (Fig. 1C, 

bottom panel). Additionally, Group 2 and 3 cells within the Ras-On MKS dataset expressed 

lower levels of the NRASG12V transgene than Group 1 cells (Fig. 1C, bottom panel) despite 
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equivalent levels of Vav1 (the Vav1 promoter drives NRASG12V transgene expression) 

among these cells (Supplementary Fig. S2C). These findings suggest that differential 

expression of NRASG12V at the single-cell level may account for the transcriptional 

differences we observe.

Using the LSC single-cell gene expression profile, we performed unsupervised hierarchical 

clustering of the Ras-Off single-cell gene expression dataset (Fig. 1C). After NRASG12V-

withdrawl, Cd69 and the Cd69-associated gene expression profile (Group 1) was rarely 

detected. Likewise, the Cd36LowCd69Low-associated profile (Group 2) was not detected in 

these cells. In contrast, nearly all Ras-Off cells uniformly expressed Cd36 and the Cd36-

associated profile (Group 3, Fig. 1C and Supplementary Fig. S2D). These analyses reveal 

that NRASG12V-withdrawal leads to a loss of Group 1 and 2-associated gene expression and 

that the Group 3-associated gene expression persists at 72 hours post doxycycline-treatment 

in the LSC compartment.

Discrepant LSC gene expression profiles correspond to varying self-renewal potential and 
differentiation stages

Next, we compared our Group 1 (Cd69High) and Group 3 (Cd36High) transcriptional profiles 

to previously published gene expression profiles and databases to annotate their predicted 

biological significance. Using Ingenuity Pathway Analysis (IPA, Redwood City, California), 

we found Group 1 genes to be significantly associated with repression of hematopoietic 

differentiation effectors (let-7, GATA1) and activation of regulators associated with 

hematopoietic self-renewal, including NFκB1, HIF1α (Table 1, Supplementary Table S2). 

In addition, Group 1 was significantly correlated with genes of leukemia and cancer relapse. 

Using gene set enrichment analysis (GSEA[12]), we found that Group 1 was enriched in 

gene sets of leukemia self-renewal and hematopoietic stem cells (Table 2[13–15]). In 

contrast, Group 3 was correlated with inflammatory and hematopoietic differentiation 

pathways (Table 1, Supplementary Table S2). These data suggest that Group 1 and 3 

transcriptional profiles represent distinct functional states of LSCs.

We also compared our data to a recently published single-cell qPCR analysis of a 

retrovirally-transduced model of MLL-AF9 AML[16]. In that study, they identified a group 

of genes that are associated with increased aggressiveness (reduced leukemia latency). Our 

Group 1 cells expressed higher levels of these aggressiveness genes, most notably, Ezh2, 

which is critical for maintaining the quiescence of leukemia and embryonic-like stem cells 

(Fig. 2A)[16–18]. Additionally, a single-cell RNA sequencing study of Flt3(ITD)/
Dnmt3ainsufficient murine AML revealed that elevated levels of Il18r1 were associated with 

increased in vitro clonogenicity. Accordingly, this gene was higher in Group 1 (Cd69High) 

relative to Group 3 (Fig. 2A).

We developed a computational approach, SingleScore, to directly quantitate the levels of 

gene profiles in single-cell transcriptional data. SingleScore is designed to overcome the 

sparsity of single-cell data and calculates a z-score that represents the overall expression 

level of a list of genes in each cell, relative to other cells in the population. We used 

SingleScore to compare the expression levels of gene profiles between Group 1 and Group 3 

cells. We found that gene expression profiles of Quiescence[19], LSCs[20], and LT-
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HSCs[21] were preferentially expressed in higher levels in Group 1 cells (relative to Group 3 

cells, Fig. 2B). Taken together, these data suggest that Group 1 (Cd69High) and Group 3 

(Cd36High) may represent groups with varying self-renewal potential.

We interrogated our single-cell dataset for genes that encode markers of hematopoietic 

differentiation and found that cells from both Groups 1 and 3 express Flt3 and Cd48, but 

only cells from Group 1 express Cd34 (Supplementary Fig. S3A). Since AMLs express cell 

surface markers aberrantly, we used SingleScore to assess the levels of hematopoietic 

transcription factors (TFs) in our single-cell dataset as an additional assessment of the 

differentiation status of our transcriptional subgroups. For this analysis, we reviewed 

recently-published single-cell transcriptional datasets of normal hematopoiesis that defined 

TF expression along differentiation of LT-HSCs to more committed hematopoietic 

progenitors, at the single-cell level[22, 23]. We used SingleScore to compare the expression 

of early, middle, and late HSPC TFs between Group 1 and Group 3 cells (Fig. 2C). Group 1 

cells preferentially expressed higher levels of TF of early hematopoiesis while Group 3 cells 

preferentially expressed higher levels of late HSPC TFs, suggesting that these two LSC 

subpopulations might phenocopy HSPCs at varying stages of differentiation.

Because Cd36 and Cd69 distinguish between the single-cell transcriptional subgroups, we 

asked whether these genes are expressed at distinct stages of normal hematopoiesis. We 

queried a previously published catalog of single-cell gene expression profiles of early mouse 

hematopoiesis[23] and found that Cd69 was most highly expressed in very early multipotent 

progenitor cells (Fig. 2D, Supplementary Fig. S3B–D). In contrast, high Cd36 expression 

was restricted to more committed megakaryocyte-erythrocyte progenitors (MEPs). As in our 

leukemia progenitors, high Cd36 and high Cd69 levels were generally mutually exclusive in 

all hematopoietic cells reported in this study, but this effect was most prominent in long-term 

hematopoietic stem cells (LT-HSCs), the cells with self-renewal potential (Supplementary 

Fig. S3E–G).

Human LSCs recapitulate the murine LSC single-cell gene expression profile at the single-
cell level

To determine whether the transcriptional behaviors we observed in our murine model can be 

detected in normal human HSPCs, we interrogated a recently published single-cell 

transcriptional dataset derived from 25 normal human bone marrow samples[24]. We 

selected CD34+CD38- cells based on expression of these two genes (CD34 >0, CD38≤1) 

and analyzed the expression of the murine LSC single-cell gene expression profile in these 

cells. Unsupervised, two-dimensional hierarchical clustering of this data identified 2 clusters 

(Fig. 3A). To investigate if the clusters in normal human HSPCs recapitulate the patterns 

found in murine LSCs, we compared the relative levels of Group 1 and Group 3 genes in 

these two clusters and found a strong enrichment of Group 1 genes in one cluster and strong 

enrichment of Group 3 genes in the other cluster (p value for enrichment = 1.6×10−5), 

indicating that these normal HSPCs differentially express Group 1 and Group 3 genes in a 

manner similar to the murine LSCs. These data suggest that the single-cell transcriptional 

patterns we identified in the murine LSCs might represent normal hematopoietic 

transcriptional programs that are co-opted in leukemia.
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To determine if these patterns are also shared with human AML, we performed single-cell 

whole transcriptome RNA sequencing of CD34+ cells from a bone marrow specimen 

obtained at AML diagnosis (Mll rearranged, Supplementary Fig. S4A–B, Supplementary 

Tables S3–4, sample a2). Direct assessment of the murine LSC single-cell gene expression 

profile could not be performed due to data sparsity: very few of the genes in our murine LSC 

single-cell gene expression profile were detected in this dataset. Unsupervised hierarchical 

clustering of the genes that were detected and differentially expressed within this dataset 

revealed two distinct gene expression profiles. IPA identified differential expression of 

pathways of hematological development and cell survival between these profiles 

(Supplementary Fig. S4C). Additionally, IPA Upstream Regulators analysis revealed that 

these CD34+ diagnostic human AML cells differ in their expression of RAS-activated 

pathways (Supplementary Fig. S4C). These findings suggest that features of the 

transcriptional heterogeneity we detect in our mouse model may be similarly heterogeneous 

in human AML stem cells.

Next, we sought to determine whether the differentially expressed genes identified in the 

murine single-cell datasets are variably expressed, at the single-cell level, in human AML 

stem cells. For these experiments, we developed a 96 gene qPCR panel that represents genes 

that differ between Group 1 and Group 3 in the validation dataset (Supplementary Table S5 

for the gene panel). We sorted human LSCs (hLSCs, CD34+CD38-) from diagnostic bone 

marrow aspirates of five adult AML patients with intermediate or poor risk cytogenetic and 

molecular features (Supplementary Tables S3–4) and performed single-cell qPCR using the 

96-gene panel. We clustered the data from each patient and identified two clusters of cells 

(using K-means and hierarchical agglomerative clustering). We characterized the expression 

profile of each cluster with respect to higher overall expression of each gene. In each AML 

sample, we found that one cluster was enriched in Group 1 genes and the other enriched in 

Group 3 genes (Fig. 3B, Supplementary Table S6). This enrichment pattern was significant 

in each of the AML samples. These data indicate that the murine LSC single-cell gene 

expression profile is expressed in human LSCs and that Group 1 and Group 3 genes are 

differentially expressed in human LSCs similarly to the murine model.

Next, we sought to determine whether this profile was also expressed in the CD34+CD38- 

HSPCs from normal human bone marrow. We sorted CD34+CD38- HSPCs and performed 

single-cell capture and qPCR analysis using the 96-gene panel. Hierarchical clustering of the 

data reveals two clusters in each sample. As in the AML samples, one cluster (A) is enriched 

in Group 1 genes and Cluster B is enriched in Group 3 genes. However, in the normal 

HSPCs, this enrichment was significantly reduced relative to the AML samples: enrichment 

in two of five normal samples was significant. The enrichment of these gene profiles was 

significantly stronger in the AML samples relative to the normal samples (p <0.037 for 

enrichment, p<0.008 for enrichment probabilities). These findings suggest that these gene 

expression patterns are more strongly associated with leukemic LSCs than with normal 

HSPCs.

Next, we investigated whether we could identify a subset of LSC-specific genes based on 

high expression in LSCs relative to normal HSPCs. We pooled the highest expressing 10% 

of cells for each gene (the cells that express the highest amounts of each gene) from all 
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AML samples and all normal HSPC samples, and compared expression of these genes, 

among these top-expressing cells, between pooled AML cells and pooled HSPC cells. This 

analysis identified six Group 1 and three Group 3 LSC-specific genes (Group 1: CD69, 
S100A4, MYB, ADA, MRI1, CKS2; Group 3: H2AFZ, BCL2A1D, CD36; p-value of ≤0.05, 

Fig. 3C). These hLSC-specific genes included CD36 and CD69. MYB encodes a 

transcription factor that has been implicated in leukemia self-renewal transcriptional 

programming[15] and was also higher in a subset of hLSCs. Likewise, S100A4 has been 

implicated in glioma self-renewal[25] and fibroblast invasiveness[26]. This list of LSC-

specific genes may represent mediators of aberrant self-renewal and leukemic behavior in 

these cells.

Next, we assessed whether Group 1 and Group 3 gene expression profiles are likely specific 

to AML (relative to normal HSPCS) using two approaches. First, we asked whether 

individual genes are expressed differently between AML and normal cells. For this analysis, 

we pooled all AML cells into one group and all normal bone marrow cells into a separate 

group. We performed both parameteric (Student’s t test) and nonparametric (Rank Sum) 

analyses to compare expression of each gene between AML and normal cells and found that 

61% (t-test)-57% (Rank Sum) of the genes were differentially expressed between AML and 

normal bone marrow with a p<0.05. Second, we tested whether each AML sample appears 

to be drawn from the distribution of the other AML samples or from the distribution of 

normal bone marrow samples. Using the Kolmogorov-Smirnov test, we found that that 

deviation of each AML sample from the distribution of normal bone marrow samples was 

much greater than its deviation from the distribution of other AML samples (p<3.4197e-04, 

see Supplementary Fig. S4DE), indicating that each AML sample individually is unlikely to 

be drawn from the distribution of the normal samples. These findings suggest that the AML 

samples likely include very few residual normal HSPCs. Together, these analyses 

demonstrate that the Group 1 and Group 3 genes are differentially expressed in human AML 

stem cells, as they are in murine LSCs, and that these gene expression profiles appear to be 

largely leukemia-specific.

In vivo leukemia reconstitution assays demonstrate that Group 1 is the self-renewing 
subset of immunophenotypic LSCs

Since previous work suggest that self-renewal and proliferation can be separate functions in 

normal HSCs, we asked whether Group 1 and Group 3 represent cells with discrepant 

proliferative capacity in LSCs. We stained bulk leukemia cells from our murine model with 

CellTrace, transplanted these cells into mice, and harvested leukemia from these mice 14 

days after transplant. Within the MKS compartment, CellTrace was retained at significantly 

higher levels in cells with an immunophenotype corresponding to the Group 1 gene 

expression profile (Mac1LowKit+Sca1+CD36LowCD69High) than any other 

immunophenotypic subgroup within the MKS population (Fig. 4A). In contrast, CellTrace 

was retained at the lowest level among MKS cells with an immunophenotype corresponding 

to the Group 3 gene expression profile (Mac1LowKit+Sca1+CD36HighCD69Low). Another 

MKS subgroup expressed low levels of both CD36 and CD69 (Group 2) and displayed 

intermediate levels of CellTrace. These data indicate that MKS cells with an 
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immunophenotype consistent with Group 1 are poorly proliferative while those with the 

Group 3 pattern are highly proliferative.

We next tested whether these MKS subgroups vary in their self-renewal capacity. We sorted 

cells based on immunophenotypic markers (sorting strategy and post-sort assessments in 

Supplementary Fig. S5–6) and plated them in colony forming assays. As we previously 

described, Mac1High leukemia cells lack colony forming capacity, while MKS (Mac1LowKit
+Sca1+) cells harbor the colony forming capacity of this leukemia[8]. Among the MKS 

population, the CD36LowCD69HighMKS subpopulation (Group 1), which accounts for 

approximately 5–10% of the MKS compartment, formed the most colonies, while the 

CD36HighCD69LowMKS subpopulation (Group 3), which accounts for approximately 20–

50% of the MKS compartment, was unable to form colonies (p = 0.00001, Fig. 4B). We 

assessed the viability of these leukemic subgroups using a dead-cell exclusion dye and found 

that Group 3 cells were highly viable (more so than Group 1 cells, Supplementary Fig. 

S7A). We also used these sorted cells to perform in vivo mouse leukemia reconstitution 

assays. CD36LowCD69High MKS (Group 1) cells induced leukemia with the highest 

penetrance and lowest latency of all groups: 20 of 22 mice developed leukemia with a 

median latency of 14 and 21 days, depending on transplanted cell dose (Fig. 4C). In contrast, 

CD36HighCD69Low MKS (Group 3) cells were almost uniformly unable to induce leukemia 

in mice: 2 of 25 mice developed leukemia at 41 and 48 days after transplant. 

CD36LowCD69Low MKS (Group 2) cells displayed an intermediate phenotype: 17 of 24 

mice developed leukemia with a prolonged latency. Leukemias that developed in the 

transplanted mice matched the immunophenotype of the parent leukemia (Supplementary 

Fig. S7BC). These data demonstrate that Group 1 (CD36LowCD69HighMKS) cells are 

relatively quiescent and harbor the self-renewal capacity of this leukemia.

To assess whether CD36 and CD69 also delineate cells with discrepant proliferative capacity 

in human AML, we compared the levels of Ki67 (a proliferation marker) in 

CD36HighCD69Low and CD36LowCD69High subsets of human AML bone marrow samples, 

obtained at diagnosis. We used mass cytometry (CyTOF) to compare the percentage of 

Ki67+ cells within these compartments in CD34+CD38- and unselected leukemia cells and 

found that the CD36LowCD69High subset was less proliferative than the CD36HighCD69Low 

subset within each of these compartments (Fig. 4D, Supplementary Fig. S8, patient 

information in Supplementary Tables S3–4). These findings suggest that CD36 and CD69 

may identify human AML subsets with differing functional capacity. As in murine LSCs, 

where CD69 defines a relatively quiescent, self-renewing subpopulation of LSCs, we found 

that CD69High human AML cells were less proliferative than CD36High cells.

Discussion

Using single-cell transcriptional profiling of an NRASG12V-driven murine model of AML, 

we defined distinct transcriptional profiles in immunophenotypic LSCs, delineating distinct 

groups of cells. In comparison to previously published gene expression studies, we found 

that Group 1 cells (Cd69High) expressed genes of self-renewal and relapse while Group 3 

cells (Cd36High) expressed a signature consistent with hematopoietic differentiation. Genes 

from this murine LSC single-cell profile were also differentially expressed in primary 
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human LSCs at the single-cell level. When comparing normal human HSPCs to human 

LSCs, we found a subset of these genes that were LSC-specific and included both CD69 and 

CD36. Finally, we used CD69 and CD36 protein expression to delineate murine LSCs from 

these groups. We found that Group 1 efficiently transplanted leukemia but was poorly 

proliferative, while Group 3 was unable to transplant leukemia and was highly proliferative. 

Similarly, CD69High human AML cells were more quiescent than CD36High cells, 

suggesting that these markers may also identify human LSCs subsets with varying self-

renewal potential. These experiments define an LSC self-renewal gene expression profile at 

the single-cell level and demonstrate that self-renewal and proliferation are separate 

functions in LSCs, as they often are in HSCs. These results highlight the importance of 

therapeutically targeting self-renewal, in addition to rapid proliferation, to prevent relapse in 

AML.

Recent reports of single-cell profiling of AML and normal precursors have been 

instrumental in describing the architecture of molecular heterogeneity of these cells[5, 27–

32]. Some studies have started to test the functional relevance of single-cell heterogeneity in 

leukemic behavior. Single-cell transcriptomics, coupled with functional assays, 

demonstrated the bimodality of proliferation and self-renewal in normal HSCs[32]. A single-

cell qPCR assessment of genes encoding cell surface proteins identified Cd24 expression as 

a marker of decreased leukemia latency in an MLL-AF9 retrovirally transduced model of 

murine AML and described a set of Cd24-associated genes at the single-cell level[16]. 

Single-cell RNA sequencing of AML precursors from a murine model of Dnmt3amutant/
Flt3ITD revealed a panel of genes that encoded cell surface markers whose expression 

correlated with clonogenicity in vitro[33]. Studies that have experimentally tested the single-

cell gene expression behavior of AML self-renewal in vivo have not been reported to our 

knowledge.

Normal HSCs have been shown to acquire a proliferation or self-renewal advantage in 

response to NRAS activation[7]. In these experiments, we find that the gene expression 

profile of self-renewal (Group 1) is closely correlated with NRASG12V levels at the single-

cell level, suggesting NRASG12V is enforcing this profile, consistent with our earlier 

analysis of bulk LSCs in this model[8]. As in normal hematopoiesis, leukemia is 

hierarchically organized with pluripotent stem cells that give rise to progressively more 

differentiated leukemia cells[3, 34, 35]. Other groups have demonstrated that leukemia stem 

cells are relatively quiescent compared to more differentiated leukemia cells[35–39]. 

However, the bimodality of proliferation versus self-renewal has not been previously 

demonstrated in LSCs. Our experiments demonstrate that the gene expression profiles 

associated with self-renewal and proliferation are indeed distinct and that these functions are 

separate in LSCs in our murine AML model.

The Group 1 gene expression profile described in murine LSCs was associated with self-

renewal in our functional assays. This profile was also associated with signatures of 

previously validated mediators of AML and HSC self-renewal (such as NFκB and HIF1α) 

and was enriched in previously annotated gene sets of leukemia self-renewal (identified in 

bulk studies). Notably, CD69, a calcium dependent lectin superfamily type II transmembrane 

receptor best known for its role in lymphocyte activation, is an NFκB-responsive gene[40]. 
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Recently, CD69 inhibition was shown to increase the proliferation of HSPCs[41], consistent 

with our finding that CD69High LSCs are poorly proliferative. Our functional validation 

experiments along with comparisons to previously published gene expression datasets 

collectively identify Group 1 as the single-cell self-renewal signature of LSCs in our murine 

model.

IPA analyses show that the Group 1 profile is associated with the expression of numerous 

profiles of hematopoietic and solid tumor relapse. Because stem cell self-renewal is a critical 

feature that allows these cells to cause relapse, expression of the Group 1 profile may be an 

important determinant of relapse. Future work could interrogate the specific contribution of 

genes within these profiles to self-renewal and relapse in AML models and AML patients.

Several features of the Group 3 profile are consistent with a differentiated state (relative to 

the Group 1 profile). IPA analysis identified myeloid differentiation pathways that are 

repressed in Group 1. In normal mouse hematopoiesis, Cd69 is primarily limited to early 

HSPCs, while Cd36 is seen only in more committed progenitors. An intermediate population 

of cells, displaying the Group 2 gene expression profile, was CD36LowCD69Low and 

displayed intermediate self-renewal and proliferative capacity; this finding suggests that 

these cells may represent an intermediate stage between CD69High self-renewing cells and 

CD36High proliferative cells. These data are consistent with a model of CD69High self-

renewing stem cells (Group 1) that give rise to progressively more committed and 

proliferative CD36High cells (Group 3) with a CD36LowCD69Low intermediate (Group 2).

Importantly, we found evidence that components of these gene expression profiles are 

expressed in human LSCs and HSPCs at the single-cell level. Previous work implies that 

LSCs self-renew by enforcing the self-renewal gene expression profile of normal HSCs[42]. 

Our qPCR data support this model at the single-cell level. Additionally, our data identified a 

group of genes that were specifically highly expressed in human LSCs. These LSC-specific 

genes may provide functional insights into leukemia-specific behaviors and may be useful in 

identifying self-renewal-specific therapeutic targets.

Consistent with the murine data, CD69 and CD36 genes correlated with these signatures in 

human samples and were LSC-specific genes. While CD69 and CD36 protein levels 

correspond to different proliferative rates in human AML, our data do not formally establish 

whether these proteins can identify human LSCs with different self-renewal capacities. 

Future work, utilizing CD36High or CD69High sorted human LSCs in serial colony forming 

or leukemia xenograft assays could demonstrate these functions. Nevertheless, our data 

implicate CD36 or CD69 as possible subjects for antibody-based targeted therapies, which 

have revolutionized treatment of hematological malignancies[43–46]. CD36 expression is 

associated with altered leukemia cell metabolism and chemoresistance[47, 48]; this finding 

is consistent with a pro-leukemic effect. CD36 is a glycoprotein cell surface receptor that 

plays a wide variety of functions, including cell adhesion, platelet regulation, and fatty acid 

transport. MYB, another LSC-specific gene in our analysis, has been implicated in AML 

self-renewal[8, 14, 15] and has several candidate inhibitors in development[49–51].
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In conclusion, our findings demonstrate that self-renewal and proliferation are mutually 

exclusive features of LSCs and suggest that targeting self-renewal, in addition to 

proliferation, may be an important strategy to prevent AML relapse.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

These findings define and functionally validate a self-renewal gene profile of leukemia 

stem cells at the single-cell level and demonstrate that self-renewal and proliferation are 

distinct in AML.
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Figure 1. 
Single-cell RNA sequencing identifies three distinct gene expression profiles in 

immunophenotypic LSCs. Primary leukemia cells harvested from the spleen of a leukemic 

mouse were sorted to isolate the LSC-enriched fraction (Mac1LowKit+Sca1+). This sorted 

population was stained for viability and captured in microfluidic chambers (1 cell per 

chamber, C1 Single-Cell Auto Prep System, Fluidigm, South San Francisco, California) and 

processed to isolate RNA. Chambers were visualized to select single, live cells for cDNA 

library creation and sequencing. A single cDNA library was generated per cell. An aliquot of 

cells was used to generate bulk RNA for sequencing as a population control. Each single-cell 

library was sequenced to a depth of 1–3 million reads per cell (100 bp, paired-end reads) to 

generate the discovery dataset. Cells with > 75% alignment were used for analysis. A, 

Unsupervised two-dimensional hierarchical clustering of single-cell RNA sequencing data 

from Mac1LowKit+Sca1+ leukemia cells in the discovery dataset (n=42). To generate this 

analysis, normalized expression values from each cell were mean-centered. The colors on 

the heatmap represent relative expression of each gene in each cell in comparison to all the 

cells in the dataset. Mean expressed genes per cell=3,171; range=1,491–5,387. Bottom 

panel: heatmap of Cd36, Cd69, and NRASG12V expression in corresponding cells. 

Normalized expression values (FPKMs) were mean centered (FPKM value for each gene 

was divided by the mean FPKM value of the gene for the entire dataset) and log2 
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transformed. B, Primary leukemia cells were harvested from the spleen of a second leukemic 

mouse and processed for single-cell capture and RNA sequencing (as described above) to 

generate a validation dataset (n=33, mean expressed genes per cell=2,680, range=1,392–

4,409). Genes differentially expressed between Cd69High (Group 1) and Cd36High (Group 3) 

cells in both datasets were used to generate heatmaps. In this panel, the discovery dataset is 

reproduced from Fig. 1A, but Group 2 (Cd36LowCd69Low) cells are omitted from this 

analysis to aid in visualization. As in panel A, normalized expression values were mean-

centered and log2 transformed. C, A leukemic mouse was treated with doxycycline to 

abolish NRASG12V transgene expression. Primary leukemia cells were harvested from the 

spleen of this mouse after 72 hours of treatment. These “Ras-Off” leukemia cells were 

sorted to isolate Mac1LowKit+Sca1+ (MKS) cells and processed for single-cell capture and 

RNA sequencing (as described above) to generate the Ras-Off single-cell dataset (n=51, 

mean expressed genes per cell=2,355, range=1,576–4,035). We used the 197 common 

differentially expressed genes (defined in the Ras-On datasets) to perform one-dimensional 

hierarchical clustering of the single-cell transcriptional data of sorted LSCs from all of these 

datasets. Bottom panels: heatmap of Cd36, Cd69, and NRASG12V expression in 

corresponding cells. Unlike the analyses in panels A and B, where the data was mean-

centered to highlight genes that were differentially expressed within the dataset, these data 

represent FPKM expression values that were not mean-centered. As there was little cell-to-

cell variation in the expression of these genes in the NRASG12V-Off dataset, mean-centering 

the values would have obscured differences between Group 1 and Group 3 genes in this 

dataset.
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Figure 2. 
Discrepant LSC gene expression profiles correspond to varying differentiation stages and 

self-renewal potential. A, The average FPKM values for genes in Group 1 and 3 single-cell 

data pooled from the discovery and validation datasets. Ezh2 is associated with aggressive 

leukemic behavior in the Guo et al. Cell Stem Cell 2013 dataset; Il18r1 is associated with in 
vitro clonogenicity in the Meyer et al. Cancer Discovery 2016 dataset. Horizontal bars 

indicate the mean expression value. Unpaired Student’s t-test was used to calculate p-values 

for each comparison indicated. B-C, SingleScore z scores were calculated to compare the 

levels of previously published gene expression profiles between Group 1 and Group 3 cells 

pooled from the discovery and validation datasets. B, Quiescence[19], LSC[20], and LT-

HSC[21] gene expression profiles were defined in bulk RNA sequencing data. C, HSPCs 

transcription factors were curated from recently published single-cell gene expression 

studies of normal hematopoiesis reporting the expression of transcription factor genes, at the 

single-cell level, at different stages of HSPC development[22, 23]. D, Cd69 and Cd36 
expression in normal mouse HSPCs and progenitors (Nestorowa et al. dataset). 

MPP=multipotent progenitors, LMPP=lymphoid-primed multipotent progenitors, 

CMP=common myeloid progenitor, GMP=granulocyte-monocyte progenitor, 

MEP=megakaryocyte erythrocyte progenitor. Unpaired Student’s t-test was used to calculate 

p-values for each comparison indicated (A-D).
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Figure 3. 
Human LSCs and normal HSPCs recapitulate the murine LSC single-cell gene expression 

profiles at the single-cell level. A, The expression of genes from the murine LSC single-cell 

gene expression profile in a recently published single-cell RNA sequencing dataset of 

normal human bone marrow[24] is displayed in a heatmap representing an unsupervised, 

two-dimensional hierarchical clustering of the data. CD34+CD38- cells were selected from 

the data set for this analysis. Each column represents a single cell. Each row represents a 

gene. B-C, The murine single-cell gene expression dataset was used to develop a 96-gene 

PCR assay. Diagnostic bone marrow aspirates from patients with AML (n=5) or normal 

human bone marrow specimens (Lonza, n=5) were CD34+CD38- selected and submitted for 
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single-cell capture and quantitative, reverse transcriptase PCR using this 96-gene PCR assay. 

The Ct values were normalized (as described in the methods). B, Data from each patient 

were clustered by two-dimensional hierarchical clustering. Each column represents a single 

cell. Each row represents a gene. The cluster with the highest expression of genes is labeled 

Cluster A and the other is labeled Cluster B. The p-value for enrichment of these genes 

within each cluster is displayed for each sample and directly represents the degree of 

enrichment seen (low p value indicates strong enrichment). C, The top 10% of cells 

expressing each gene from each AML or normal sample were pooled. Genes that were 

higher among LSCs relative to normal HSPCs are displayed. The Wilcoxon Rank Sum test 

was performed to compare expression values between LSCs and normal HSPCs.
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Figure 4. 
In vivo leukemia reconstitution assays demonstrate that Group 1 is the self-renewing subset 

of immunophenotypic LSCs. A, Primary leukemia cells were stained with CellTrace and 

transplanted into mice via tail vein injection. Leukemia cells were harvested 14 days later. 

Levels of CellTrace are shown according to immunophenotypic subgroups as assayed by 

flow cytometry. Error bars indicate standard error of the mean. Unpaired Student’s t-test was 

used to calculate p-values for each comparison indicated. B-C, The LSC-enriched 

compartment (Mac1LowKit+Sca1+) was sorted based on CD36 and CD69 status. B, Sorted 

cells were plated in methylcellulose colony forming assays. Results are representative of 4 

independent experiments. Horizontal bars indicate mean value. Unpaired Student’s t-test 

was calculated for each comparison indicated. CI=confidence interval. C, Sorted cells were 

transplanted into mice via tail vein injection. Each mouse received either 104 or 105 sorted 

cells (as indicated). Leukemia status was assessed by weekly peripheral blood complete 
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blood counts. MKSCD36HighCD69High were very rare and were therefore not tested at the 

higher cell dose. Leukemia-free survival is plotted as Kaplan-Meier curves. Log-rank tests 

were used to calculate p-values. D, The levels of Ki67 (a proliferation marker) were 

compared between CD36High and CD69High subpopulations of AML. Diagnostic bone 

marrow aspirates from patients with AML were stained with antibodies to CD34, CD38, 

CD36, CD69, and Ki67. The ratio of the percentage of cells that express Ki67 in 

CD36HighCD69Low cells was compared to that of CD36LowCD69High cells within the bulk 

sample and within the CD34+CD38- (LSC-enriched) compartment. Each symbol represents 

this ratio in a single sample. Not all samples had sufficient CD36HighCD69Low or 

CD36LowCD69High cells within the CD34+CD38- compartment for these measurements.
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Table 1.
Ingenuity Pathway Analysis

Representative Ingenuity Pathway Analysis of the common differentially expressed genes.

Upstream Regulator, Pathway, or Function z-score p-value

 CD69-associated genes

  let-7 −3 0.00000287

  GATA-1 −2.546 3.05E-10

  NFKB 1.715 0.0167

  HIF1A 2.651 0.00007

  Recurrent hematological cancer 0.0000004

 CD36-associated genes

  IL4 1.103 0.00194

  Tretinoin 1.4 0.0219

  IFNG 1.836 0.0000452

  Differentiation of myeloid leukocytes 0.83 0.000027
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Table 2.
Gene Set Enrichment Analysis (GSEA): Group 1 relative to Group 3 gene expression

Gene set enrichment analysis, comparing Group 1 and Group 3 transcriptional profiles. NES=normalized 

enrichment score, FDR=false discovery rate; FDR is used as a p-value which has been corrected for multiple 

hypothesis testing.

Gene sets enriched in Group 1 LSCs NES FDR q

 MLL-AF9-dependent self-renewal genes (Zuber et al.) 2.01 0.00

 LSC genes (Somervaille et al.) 1.71 0.01

 Myb-dependent self-renewal genes (Zuber et al.) 1.84 0.01

 HSC and CMP genes (Laurenti et al.) 1.60 0.04
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