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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. 

MicroRNA-29a (miR-29a) is commonly downregulated in PDAC, however, mechanisms for its 

loss and role still remain unclear. Here we show that in PDAC, repression of miR-29a is directly 

mediated by MYC via promoter activity. RNA-seq analysis, integrated with miRNA target 

prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled 

with gene ontology and survival correlation analyses identified the top five miR-29a 

downregulated target genes (LOXL2, MYBL2, CLDN1, HGK and NRAS) that are known to 

promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a 

is sufficient to ablate translational expression of these five genes in PDAC. We show that the most 

promising target among the identified genes, LOXL2, is repressed by miR-29a via 3’-UTR 

binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high 

LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate 

an anti-tumorigenic, regulatory role of miR-29a, and a novel MYC-miR-29a-LOXL2 regulatory 

axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities.

Implications—This study unravels a novel functional role of miR-29a in PDAC pathogenesis, 

and identifies a MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating 

miR-29a as a potential therapeutic target for PDAC.
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most deadly forms of human 

malignancies. Being the fourth most lethal cancer in the United States, PDAC accounts for 

7% of all estimated cancer-related deaths (1). With an overall 5-year survival rate of less 

than 5% worldwide (2), the trend for PDAC is projected to worsen over the next decade, 

rendering PDAC the second leading cause of cancer-related deaths by 2030 (3). Due to lack 

of efficient biomarkers, PDAC remains undetected till an advanced, metastatic stage when 

the cancer is aggressive and resistant to current forms of therapeutic modalities (4). 

Therapeutic failure for PDAC can be attributed to the unique heterogeneous, immune-

suppressive tumor microenvironment, which interferes with drug efficacy and cytotoxic T-

cell infiltration in the cells (4,5). Over 90% of PDAC cases exhibit driver oncogenic Kras 
mutations with initiation of precursor, pancreatic intraepithelial neoplasia (PanIN) lesions, 

which lead to aggressive metastatic PDAC (6). Although mutational spectrum of PDAC has 

been well characterized (6–8), the knowledge is yet to yield effective targeted therapies. 

Further, there was no success with targeting Kras (9,10) or finding potent Kras inhibitors 

(11). Thus, there is a crucial need for investigating the molecular mechanisms of PDAC to 

identify de novo targets for the disease aimed at developing effective therapeutic strategies to 

prolong life expectancies of PDAC patients.

MicroRNAs (miRNAs) play pivotal roles in regulating a broad array of biological processes 

related to cancer pathogenesis (12). Particularly, studies have shown tumor suppressor 

miRNAs to be repressed in a wide variety of cancer types, which in turn, de-repress proto-

oncogenic factors promoting cancer phenotypes (12). In our previous reports, we 

demonstrated the pathological role of microRNA-29a (miR-29a) in PDAC tumor-stromal 

biology (13,14). We found miR-29a to remain downregulated in pancreatic cancer cells 
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(PCCs) and associated fibroblasts (13,14). However the mechanisms of miR-29a 

downregulation and its downstream effectors in PDAC is still unclear. The current study 

delineates the upstream regulation of miR-29a in PDAC and characterizes global miR-29a 

targetome in the disease. Here we reveal for the first time, the association of miR-29a-

LOXL2 axis is regulation of PDAC pathogenesis.

Materials and Methods

Accession Number

The RNA-seq data reported in this study is available at the GEO database under the 

accession number GSE128663.

Experimental Mice

KrasLSL.G12D/+; p53LSL.R172H/+ (KP) mice were generated and crossed with Pdx1-Cre mice 

to obtain the KrasLSL.G12D/+; p53R172H/+; Pdx1-Cre (KPC) mice used in this study. All 

animal protocols were reviewed and approved by the Indiana University Animal Care and 

Use Committee. Regulatory guidelines set by Guide for the Care and Use of Laboratory 

Animals of the National Institute of Health were followed for all animal housing, use and 

euthanasia procedures.

Patient Tissue Procurement

This study was reviewed and approved by the Indiana University (IU) Institutional Review 

Board (IRB) (IU IRB # 1312935090R004). Patient tissues were obtained as described 

previously (13).

Cell Culture

Normal human pancreatic epithelial cell lines HPNE (CRL-023, ATCC) and HPDE 

(T0018001, AddexBio), and PCC lines Panc-1 (CRL-1469, ATCC) and MIA PaCa-2 

(CRL-1420, ATCC) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(11965092, Life Technologies) supplemented with 10% FBS. AsPC-1 (CRL-1682, ATCC) 

and BxPC-3 (CRL-1687, ATCC) PCC lines were grown in RPMI 1640 medium (11875–

093, Gibco™) supplemented with 10% FBS. Cells were grown in a humidified 5% CO2 

incubator at 37°C. Cell lines were authenticated by morphologic inspection and mycoplasma 

testing. Experiments were performed with cells of passage of <10.

RNA Extraction

Total RNA was extracted from cultured cells or frozen pancreatic tissues using Trizol 

Reagent (Invitrogen™). The concentration and purity of the extracted RNAs were measured 

using a Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific) and stored at −80°C 

for future use.

Quantitative Real time PCR (qRT-PCR)

RNA was reverse transcribed to generate cDNA using High capacity cDNA Reverse 

Transcription kit (4368814, Thermo Fisher Scientific) with random primers or custom 
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primer pool for miRNA (Applied Biosystems). miRNA and LOXL2 expressions were 

measured using TaqMan Assays. Other gene expressions were measured using SYBR Green 

assays with primers shown in Supplementary Table S1. Primary (pri)-miR-29a/b1 

(Hs03302672_pri) and mature miR-29a (ID: 002112) were normalized to endogenous 

control ACTA (Hs00426835_g1) and U6 snRNA (ID: 001973) respectively. Mouse LOXL2 

(Mm00804740_m1) expression was normalized to ACTB (Mm00607939_s1). Samples were 

run using ABI 7500 Real-Time PCR machine. Relative expressions were analyzed using 

ΔΔCT method.

Immunofluorescence Imaging

Immunofluorescence Imaging for MYC was performed as described in Supplementary 

Materials and Methods. Images were obtained using a Leica DM5000B microscope. 

Quantification of percent MYC nuclear localization was performed using ImageJ software. 

Data was charted and presented as the average quantification of four replicates for each cell 

line.

Chromatin Immunoprecipitation (CHIP)

CHIP experiments were carried out as described previously (15,16) with a few modifications 

as shown in Supplementary Materials and Methods.

Transfection of cultured cell lines

Exponentially growing PCCs were transfected using Dharmafect®1 Reagent (T-2001–01, 

Dharmacon) and with control (CN-001000–01) or miR-29a mimic (C-300504–07), or the 

following siRNAs from Dharmacon: siCTRL (D-001810–10-05), siMYC (L-003282–

02-0005), siSMAD4 (L-003902–00-0005), siGLI3 (L-011043–00-0005), siMYBL2 

(L-010444–00-0005), siLOXL2 (L-008020–01-0005), siCLDN1 (L-017369–00-0005), 

siHGK (L-003971–00-0002), and siNRAS (L-003919–00-0005), from Qiagen: miRNA 

inhibitor control (339126) or LNA miR-29a inhibitor (339121), following manufacturer’s 

protocol. Total protein or RNA was isolated 48 hrs post-transfection for western blot or 

qPCR analyses.

RNA-seq and Bioinformatics

Panc-1 and MIA PaCa-2 cells were transfected with control or miR-29a (n=3/group) 

following the protocol described above. Total RNA was extracted 48 hrs post-transfection 

using RNeasy Plus Mini Kit (74134, Qiagen) and the purity was assessed using a Nanodrop 

2000. Purified RNA quality was determined by a Bioanalyzer, then used to prepare libraries, 

and sequenced (pair end read 150 cycles) using an Illumina HiSeq 2000. RNA-seq quality 

was examined using the FastQC tool. Library obtained from each replicate consisted of 26– 

36 million short sequence reads that were re-mapped back to the reference genome (hg38) 

using STAR v2.5 (17), which yielded overall average read map ratios of 93.6% and 90% for 

Panc-1 and MIA PaCa-2 cell lines. Uniquely mapped sequencing reads were assigned to 

genes based on Gencode 25 using featureCounts (v1.6.2) (18). After filtering out low 

expressed genes with read count per million (CPM) <0.5 in greater than two samples, gene 

expression profiles were normalized using trimmed mean of M values (TMM) method, and 
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differential expression analysis was performed using edgeR (v3.20.8) (19,20). The 

differentially expressed genes (DEGs) were determined by cutoff p-value<0.05 after false 

discovery rate (FDR) adjustment and amplitude of fold change (FC) of gene expression 

greater than 2 linear FC.

TargetScan (v7.1) (21) was adopted to predict conserved miR-29a target genes. 

Hypergeometric model was used to calculate the overlap between DEGs and miR-29a 

predicted targets. Functional enrichment analyses on the DEGs were performed using 

DAVID (v6.8) database (https://david.ncifcrf.gov/). The miR-29a target gene levels in 

human PDAC and normal pancreatic tissues were obtained from the human protein atlas 

(https://www.proteinatlas.org/).

Genetic alterations of the transcription factors with predicted binding sites in pri-miR-29a/ 

b1 promoter in TCGA PDAC datasets were analyzed using the online cBioportal cancer 

genomics tool (http://www.cbioportal.org/).

Western Blot

Protein lysates were prepared with RIPA Buffer (PI-89900, Thermo Fisher Scientific) and 

quantified using BCA Protein Assay Kit (23225, Pierce Biotechnology). Equal amounts of 

total protein were loaded for immunoblot analysis. Immunoblots were probed with 

antibodies against MYC (5605S, Cell Signaling Technology), SMAD4 (38454S, Cell 

Signaling Technology), GLI3 (sc-74478, Santa Cruz Biotechnology), MYBL2 (sc-390198, 

Santa Cruz Biotechnology), LOXL2 (ab96233, Abcam), CLDN1 (4933S, Cell Signaling 

Technology), HGK (3485, Cell Signaling Technology), NRAS (ab77392, Abcam), E-

cadherin (ab40772, Abcam), Vimentin (D21H3, Cell Signaling), LAMB1 (D4Q4Z, Cell 

Signaling) and GAPDH (MA5–15738, Thermo Fisher Scientific) overnight at 4°C followed 

by incubation for 1 hr at room temperature with corresponding HRP conjugated goat anti-

mouse (31430, Thermo Fisher Scientific) or goat anti-rabbit (31460, Thermo Fisher 

Scientific) secondary antibodies. Western Blots were then developed using ECL detection kit 

(34096, Thermo Fisher Scientific) and captured on an Amersham Imager 600 (GE 

Healthcare). Densitometry analysis was performed using Image J software to quantify each 

protein band, and were normalized against LAMB1 for nuclear fraction or GAPDH.

Migration Assays

Migration assays with control or transfected Panc-1 and MIA PaCa-2 were performed as 

described in Supplementary Materials and Methods.

Estimation of Extracellular LOXL2 Secretion

PCCs transfected with control or miR-29a mimic, and siCTRL or siLOXL2 were grown in 

complete DMEM post-transfection for 24 hrs. 3 × 105 cells were then cultured in serum-free 

DMEM for 48 hrs. The resulting conditioned media (CM) were collected, and concentrated 

using Amicon Ultra-0.5 Centrifugal Filter Unit (UFC501096, MilliporeSigma). To quantify 

the extracellular LOXL2, Enzyme-linked immune sorbent assay (ELISA) was performed 

with the concentrated CM according to manufacturer’s protocol (DY2639–05, R&D 

Systems).
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Collagen Estimation

Sircol Soluble Collagen Assay (Biocolor, Carrickfergus, United Kingdom) and 

Hydroxyproline Assay were performed as described previously (22) and in the 

Supplementary Materials and Methods.

Dual Luciferase Reporter Assay

For miR-29a promoter activity, upstream promoter region of miR-29a/b1 containing MYC 

binding sites was cloned into Luc2 Luciferase Expression vector (E6651, Promega). PCCs 

were co-transfected with control or siMYC, and MYC binding site Luc2 Luciferase vector 

using DharmaFECT Duo Transfection Reagent (T-2010–02, Dharmacon). For LOXL2 

promoter activity, LOXL2 3’-UTR wild type (3’-UTR WT) and mutant (3’-UTR MUT) 

luciferase vectors consisting of miR-29a binding site were constructed respectively. The 

PCCs were co-transfected with control or miR-29a mimic, and 3’-UTR WT, or control or 

miR-29a mimic, and 3’-UTR MUT. 48 hrs post-transfection, luciferase activity was 

measured by Dual Glo® Luciferase Assay System (E2920, Promega) following 

manufacturer’s instructions. Firefly luciferase luminescence was normalized to Renilla 

luciferase activity for each transfected well.

Immunohistochemistry

Immunohistochemistry with human and mouse pancreatic tissue sections was performed as 

described in Supplementary Materials and Methods.

Statistical Analyses

GraphPad Prism (v5) and Microsoft Excel were used for statistical analyses. All data were 

expressed as mean ± standard error of the mean (SEM) of three independent experiments. 

Statistical comparison between two groups was performed using two-tailed Student’s t-test, 

while for multiple comparisons, one-way ANOVA with Bonferroni’s correction was used. 

Chi square tests were performed for correlation analyses between miR-29a and target genes 

in histopathological samples. p< 0.05 was considered as statistically significant and are 

indicated with asterisks (*p< 0.05, **p<0.01, ***p<0.001).

Results

Pri-miR-29a/b1 expression is lower in PDAC cell lines and inversely correlates with MYC

miR-29 family includes miR-29a, −29b, −29c, encoded by polycistronic hsa-miR-29a/b1 

and miR-29c/b2 clusters, located on chr 7q32.3 and 1q32.2 respectively. These clusters are 

initially transcribed as long pri-miR-29a/b1 and pri-miR-29b2/c (23) and then processed by 

endonucleases to yield mature miR-29a, −29b and −29c (12,23). Our previous report 

demonstrated a robust reduction in miR-29a expression in pancreata from a well-

characterized Kras-driven PDAC mouse model, KC (LSL-KrasG12D/+; Pdx-1-Cre), PCC 

lines and human PDAC patients (13). We further demonstrated that among all miR-29 

members, miR-29a is most abundantly expressed in human pancreas, pancreatic stellate cells 

(PSCs), as well as in normal human pancreatic epithelial cell line (HPNE) (13). Therefore, 

in the current study we primarily focused on primary (pri-) miR-29a/b1 cluster and mature 
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miR-29a for functional analyses. First, we measured pri-miR-29a/b1 expression levels in 

four PCC lines (Panc-1, MIA PaCa-2, BxPC-3 and AsPC-1) and two normal human 

pancreatic ductal epithelial cell lines (HPNE and HPDE). Consistent with our previous 

observation with mature miR-29a (14), pri-miR-29a/b1 expression was significantly lower in 

each of the four tested PCC lines as compared to HPNE and HPDE (Fig. 1A).

To understand the potential mechanism of transcriptional repression of miR-29a in 

pancreatic cancer, we screened several candidate transcription factors (TFs) with predicted 

binding sites at the miR-29a promoter and are associated with PDAC. This identified five 

major TFs, namely MYC, SMAD4, YY1, GLI3, and NF-ĸB. Examining the TCGA 

pancreatic adenocarcinoma datasets at the cBioPortal, we observed >10% genetic alterations 

for MYC and SMAD4, 4% for GLI3 and little alterations of NF-ĸB and YY1 in PDAC 

patients (Fig. 1B). Similar patterns of genetic alterations were observed in PCC data 

obtained from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) (Supplementary 

Fig S1–A). In both PDAC patients and PCC lines, MYC exhibited the highest copy number 

alteration (amplification), while SMAD4 mainly associated with deletion and mutational 

changes. Interestingly, the miR-29a expression in these TCGA patients and PCC lines 

inversely correlated with MYC (Fig. 1C, Supplementary Fig S1–B). Because NF-ĸB and 

YY1 showed the least genetic alterations in the TCGA patient and CCLE PDAC cell data, 

and that both the genes are the effectors of the same NF-ĸB signaling pathway as GLI3, we 

chose to carry out our mechanistic study with MYC, GLI3 and SMAD4 in PCCs, and 

excluded NF-ĸB and YY1 from our further analyses.

To determine the association of these three TFs on miR-29a in PDAC, we first performed 

RNAi mediated knockdown of the TFs in Panc-1 cells (Fig. 1D). Our results indicated a 

significant (>2 fold) increase in miR-29a expression (p< 0.05) only for MYC KD among the 

tested TFs (Fig. 1E). Further, we observed ~ 2.5 fold increase in the expression of pri-

miR-29a/b1 for MYC KD in the Panc-1 cells (Fig. 1F). These results suggested an inverse 

relationship between MYC and miR-29a and hereafter, we focused on further exploring the 

regulatory role of MYC on miR-29a in pancreatic cancer.

Inhibition of MYC with small molecule inhibitor enhances miR-29a expression in PCCs

To further validate the repressive regulation of miR-29a by MYC, we treated Panc-1 cells 

with different doses of a small molecule MYC inhibitor, 10058-F4 (24,25). 10058-F4 

resulted in increased expression of miR-29a in a dosage dependent manner, with a 

significant rise in miR-29a level at 100μM treatment (Fig. 1G). These findings reinforce the 

inverse regulatory relationship between MYC and miR-29a in PCCs.

PCCs and Normal Pancreatic Epithelial Cells show differential localization of MYC in the 
nucleus

To find the mechanism of interaction of MYC with miR-29a promoter, we first investigated 

whether MYC is differentially localized in low and high miR-29a expressing PCCs. 

Immunofluorescence analysis revealed that in normal pancreatic epithelial cell lines (HPNE 

and HPDE) expressing higher pri-miR-29a/b1, MYC was minimally localized in the 

nucleus, while the low pri-miR-29a/b1 expressing PCC lines exhibited strong MYC nuclear 
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localization (Fig. 2A&B). To validate our immunofluorescence observations, we performed 

western blot analysis for MYC in the nuclear and cytoplasmic fractions of HPNE cells and 

PCCs. The MYC expressions were normalized to nuclear protein LAMB1 and cytosolic 

protein GAPDH for the nuclear and cytosolic fractions respectively, however both the 

fractions were blotted with LAMB1 and GAPDH to assess the quality of the fractionations. 

Western blots revealed MYC expression patterns similar to immunofluorescence, 

corroborating the findings (Fig 2C). In PCC lines, MYC localization was higher in the 

nucleus and lower in the cytosol, while in HPNE cells, the localization of MYC in the 

nuclear and cytoplasmic fractions were lower and higher respectively. These findings 

confirm the negative correlation between MYC and pri-miR-29a/b1 expressions, and 

indicate that abundance of MYC in the nucleus is likely responsible for miR-29a repression, 

suggesting a potential interaction between MYC and miR-29a in PCCs.

MYC represses miR-29a by direct promoter binding in PCCs

To gain mechanistic insights into MYC-miR-29a interaction, we next examined if 

miR-29a/b1 is directly modulated by MYC in PCC lines through promoter activity. 

MiR-29a/b1 promoter has two conserved MYC binding sites. One of these sites, located at 

−261 from the transcription start site, contains a canonical E-box binding motif 5’ 

CACGTG, while the other site located at −1317 consists of a 5’CACATG binding motif (26) 

(Fig. 2D). To determine the functional significance of these sites, we generated luciferase 

reporter constructs consisting of a WT miR-29a/b1 promoter which includes the two 

conserved MYC binding sites. Relative promoter activity was determined by co-transfecting 

each cell line with promoter luciferase plasmid containing the WT MYC binding sites and 

siMYC or siCTRL plasmids. In both Panc-1 and MIA PaCa-2 cells, a significantly increased 

luciferase activity was observed for MYC knockdown, indicating a direct repressive role of 

MYC in miR-29a expression (Fig. 2E, Supplementary Fig. S1–C). To further validate MYC 

binding to miR-29a promoter, we performed CHIP assays using the two PCC lines. MYC 

CHIP was quantified by real-time PCR using two amplicons within the conserved region of 

miR-29a/b1 along with an amplicon in the CDKN1A promoter, which served as a positive 

control (15). Fold enrichment of the positive control in the MYC CHIP samples compared to 

CHIP samples with IgG antibody was set as the threshold (>12 folds) for MYC binding. In 

both PCC lines, MYC CHIP signals crossed the fold enrichment threshold, confirming the 

association of MYC with the repressed miR-29a/b1 promoter (Fig. 2F, Supplementary Fig. 

S1–D).Together, these results show that in PCCs, MYC directly binds to the promoter 

elements of miR-29a/b1 and represses miR-29a transcription.

RNA-seq identifies differentially expressed miR-29a targets

We next sought to identify global miR-29a effectors and delineate the downstream signaling 

mechanisms of miR-29a in PDAC. High-throughput RNA-seq with Panc-1 and MIA PaCa-2 

cells overexpressing miR-29a, along with those transfected with mimic control, generated a 

global miR-29a targetome. For analyzing the RNA-seq data and identifying the critical 

miR-29a targets, we employed a pipeline depicted in Figure 3A. RNA-seq dataset for Panc-1 

identified 6687 downregulated and 6311 upregulated genes while MIA PaCa-2 dataset 

revealed 7457 and 7633 down- and upregulated transcripts respectively (Fig. 3B, 

Supplementary Fig. S2–A). The differentially expressed genes (DEGs) for Panc-1 and MIA 
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PaCa-2 datasets exhibited high degree of correlation (Pearson’s Correlation Coefficient 

=0.69) (Fig. 3C). Thereafter, we applied stringent filters and considered only those DEGs 

which met the following criteria: logFC >± 1, FDR<0.05 and p<0.05. This identified 278 

and 369 genes in Panc-1, and 556 and 440 genes in MIA PaCa-2 datasets that were down- 

and up- regulated respectively (Fig. 3D, Supplementary Fig. S2–B). Next, we used 

TargetScan database (27) to identify predicted putative miR-29a targets among the DEGs in 

the two datasets. In both datasets, majority of the miR-29a targets were downregulated (Fig. 

3D, Supplementary Fig. S2–B). In Panc-1 dataset, of the downregulated genes, 108 genes 

were miR-29a targets, while 5 of the upregulated genes were miR-29a targets (Fig. 3D). 

Again, in MIA PaCa-2 dataset, 80 of all downregulated genes and 15 of all upregulated 

genes were predicted miR-29a targets (Fig. 3D). Comparison of the DEGs among the Panc-1 

and MIA PaCa-2 datasets revealed 43 downregulated, and 4 upregulated miR-29a target 

genes that overlapped in the two datasets (Fig. 3D, Supplementary Fig. S2–B, 

Supplementary Table S2). A subset of top 30 overlapping DEGs, with the highest average 

fold changes in Panc-1 and MIA Paca-2 cell lines, were subjected to qPCR, and all of the 30 

genes well-matched in magnitude and direction of expression, validating the RNA-seq data 

(Supplementary Table S3). Because majority of the miR-29a targets were downregulated in 

both the datasets, we focused on the resultant overlapping downregulated targets for further 

analyses. Consistent with our data, increasing evidence demonstrated the significance of 

miR-29a in variety of cancers, and majority of these studies have shown miR-29a to function 

as a tumor suppressor by downregulating oncogenes (12,14,28,29).

Target Enrichment, Gene Ontology (GO) and The Cancer Genome Atlas (TCGA) data 
analyses identify top miR-29a targets and their functional attributes in PDAC

To determine the biological function and signaling pathways associated with the miR-29a 

targets, pathway enrichment analysis was performed for the genes by inputting their Entrenz 

IDs into the functional annotation tool DAVID, and the genes were grouped one or more of 

the following four GO categories: ECM Related, Migration/Invasion, Cancer/Growth/

Proliferation, and Metabolism, based on relevant GO terms (30). Pathway analysis of the 20 

most differentially expressed overlapping upregulated genes identified 11 genes belonging to 

one of the four GO categories, but none of these genes were miR-29a targets. Of the top 20 

downregulated genes, 13 belonged to the GO categories, among which 10 genes were 

miR-29a targets (Supplementary Fig. S2–C). Overall, high enrichment scores and significant 

association of a vast majority of the miR-29a targets with individual GO terms was observed 

in each category (Fig. 3E and F). These findings are in agreement with the mechanisms of 

PDAC progression, which is characterized by desmoplasia, epithelial mesenchymal 

transition (EMT), metastasis, altered metabolism and drug resistance (4,31). To determine 

the most clinically relevant miR-29a targets and their prognostic impacts, we performed 

survival analysis for the 43 downregulated genes using publicly available TCGA patient 

data. This pipeline identified the seven miR-29a targets from the RNA-seq datasets- 

MYBL2/b-myb, LOXL2, CLDN1, MAP4K4/HGK, NRAS, FNDC5 and TUBD1 (Table 1) 

with highest fold changes in mRNA expressions in RNA-seq and logrank p <0.05 for 

Kaplan-Meier survival correlation analyses from TCGA data. Interestingly, Kaplan-Meier 

curve and log rank test analyses in pancreatic adenocarcinoma patients showed that lower 

expression of five of these genes, except FNDC5 and TUBD1, correlated with higher overall 
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survival of the patients (Fig. 4A). Consistently, the univariate Cox Proportional Hazard 

Regression model indicated a higher hazard risk in the patients for high expression of the 

five genes while a lower risk with higher expression of FNDC5 and TUBD1 (Table 1). Our 

previous reports and other studies in diverse tumor types document miR-29a to function as a 

tumor suppressor. Thus, hereafter we focused on the five targets of MYBL2, LOXL2, 

CLDN1, HGK and NRAS, where lower gene expression associated with better prognosis.

Restoration of miR-29a in PDAC cell lines downregulates target genes

To evaluate the effect of miR-29a on these five candidate targets, we performed western blot 

analysis in Panc-1 and MIA PaCa-2 cell lines transfected with control or miR-29a mimics at 

three different concentrations (5nM, 10nM and 20nM). For each 10nM and 20nM miR-29a 

dosage, expressions of all the five target proteins were significantly reduced in the two cell 

lines (Fig. 4B, Supplementary Fig. S3–A). However, for the 5nM dosage, the reduction in 

protein levels reached a significant threshold for the four genes except NRAS (Fig. 4B, 

Supplementary Fig. S3–A). This finding confirms a miR-29a mediated translational 

suppression mechanism in the five tested miR-29a targets.

Silencing the candidate targets reduces migration and EMT phenotypes in PDAC cells

GO analysis indicated the five identified targets to associate with cell migration 

mechanisms. Thus, to determine the effect of these candidates in PCC migration, we 

silenced the expression of the genes in Panc-1 and MIA PaCa-2 cells and seeded the cells for 

transwell assays. Knock-down of all the five targets significantly inhibited the migratory 

potential of the cells in MIA PaCa-2 cell line, with approximately 50% reduction in 

migration ability for LOXL2 (Supplementary Fig. S3–B). Significant reduction in migratory 

ability was observed in Panc-1 cells for four of the targets, except CLDN1 (Fig. 4C). 

Interestingly, in both Panc-1 and MIA PaCa-2 cell lines, among all five targets, silencing 

LOXL2 resulted in the highest inhibition of the migration of the cancer cells by around 50%, 

which mimics the migratory potential of miR-29a overexpressing cancer cells (Fig. 4C, 

Supplementary Fig. S3–B). Therefore, our data indicate that restoration of miR-29a or 

depletion of its downstream targets markedly impedes the migratory potential of PCCs.

Previously, we demonstrated that overexpressing miR-29a diminishes EMT phenotype in 

Panc-1 cell line (14). Here, we examined the effect of silencing the five miR-29a targets on 

EMT in the cell line (Fig. 4D). Western blot analysis showed that silencing each of the five 

targets resulted in increased expression of epithelial marker, E-cadherin, and decreased 

mesenchymal marker vimentin, with the most robust effects for siLOXL2 and siMYBL2. 

Together, these results suggest an association of miR-29a and its key targets with PDAC 

metastasis.

LOXL2 is a direct miR-29a target in PDAC cells

We next narrowed our focus on to LOXL2 as a primary candidate to perform additional 

functional analyses to elucidate miR-29a-LOXL2 axis in PDAC regulation. Firstly, LOXL2 

exhibited one of the highest fold changes among the downregulated targets in our primary 

candidate list from RNA-seq, and downregulation of the gene was most significantly 

correlated with survival in TCGA PDAC patients. Additionally, miR-29a gain-of-function 
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resulted in a robust depletion of LOXL2 protein expression, and loss of LOXL2 maximally 

impeded PCC migration and EMT. Given the unique tumor-stromal crosstalk associated with 

PDAC histopathology, LOXL2 appears to be the most relevant gene to study, being the only 

target that exhibits both intracellular and secreted functions in inducing EMT/metastatic 

phenotypes and regulating stromal remodeling via collagen crosslinking respectively 

(32,33).

To determine if LOXL2 is a direct miR-29a target in PCC lines, we identified the two 

putative miR-29a binding sites at the 3’-UTR of LOXL2 (positions 555–561 and 757–763) 

using TargetScan database. We then designed luciferase reporter assay with a vector 

encoding either WT LOXL2 miR-29a 3’-UTR binding site, or a sequence consisting of 

alternating point mutations within the miR-29a target binding region (Fig. 5A). Consistent 

with the predicted downregulatory role of miR-29a on LOXL2, we observed significantly 

reduced (~ 50%) luciferase activity for the Panc-1 and MIA PaCa-2 cells co-transfected with 

WT 3’-UTR carrying vector and miR-29a as compared to the non-specific control mimics, 

while co-transfection with the mutated 3’-UTR vector resulted in enhanced luminescence 

intensity abolishing the inhibitory effects of miR-29a (Fig. 5B, Supplementary Fig. S4–A). 

These data confirm that miR-29a directly binds to the 3’-UTR region of LOXL2 and 

negatively regulates the expression of the gene in PCC lines. Expectedly, silencing LOXL2 

had no effect on miR-29a expression in the two PCC cell lines (Supplementary Fig. S4–B). 

Next, to assess the MYC-miR-29a axis in regulation of LOXL2 expression, we first silenced 

MYC, which resulted in reduction of LOXL2 in Panc-1 and MIA PaCa-2 cell lines (Fig. 5C, 

Supplementary Fig. S4–C). Thereafter, we inhibited (i) miR-29a alone, or (ii) miR-29a and 

MYC simultaneously, both of which resulted in increased LOXL2 expressions (Fig. 5D). 

These observations suggest that LOXL2 expression is directly dependant on miR-29a in 

PCCs in MYC-silenced cells.

Gain of miR-29a function diminishes extracellular LOXL2 in PCCs

Because LOXL2 is a secreted protein and tumor-derived LOXL2 is known to influence 

tumor microenvironment, we next sought to study if miR-29a has an effect on extracellular 

LOXL2 function in PDAC. To this end, we analyzed the levels of secreted LOXL2 in CM 

obtained from Panc-1 and MIA PaCa-2 cells transfected with control or miR-29a mimics, 

and siCTRL or siLOXL2. Our results showed that in Panc-1 and MIA PaCa-2 cell lines, gain 

of miR-29a function resulted in 71% and 62% reduction in secreted LOXL2 levels 

respectively in the CM (Fig. 5E, Supplementary Fig. S4–D). To further validate whether 

ectopic miR-29a expression affected extracellular collagen crosslinking function of LOXL2, 

we estimated the newly crosslinked pepsin-soluble and heavily crosslinked insoluble 

collagen levels using Sircol and hydroxyproline assays respectively in the two PCC lines 

transfected with control or miR-29a mimics, and siCTRL or siLOXL2. Consistently, 

overexpressing miR-29a markedly depleted soluble and insoluble crosslinked collagen 

contents in the PCCs, similar to the effect observed for silencing LOXL2 (Fig. 5F&G, 

Supplementary Fig. S4–E&F). These results validate the regulatory role of miR-29a in 

extracellular collagen-crosslinking LOXL2 activity.
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Enhanced LOXL2 levels with reduced miR-29a expression observed in PanIN lesions/ 
PDAC in GEMM and clinical patient specimens

To assess the association between miR-29a and LOXL2 expression in PDAC in vivo and 

substantiate its clinical relevance, we first determined LOXL2 expression levels by 

immunohistochemistry analysis in pancreatic tissue samples from 4–6 months old mice 

belonging to a well characterized PDAC mouse model, KPC, that expresses the most 

common human oncogenic Kras (cancer-driver) and p53 (tumor-suppressor) mutations 

(KrasLSL.G12D/+; p53R172H/+; Pdx1-Cre), as well as in PDAC patient biopsies consisting of 

35–80% tumor stroma. In both KPC mice and clinical specimens, LOXL2 was highly 

expressed in pancreata with advanced PanIN or PDAC lesions, with little or no expression in 

normal regions or healthy tissues (Fig. 6A). Next, we evaluated the expression levels of 

LOXL2 and miR-29a in the pancreatic tissue samples from KPC mice via qPCR and 

compared that with age matched C57BL/6 control mice. In agreement with our in vitro 
observations, miR-29a expression in the KPC pancreatic tissue samples was significantly 

lower than the control C57BL/6 specimens with concomitant higher LOXL2 expression in 

KPC compared to C57BL/6 mouse tissues (Fig. 6B), confirming a negative correlation 

between miR-29a and LOXL2 in vivo. In our previous report, we demonstrated a significant 

reduction of miR-29a in PDAC patient tumors as compared to normal patient control 

pancreata (13). In TCGA PDAC patient data (n=178), although a small correlation was 

observed between miR-29a and LOXL2 by Pearson’s correlation test (R= −0.21), the inverse 

association was statistically significant (p= 3.9e−03), indicating a potential effect of the 

relationship in the context of PDAC patient prognosis (Fig. 6C). Together, these findings 

suggest that upregulation of LOXL2 is accompanied by concomitant suppression of miR-29a 

in PDAC in vivo, contributing to the disease progression.

Discussion

In the current study, we aimed to gain mechanistic insights into the upstream regulation of 

miR-29a, identify its global downstream effectors and discern their roles in PDAC 

pathogenesis. Here, we elucidate a novel miR-29a-mediated regulatory axis in PDAC 

pathogenesis. We have previously shown that in PCCs, pri-miR-29a/b1 and mature miR-29a 

expressions are commonly repressed compared to normal pancreatic epithelial cells (14) 

(Fig. 1A). Utilizing orthogonal loss-of-function approaches through siRNA mediated 

knockdown and small molecule inhibition, here we observed that miR-29a is repressed by 

MYC in PCCs. Because prior studies had indicated direct repressional regulation of several 

microRNAs including miR-29a by MYC in varied types of cells (15,26,34), we performed 

CHIP and luciferase assays to understand the regulation in PDAC. Our CHIP data 

demonstrated a direct binding of MYC at the miR-29a/b1 promoter binding site- a site 

where MYC was previously shown to repress miR-29a expression by recruiting EZH2 and 

causing H3K27 methylation mediated chromatin condensation (26,34). We further confirm a 

MYC-mediated repression of miR-29a at this binding site by luciferase assay. Thus, 

observations reported in the current study, in conjunction with prior evidence, suggest a 

direct MYC-mediated miR29a repression in pancreatic cancer.
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MYC is one of the central oncogenic TFs that is upregulated in approximately 40% of 

PDAC cases (35). MYC transcription is shown to be repressed by TGF-β/SMAD signaling, 

when TGF- β acts as a tumor-suppressor (36). Numerous studies have confirmed the context 

specific, paradoxical role of TGF-β in cancer (37–39). At early stages of tumorigenesis, 

TGF-β exhibits tumor-suppressive activities, while it “switches” to a pro-tumorigenic gene 

at a later stage in response to changes in the tumor microenvironment and mutations in Kras, 

which mediate inactivating mutations in tumor-suppressor genes CDKN2A, TP53 and 

SMAD4 (38–40). Notably, transition of PanIN to PDAC is characterized by the same 

activated Kras mutations (41). On the other hand, MYC is also a crucial downstream effector 

of Kras in the pancreatic cancer (42). Our previous findings demonstrate a pro-tumorigenic 

effect of TGF-β in pancreatic cancer, where we show that TGF-β1/SMAD4 signaling 

downregulates miR-29a expression in activated pancreatic stellate cells (PSCs) (13). In the 

same study we observed loss of miR-29a in Kras induced PDAC mice (13). Given that MYC 

is a downstream effector of both TGF-β and Kras signaling pathways- the pathways that also 

regulate miR-29a expression in PCCs, it is possible that the repression of miR-29a by MYC 

promoter binding is regulated by the Kras-TGF-β axis, or either by Kras or TGF-β signaling 

alone. However, it will be essential to design future studies to validate this supposition and 

further explore the upstream MYC-miR-29a regulatory axis in PDAC based on the current 

perspectives.

Our current RNA-seq offers one of the most comprehensive data on miR-29a regulated 

transcriptome in pancreatic cancer. We identified that the expression of 43 downstream 

miR-29a target genes, involved in ECM remodeling, cell migration, cellular growth and 

proliferation and/or metabolism, are reduced in PCC cells with restoration of miR-29a 

function. We found that in PCCs, miR-29a downregulates the expression of five prominent 

oncogenic targets (MYBL2, LOXL2, CLDN1, HGK and NRAS) both at transcriptional and 

translational levels. These five genes are particularly relevant in the context of PDAC 

because of their functional roles in mediating either or both ECM remodeling and cell 

migration/ metastasis- the classic mechanisms of PDAC progression, via diverse signaling 

pathways. For example, NRAS and HGK promote cell migration and proliferation via 

PI3K/Akt and JNK/ p38 pathways respectively (43,44). While CLDN1 is a tight junction 

protein known to promote cell migration/ invasion and EMT via Wnt/ β-catenin pathway 

(45), MYBL2 and LOXL2 promote both cancer cell proliferation and stromal desmoplasia 

via pathways such as Akt, NF-ĸβ, and Src/FAK (46–48). Here we show for the first time a 

miR-29a mediated regulatory axis of these genes in PDAC. Our findings suggest that loss of 

miR-29a in PCCs escalates tumor progression by de-repression of these pro-tumorigenic 

targets, perturbing the homeostasis of the cells. To assess the clinical relevance of the 

identified miR-29a-target regulatory axes, we compared the mRNA expressions of the genes 

with miR-29a from publicly available pancreatic adenocarcinoma patient datasets. The 

analysis revealed a negative correlation between the expressions of LOXL2, CLDN1, HGK 
and NRAS with miR-29a, largely supporting our data (Fig. 6C, Supplementary Fig. S5). 

Lack of a negative correlation between MYBL2 and miR-29a expressions perhaps reflects 

the heterogeneity in the biopsy specimens or its combination with other genetic factors 

associated with PDAC. Nonetheless, our findings advocate that restored expression of 

miR-29a in PDAC could offer a therapeutic advantage- the molecule being a single key 
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regulatory node to modulate multiple oncogenic targets associated with essential intra- and 

extracellular signaling pathways of tumor-stromal crosstalk, which are pivotal for the disease 

progression. Although the current work centers on further unraveling of the mechanisms of 

miR-29a-LOXL2 axis, future studies should be designed to functionally characterize each of 

the other four target genes of MYBL2, CLDN1, HGK and NRAS and their miR-29a 

mediated regulatory pathways in PDAC tumorigenesis.

Our data in this study show that in PCCs, miR-29a perturbs both intracellular and secreted 

LOXL2 function by repressing LOXL2 transcription via 3’-UTR binding. We observed 

increased levels of LOXL2 in both KPC mice and patient biopsy specimens, with inverse 

relationship with miR-29a (Fig. 6). Our in vitro study further indicates that loss of LOXL2 

in PCCs reduces the migration potential and EMT, which is consistent with other reports that 

demonstrate an intracellular, EMT promoting, LOXL2 function. Particularly, studies have 

shown that LOXL2 promotes EMT by direct downregulation of E-cadherin via interaction 

with Snail, a key TF in pancreatic cancer (49). Interestingly, we previously observed that 

overexpression of miR-29a results in an increase in E-cadherin in PCCs inducing 

mesenchymal-epithelial transition (MET) (14). However, E-cadherin is not a predicted 

miR-29a target (TargetScan), suggesting miR-29a to be an indirect player in E-cadherin 

regulation. This aligns with our current observations, and given our findings, it is reasonable 

to speculate that LOXL2 is likely the intermediate that bridges the gap between miR-29a and 

E-cadherin in regulation of EMT. Thus, our data support that in PCCs, repression of 

miR-29a de-represses LOXL2, which possibly promotes LOXL2-Snail interaction resulting 

in the downregulation of E-cadherin to escalate EMT phenotypes.

In our previous report, we have shown an anti-fibrotic function of miR-29a in pancreatic 

cancer tumor microenvironment, where miR-29a was found to inhibit major stromal protein 

expression and excessive stromal deposition by activated PSC (13). Here in this study, we 

evidence that restored expression of miR-29a in PCCs blocks LOXL2 secretion by the 

cancer cells potentially impeding the extracellular collagen crosslinking function of the 

protein. These observations are of great significance in the context of PDAC, where 

activated stroma is associated with poor patient prognosis and clinical outcome, and 

promotes aggressive, metastatic progression of the disease (4,50). Thus, it is apparent from 

our findings that the paracrine effect of miR-29a could encumber the transformation of 

quiescent PSCs to activated CAFs in the PDAC tumor microenvironment hindering 

metastasis-promoting stromal remodeling in the disease to facilitate efficient drug delivery 

to the tumor core.

Taken together, the current report provides novel insights into the regulatory mechanisms of 

miR-29a in inducing tumor-suppressive networks in PDAC, and advocates the importance of 

this molecule for therapeutic intervention. While our in vitro, in vivo and clinical 

observations elucidate the regulation and effects of the loss of miR-29a, and a MYC-

miR-29a-LOXL2 regulatory axis in PDAC, future studies using miR-29a knock-out mouse 

models will aid in further characterization of the regulatory role of the molecule in a 

physiological context, allowing to assess the prognostic and therapeutic appositeness of the 

molecule in targeting the disease.
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Figure 1: Knockdown/ inhibition of MYC results in increased miR-29a expression.
(A) qPCR analysis showing pri-miR-29a/b1 expression in normal human ductal epithelial 

cell lines (HPNE and HPDE) and human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, 

BxPC-3, AsPC-1); n=4. (B) cBioportal analysis depicting the genetic alterations in the 

putative pri-miR-29a/b1 promoter binding transcription factors MYC, SMAD4, GLI3, NF- 

ĸB (NF- ĸB1) and YY1 in pancreatic adenocarcinoma patients from the TCGA database. 

(C) Regression plot indicating negative correlation between miR-29a expression (log2 

normalized+1) and MYC (z-score) in TCGA pancreatic adenocarcinoma patients with 

alterations in MYC. (D) Western blot analysis of Panc-1 cells transfected with siCTRL, 

siSMAD4, siMYC and siGLI3 and assessed for SMAD4, MYC and GLI3 with GAPDH as 

the loading control. (E) Mature miR-29a expression as observed by qPCR analysis for 

Panc-1 cells transfected with siCTRL, siSMAD4, siMYC and siGLI3; n=4. (F) qPCR 

analysis of total RNA from Panc-1 cells transfected with siCTRL and siMYC showing pri-

miR-29a/b1 expression; n=4. (G) Panc-1 cells were treated with various concentrations (1 

μM, 10 μM and 100 μM) of small molecule MYC inhibitor 10058-F4. Subsequently, total 

RNA was subjected to qPCR analysis for mature miR-29a expression levels; n=3. Numerical 

data are represented as average fold change (ΔΔCT) ± standard error of the mean (SEM); 

*p< 0.05, **p< 0.01.
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Figure 2: MYC nuclear localization negatively correlates with miR-29a and represses miR-29a 
by directly binding to the promoter region of the molecule in PDAC.
(A) Representative images for immunofluorescence (IF) staining of normal human ductal 

epithelial cell lines (HPNE and HPDE) and human pancreatic cancer cell lines (Panc-1, MIA 

PaCa-2, BxPC-3, AsPC-1) for MYC. Scale bar is 50 μm, 20X magnification. (B) Average 

percentage of nuclear co-localization plotted for relative pri-miR-29a/b1 expression for the 

cell lines presented as ± SEM; n=4. Co-localization was calculated based on DAPI nuclear 

staining and MYC IF. (C) Western blot analysis of MYC expression in nuclear and 

cytoplasmic fractions of HPNE, Panc-1, MIA PaCa-2, BxPC-3, AsPC-1 cell lines. 

Quantification of band intensities were normalized to LAMB1 for nuclear and GAPDH for 

cytosolic fractions respectively. (D) Schematic representation of the two MYC binding sites 

at the pri-miR-29a/b1 promoter region. (E) Luciferase reporter constructs containing 

miR-29a/b1 promoter region with MYC binding sites were co-transfected in Panc-1 cells 

with siCTRL or siMYC and renilla luciferase expression plasmid. All readouts were 

normalized to renilla luciferase activity and average relative luminescence normalized to 

respective controls is presented as ± SEM; n= 5, *p< 0.05. (F) Real-time PCR analysis of 

DNA fragments precipitated in a CHIP assay using Panc-1 cell line. Two primer pairs (C1 

and C2) designed within conserved MYC binding sites at miR-29a/b1 promoter and a primer 

pair for a validated MYC-binding region of CDKN1A were used to detect MYC- specific 

binding. Fold enrichment is represented as the signal obtained for MYC 

immunoprecipitation relative to that with IgG. Data presented as ± SEM; n= 3.
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Figure 3: RNA-seq analysis and identification of differentially expressed miR-29a target 
transcripts from the Panc-1 and MIA PaCa-2 datasets.
(A) Schematic representation of the RNA-seq analysis pipeline used to identify differentially 

expressed miR-29a target genes from the Panc-1 and MIA PaCa-2 datasets. (B) Volcano plot 

depicting the differentially expressed genes obtained from RNA-seq analysis for miR-29a 

overexpressing (OE) and control Panc-1 cells. (C) Correlation between differential 

expression (log2FC) of the transcripts identified by RNA-seq in the two different PDAC cell 

lines of Panc-1 and MIA PaCa-2. (D) Venn diagram of downregulated transcripts in Panc-1 

and/or MIA PaCa-2 datasets. Genes with logFC < 1, FDR<0.05 and p< 0.05 were only 

included. (E) The most enriched biological processes (GO terms) for the four ontologies 

(ECM Matrix Related, Metabolism, Migration/ Invasion or Cancer/Growth/Proliferation) 

associated with the overlapping miR-29a downregulated targets identified by RNA-seq are 

shown. The number on or outside each horizontal axis represents the gene number for a 

particular GO term. The false discovery rate value is shown as q-value for each GO. (F) 
Heatmap of the 43 overlapping downregulated miR-29a targets alongside the four associated 

GO categories.
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Figure 4: Functional validation of miR-29a downstream targets.
(A) Kaplan-Meier plots assessing the correlations between the seven miR-29a candidate 

gene (MYBL2, LOXL2, CLDN1, HGK, NRAS, FNDC5, and TUBD1) expressions and 

overall survival of TCGA pancreatic adenocarcinoma patients. (B) Panc-1 cells were 

transfected with different concentrations (5nM, 10nM and 20nM) of control (CTRL) or 

miR-29a mimics. Total protein was harvested from the cells 48 hrs post-transfection and 

subjected to western blot analysis for miR-29a candidate targets of MYBL2, LOXL2, 

CLDN1, HGK, and NRAS. GAPDH was used as the loading control. Quantification of band 

intensities normalized to GAPDH and relative to respective controls are represented as ± 

SEM; n=3, *p< 0.05, **p< 0.01, ***p< 0.001 (right). (C) Migration capacity of Panc-1 cells 

transfected with siCTRL, siMYBL2, siLOXL2, siCLDN1, siHGK, and siNRAS, or CTRL 

and miR-29a mimic were assessed by transmembrane cell migration assays. Relative cell 

migration was determined by the average number of migrated cells normalized to control 

(siCTRL and CTRL respectively) per 5 random fields and the data is presented as ± SEM; 

n=3, *p< 0.05, **p< 0.01, ***p< 0.001. (D) Total protein from Panc-1 cells transfected with 

siCTRL, siMYBL2, siLOXL2, siCLDN1, siHGK, and siNRAS, or CTRL and miR-29a 

Dey et al. Page 21

Mol Cancer Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mimic were subjected to western blot analysis for E-cadherin and vimentin. GAPDH was 

used as the loading control.
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Figure 5: miR-29a directly downregulates LOXL2 in PDAC cell lines.
(A) Schematic representation of putative wild-type (WT) and mutated (Mut) binding sites of 

the miR-29 family members at the 3’-UTR region of LOXL2 used in luciferase assay. (B) 
Relative luciferase activity of LOXL2 3’-UTR WT and Mut reporter constructs co-

transfected with control (CTRL) or miR-29a mimics in Panc-1 cells. All readouts were 

normalized to renilla luciferase activity for each well, and average relative luminescence 

normalized to respective controls is presented as ± SEM; n= 6, **p< 0.01. (C) Western Blot 

for LOXL2 and MYC in Panc-1 cells transfected with siCTRL or siMYC. Relative protein 

levels were measured and normalized to GAPDH levels (indicated below). (D) Panc-1 and 

MIA PaCa-2 cells were transfected with LNA miRNA inhibitor control (siCT) or LNA 

miR-29a inhibitor (si-29a), and co-transfected with siCT and siCTRL (siCT1), or siMYC 

and si-29a. Total protein was subjected to western blot for LOXL2, and expression levels 

were normalized to GAPDH. (E) Panc-1 cells transfected with CTRL or miR-29a mimic, 

and siCTRL or siLOXL2 were cultured in serum free media for 48 hrs. Conditioned media 

thus obtained were subjected to ELISA for detection of secreted LOXL2. Data is presented 

as ± SEM; n= 4. ***p< 0.001. (F) Newly cross-linked pepsin-soluble collagen in ECM of 

Panc-1 cells transfected with CTRL or miR-29a mimic, and siCTRL and siLOXL2. Data is 

presented as ± SEM; n= 3. *p< 0.05; **p< 0.01 siCTRL (for siLOXL2). (G) 
Hydroxyproline content representing heavily cross-linked insoluble collagen in ECM of 

Panc-1 cells transfected with CTRL or miR-29a mimic, and siCTRL or siLOXL2. Data is 

presented as ± SEM; n= 3. *p< 0.05; **p< 0.01.
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Figure 6: Elevated LOXL2 levels inversely associate with miR-29a expression in KPC mice 
pancreas and human PDAC tumors.
(A) Upper panel: Representative photographs for immunohistochemical staining of LOXL2 

in pancreatic sections from control C57BL/6, and KrasLSL.G12D/+; p53R172H/+; Pdx1-Cre 

(KPC) mice at 4.5– 6 months of age (original magnification X20). While negative staining 

was observed for control C57BL/6, KPC mice pancreata with PanIN lesions (black arrows) 

and PDAC stained positive for LOXL2 with significantly higher LOXL2 expression. LOXL2 

positivity from immunohistochemistry analysis was quantified and presented as ± SEM; n= 

15 animals per group (right), ***p< 0.001. Lower panel: Representative photographs for 

immunohistochemical staining of LOXL2 in PDAC clinical specimens. Positive staining for 

LOXL2 was observed around PanIN (black arrows) and PDAC (red arrows) lesions in PDAC 

tumor specimens with little or no staining for normal patient pancreatic specimens. LOXL2 

positivity was quantified and presented as ± SEM (right); n= 6 for normal controls and n= 4 

for patient PDAC tumors, **p< 0.01. (B) Total RNA from frozen pancreatic tissue sections 

of C57BL/6 (n=7; solid blue) or KPC mice (n=8; solid purple) were isolated and subjected 

to qPCR analysis to determine miR-29a and LOXL2 expressions. miR-29a expression is 

represented by inverse triangles and LOXL2 expression is represented by triangles. Mean 

expressions of miR-29a and LOXL2 for each group are indicated as horizontal lines, **p< 
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0.01. (C) Correlation analysis between LOXL2 and miR-29a expressions in PDAC patients 

from the TCGA database (n= 178).

Dey et al. Page 25

Mol Cancer Res. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dey et al. Page 26

Table 1:

miR-29a candidate targets identified from RNA-seq analysis in PDAC cells.

Gene Symbol Gene Name RNA-seq-Fold Change in miR-29a OE PCCs 
(log 10 ratio)

Cox Regression 
Coefficient TCGA-data

Panc-1 MIA PaCa-2

MYBL2/b-myb* MYB proto-oncogene like 2 −1.986 −2.869 0.287

LOXL2* Lysyl oxidase like 2 −2.053 −2.415 0.229

FNDC5 Fibronectin type III domain containing 
5

−2.159 −1.753 −0.212

CLDN1* Claudin 1 −1.246 −1.684 0.402

MAP4K4/ HGK* Mitogen-activated protein kinase kinase 
kinase kinase 4

−1.265 −1.494 0.302

NRAS* NRAS proto-oncogene, GTPase −1.428 −1.135 0.354

TUBD1 Tubulin delta 1 −1.199 −1.223 −0.253

*
indicates final candidate genes validated by functional assays in our study
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