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Friendship paradox biases perceptions
in directed networks
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Social networks shape perceptions by exposing people to the actions and opinions of their
peers. However, the perceived popularity of a trait or an opinion may be very different
from its actual popularity. We attribute this perception bias to friendship paradox and identify
conditions under which it appears. We validate the findings empirically using Twitter data.
Within posts made by users in our sample, we identify topics that appear more often within
users' social feeds than they do globally among all posts. We also present a polling algorithm
that leverages the friendship paradox to obtain a statistically efficient estimate of a topic's
global prevalence from biased individual perceptions. We characterize the polling estimate
and validate it through synthetic polling experiments on Twitter data. Our paper elucidates
the non-intuitive ways in which the structure of directed networks can distort perceptions
and presents approaches to mitigate this bias.
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e observe our peers to learn social norms, assess risk,

or copy behaviors. However, these observations can be

systematically biased!~7, distorting how we see the
world. One of the better known sources of bias is the friendship
paradox in social networks®, which states that people are less
popular than their friends are, on average. Consequences of
friendship paradox can skew how we compare ourselves to
friends: people tend to be less happy than their friends are’, and
researchers tend to have less impact than their co-authors do!0,
on average. In fact, any trait correlated with popularity is likely to
be misperceived!!'12. This may explain why adolescents system-
atically overestimate how much their peers drink or engage in
risky behaviors?® and why social media use is often associated
with negative social comparisons!3.

In contrast to friendships, many online social networks are
directed. On Twitter, for example, we subscribe to, or follow,
others to see their posts, but the information does not flow in the
opposite direction, unless those people also follow us back. For
convenience, we refer to people whose posts we see in our social
feeds as our friends, and those who see our posts as followers.
Clearly, this nomenclature does not imply a bidirectional
friendship relationship. An individual’s in-degree is the number
of his or her friends, and the out-degree is the number of fol-
lowers. The asymmetric nature of links in directed networks leads
to four variants of the friendship paradox!*: your friends (or
followers) have more friends (or followers) than you do, on
average. Empirically, this effect can be quite large, with upwards
of 90% of social media users observing that they have a lower in-
degree and out-degree than both their friends and followers!®.
However, the conditions under which these four variants of the
paradox exist have not been comprehensively analyzed. We carry
out the analysis to show that while two variants of the friendship
paradox occur in any directed network!®, the remaining two exist
only if an individual’s in-degree and out-degree are correlated.

Friendship paradox can systematically skew individual’s
observations of the network’s state. We consider directed net-
works where nodes have a trait, such as gender, political affilia-
tion, or whether they used a certain hashtag in their posts. The
trait’s global prevalence is simply the fraction of all nodes with
that trait. On the other hand, its observed prevalence is the
fraction of friends that have the trait. In networks where the more
influential (higher out-degree) nodes are likely to have the
trait, its observed prevalence will be substantially higher than its
actual prevalence. Our analysis shows that, similar to the gen-
eralized friendship paradox in undirected networks'>17, correla-
tion between nodes’ trait and their out-degree amplifies this
perception bias.

In reality, an individual’s perception of a trait is shaped by its
local prevalence among his or her friends. In this paper, we
identify a new paradox in directed networks, as a result of which a
trait will appear to be significantly more popular locally among an
individual’s friends, than it is globally among all people. We show
that this effect is stronger in networks where higher out-degree
nodes with the trait are connected to nodes with a lower in-
degree.

Surprisingly, although individual observations are biased, we
can still robustly estimate the global prevalence of the trait. We
present a polling algorithm that obtains a statistically efficient
estimate of a trait’s global prevalence, with a smaller error than
alternative polling methods. Proposed method leverages friend-
ship paradox to reduce the error of the polling estimate by trading
off the bias of the estimate and its variance. We analytically
characterize this trade-off and provide an upper bound for the
variance.

We also show that perception bias can be large in a real-world
network. To this end, we extracted a subgraph of the directed

Twitter social network and collected messages posted by users
within this subgraph. Treating the occurrence of particular
hashtags within messages as traits or topics enables us to measure
the perception bias. We identify hashtags that appear much more
frequently within users’ social feeds than they do among all
messages posted by everyone, leading users to overestimate their
prevalence. We also validate the performance of the proposed
polling algorithm through synthetic polling experiments on the
Twitter subgraph.

This paper elucidates some of the non-intuitive ways that
directed social networks can bias individual perceptions. Since
collective phenomena in networks, such as social contagion and
adoption of social norms, are driven by individual perceptions,
the structure of networks and the paradoxes endemic in them can
impact social dynamics in unexpected ways. Our work shows how
we can begin to quantify and mitigate these biases.

Results
Basic concepts and definitions. Consider a directed network
G = (V, E), with {V} nodes and {E} links. A link (i, j) pointing
from i to j indicates that i is a friend of j or equivalently, j follows
i. Here, the direction of the link indicates the flow of information.
The out-degree of a node v, d,(v), measures the number of fol-
lowers it has, and its in-degree, d;(v), the number of friends.
We define three random variables, X, Y, and Z that correspond
to different node sampling methods. A node v with out-degree
do(v) has that many followers, or equivalently, v is a friend to
d,(v) number of nodes. Therefore, a node Y that is obtained from
V by sampling proportional to out-degree of nodes is called a
random friend. Similarly, a node v that has d;(v) links pointing to
it is a follower of d;(v) other nodes. Therefore, a node Z that is
obtained from V by sampling proportional to in-degree of nodes
is called a random follower. Below, we formalize these terms.

1. Random node X is a uniformly sampled node from V:

P@:@:% VeV, (1)

2. Random friend Y is a node sampled from V proportional to
its out-degree:

d,(v)
ZV’EV do(V,) 7

3. Random follower Z is a node sampled from V proportional
to its in-degree:

P(Yy=v) = Yve V. (2)

di(v)

Pe=v =" awy

YveV. (3)

For any directed network, the average in-degree E{d;(X)} =

di(v dy(v
w and the average out-degree FE{d (X)} = w are
the same. Here [E denotes the expectation operator. Therefore, we
use d to denote both average in-degree and average out-degree of

a random node X: d = E{d (X)} = E{d,(X)}.

Friendship paradox in directed networks. Four different var-
iants of the friendship paradox exist in directed networks!4. The
first two, state that (1) random friends have more followers than
random nodes do, and (2) random followers have more friends
than random nodes do (on average). The magnitudes of these are
set by the variance of the in-degree and out-degree distributions
of the underlying network. Mathematically, these two friendship
paradoxes can be stated as
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e Random friend Y has more followers than a random node X,
on average:

3 _ Var{do(x)}

E{d,(Y)} —d= > 0. (4)

7 2

e Random follower Z has more friends than a random node X,
on average:
E(d() -a= "4 5 (5)
For the derivation, please see Supplementary Note 1.

The remaining two variants of the friendship paradox state that
(3) random friends have more friends than random nodes do, and
(4) random followers have more followers than random nodes do
(on average). In contrast to the first two variants of the paradox
stated above, the remaining two variants require positive
correlation between the in-degree and the out-degree of nodes
in the network:

e Random friend Y has more friends than a random node X, on
average:

= Cov{d,(X),

-+ _ Cov{d(X),dy(X))

Efd;(Y)} - > 0. (6)

QU

e Random follower Z has more followers than a random node
X, on average:

COV{di(X)7

- d,(X)} > 0. 7)

E{d,(2)} —d =

For the derivation, please see Supplementary Note 1.

Equations (6) and (7) state that in networks where the in- and
out-degrees of a random node are positively correlated, (1)
the expected number of friends of a random friend is greater than
the expected number of friends of a random node, and (2) the
expected number of followers of a random follower is greater
than that of a random node. The mathematical formulations of
the friendship paradox in directed networks were independently
proved recently in ref. 1° utilizing vector norms.

To give additional intuition, Fig. 1 illustrates the above four
variants of the friendship paradox in the subgraph of the Twitter
social network (see the “Methods” secion), showing the fraction
of individuals with a specific in-degree (or out-degree) who
experience the paradox. Note that this fraction is high: at least
half of the users with 100 or fewer friends (or followers) observe
that they are less popular and well-connected than their friends
and followers are on average. The noise in Fig. 1 likely stems from
Twitter’s follow limits. When individuals reach the limit, they
must curate their social links more deliberately and recruit more
followers before they can add more friends.

Global perception bias. When nodes have distinguishing traits or
attributes, the friendship paradox can bias perceptions of those
attributes. For simplicity, we assume that each node has a binary-
valued attribute (f V — {0, 1}). Such binary functions are useful
for representing, among others, voting preferences (Democratic
or Republican), demographic characteristics (female or male),
contagions (infected vs. susceptible), or the spread of information
in networks (using a particular hashtag or not).

The global prevalence of the attribute in a directed network is
given by E{f(X)}, the expected value of the attribute of a random
node X. In other words, when only 5% of nodes have the attribute
flv) =1, its expected value is E{f(X)} = 0.05.

Nodes’ perceptions of the prevalence of the attribute, however,
are determined by its value among their friends, i.e., E{f(Y)}, the
expected attribute value of a randomly chosen friend Y. On
Twitter, this translates into how many people see the topic in
their social feed, since the feed aggregates posts made by friends.
Under some conditions, the perceived prevalence of the attribute
E{f(Y)} wil be very different from its actual prevalence
E{f(X)}. We define this as global perception bias:

Cov(f(X),d, (X 04,0

By = B (1)} ~ B{f(0) = SV ER L) _ Pasta®

(8)

where p, ; is the Pearson correlation coefficient between out-

degree and attribute value of a random node, 0 is the standard

deviation of the out-degree distribution, and o is the standard

deviation of the binary attributes (see Supplementary Note 1 for
the derivation).

When the attribute is correlated with the out-degree (p; ;>0),

a random friend’s attribute is larger than the attribute Value of a

random node, on average. In undirected networks this effect is

known as generalized friendship paradox!2, and it has the same

intuition: when popular people (with many followers) are more

likely to possess some trait (p,; ,>0), that trait will be

overrepresented among the friends of any individual. As a result,
people will tend to overestimate the trait’s prevalence. This may
explain the observation that adolescents overestimate the number
of smokers or heavy drinkers among their peers2. All that is
required for the bias to hold is for peers engaging in risky
behaviors to tend to be more popular.
Note that the magnitude of the friendship paradox
_ 02

Spp = E{do(Y)} d=

Q_

increases with the standard deviation of the out-degree distribu-
tion (0, ) and decreases with the average degree (d). Global

perception bias Bgqpq also increases with a4, and decreases with d

when the correlation coefficient p, . remains fixed. Hence,

friendship paradox amplifies global perception bias, increasing
the deviation between the actual and observed prevalence of the
attribute in the network.

Additional perception biases can arise in directed networks.
Recall that a random friend Y is an individual sampled with a
probability proportional to the out-degree, and a random follower
Z is an individual sampled with a probability proportional the in-
degree. The random friend Y can be thought of as a person being
observed, whereas a random follower Z is a person who is
observing. In this context, the perception bias By =
E{f(Y)} = E{f(X)} compares the opinion of a random person
being observed with the global (true) prevalence. By the same
token, the quantity E{f(Z)} — E{f(X)} compares the opinion of
a random observer with the global prevalence. The difference

E{f(Y)} - E{f(2)} =% E{f(X)(do(X) — di(X))}

can then be thought of as the expected difference of the opinions
between the observed and the observer pair chosen randomly
from the network. This interpretation opens up a causal
perspective of the perception bias in directed networks for
future work.

Local perception bias. One problem with using Bgjobal (Eq. (8)) to
measure perception bias is that E{f(Y)} captures the expected
value of the attribute among the friends of all individuals, rather
than the friends of a randomly chosen individual X. In order to
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Fig. 1 lllustration of the effects of the four versions of the friendship paradox using Twitter dataset described in the “Methods"” section. The sub-
figures display the fraction of nodes (empirical probability of the paradox) of a particular degree whose a friends have more followers, b followers have
more friends, ¢ friends have more friends, and d followers have more followers, on average.

reflect more accurately how individual’s perceptions are skewed
by their friends, we propose a new measure of perception bias. To
quantify this bias we begin by defining the perception g«(v) of an
individual v € V about the prevalence of an attribute f among his
or her friends:

Zuef(v)f(u)
di(v) 7
where F(v) denotes the set of friends of v. We define local per-

ception bias as the deviation of the expected perception of a trait
of a random individual from its global prevalence:

Blocal = E{qf(x)} - E{f(X)}

To help understand Bj,.,, we define the attention that a node
v € V allocates to each of her friends:

q(v) = )

(10)

The expression for attention is motivated by an observation that
users with more friends tend to receive more messages!$, making
them less likely to see any specific friend’s post!®. This allows us
to succinctly express the expected perception of a random node X
as (see Supplementary Note 1 for the derivation)

E{g;(X)} = d - E{f(U)A(V)|(U, V) ~ Uniform(E)}.

Here, d is the expected number of friends of a random node, and
U and V denote the endpoints of a link sampled uniformly from
E. Intuitively,

E{f(U)A(V)|(U, V) ~ Uniform(E)}

represents the expected influence of an interaction along a link
drawn at random from the network: i.e., the attribute f{U) of the
friend U times the attention that the follower V pays to that
friend. Note that for simplicity we assumed that nodes divide
their attention uniformly over all friends, though the analysis can

be extended to weighted networks, where weights model non-
uniform attention, with individuals paying more attention to their
more important or influential friends.

Relationship between Bjyca and Bgjopa. Local perception bias
Biocal is a refinement of global perception bias By, Which
accounts for how individuals divide their attention in the net-
work. Indeed, if the attention of followers is independent of the
attribute of their friends, both measures are the same. Formally,
Bgioba and Byoy are equal if and only if the attribute f{U) of U and
attention A(V) along a random link (U, V) are uncorrelated, i.e.,

Cov{f(U), A(V)|(U, V) ~ Uniform(E)} =0,  (11)

as we show in Supplementary Note 1.
On the other hand, positive local perception bias exists, i.e.,
Bioca1 2 0, when the folowing conditions are met (see SI):

Cov{f(X),d,(X)} >0 (12)

(13)

The first condition (Eq. (12)) specifies positive correlation
between the out-degree and the attribute of a random node,
which occurs when popular nodes are more likely to have the
attribute. This is a necessary and a sufficient condition for
Bgloba 2 0 (see Eq. (8)). The second condition (Eq. (13)) specifies
positive correlation between the attention of a follower and the
attribute of a friend, suggesting that nodes with an attribute are
followed by nodes that divide their attention over few others. This
is a necessary and a sufficient condition for Biycal = Bgiobar (Se€
Supplementary Note 1). Hence, these two conditions collectively
are sufficient for positive local perception bias, leading individuals
to overestimate the attribute’s prevalence, i.e., Biocal = Bglobal = 0.
Analogously, changing the signs of Eqs. (12) and (13) leads to
negative local perception bias (see Supplementary Note 2), which
implies that nodes underestimate the prevalence of an attribute.

and,

Cov{f(U), A(V)|(U, V) ~ Uniform(E)} > 0.
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Fig. 2 Global prevalence and local bias of popular hashtags. Histogram of the distribution of a global prevalence E{f(X)} and b local perception bias Bjocal
of popular hashtags in the Twitter data. Local perception bias B, (overestimating the prevalence) exists for most hashtags.

Under other conditions Bgiopa and Biocq can differ significantly
and even disagree, with one measure indicating that individuals
are underestimating and the other indicating that they are
overestimating the prevalence of an attribute. We analytically
characterize the two cases where this occurs (see Supplementary
Note 1):

1. Let Bgiopal < 0, then Bjge, > 0 if and only if

. |Bglobal|
Cov{f(U), A(V)|(U, V) ~ Uniform(E)} > —

2. Let Bgiobal > 0, then Bjocy < 0 if and only if

. ~|Bgioball
Cov{f(U), A(V)|(U, V) ~ Uniform(E)} < —
The first condition states that when Bgjopar is negative, Bjoca can
still be positive if sufficiently many nodes with an attribute have
followers with high attention (because they divide it over few
friends). Similarly, when Bjjobal is positive, Bioca can be negative
when few of the nodes with an attribute have high attention
followers, leading to a negative correlation between the attribute
of a friend and the attention of his or her follower. The
discrepancy exists because Bgjopa makes a mean-field approxima-
tion by assuming that the expected attribute value among friends
of a random node X is equal to the expected attribute value of a
random friend Y sampled from the entire network. In contrast,
Bjocar is a higher resolution measure that takes the underlying
network structure into account via the correlation between the
attribute of a friend and the attention of a follower.

Relation to inversity in undirected networks: Local perception
bias is related to the concept of inversity2Y, which is defined as the
correlation coefficient of the two random variables d(U) and 1/d
(V) where, d denotes the degree, and (U, V) is a uniformly
sampled link in an undirected network. Although the mathema-
tical form of inversity is reminiscent of degree assortativity?l, it
does not convey the same information. Kumar et al.2? shows that
the relation between global and local versions of the friendship
paradox in undirected networks is characterized by inversity and
not assortativity. Specifically, when inversity is positive, then the
local version of the friendship paradox is larger in magnitude
than the global version of the friendship paradox in undirected
networks. This result can be obtained by extending our analysis to
undirected networks and setting f=d in the expressions for
Bgiobal and Bijoca. In fact, Eq. (13) (which is a necessary and
sufficient condition for Bjoca = Bgiopar) in our paper generalizes
their findings to directed networks and arbitrary exogenous
attributes f.

Empirical validation. We used data from Twitter (see the
“Methods” section) to compare the actual and perceived

popularity of hashtags (i.e., topics) mentioned in text posts. We
treat each hashtag h as a binary attribute, with f,(v) =1 if a user v
used the hashtag 4 in his or her posts.

Figure 2a displays the histogram of the prevalence (FE{f(X)})
of the 1153 most popular hashtags, each used by more than 1000
people in our data set. The bulk of these hashtags were used by
fewer than 2% of the people, with the most popular hashtags
being used by just 8% of the people in our sample. Figure 2b
shows the histogram of local perception bias By, for all
hashtags. Although its peak is at zero, the distribution is skewed,
with 865 hashtags having a positive bias, meaning that they
appear more popular than they really are. Measurements of
individual’s perception shows that most users in our sample
overestimate how popular hashtags are (see Supplementary
Note 2).

What hashtags are most biased? Figure 3 shows the top-20 and
bottom-10 hashtags ranked by By, (see Supplementary Fig. 3 for
the ranking of hashtags based on the global bias). Among the
most positively biased hashtags are those associated with social
movements (#ferguson, #mikebrown, #michaelbrown), memes
and current events (#icebucketchallenge, #alsicebucketchallenge,
#ebola, #netneutrality), sports and entertainment (#emmys,
#robinwilliams, #sxsw, #applelive, #worldcup). For example,
#ferguson, with [E{q;(X)} = 12.1%, is perceived as the most
popular hashtag. While it is also one of the more widely used
hashtags, with E{f(X)} = 3.1%, perception bias makes it appear
about four times more popular to Twitter users than it actually is.

There are also negative biased hashtags, which appear less
popular than they actually are. Among these hashtags are Twitter
conventions aimed at getting more followers (#tfb, #followback,
#follow, #teamfollowback) or more retweets (#shoutout, #pjnet,
#retweet, #rt). Many of these hashtags are actually among the top-
20 most popular Twitter hashtags (#oscars, #tcot, #quote and #rt),
but due to the structure of the network, they appear less popular
to users. This occurs either because people who use these hashtags
do not have many followers (Cov{f(X), d,(X)}<0), or the
attention of their followers is diluted because they follow many
others (Cov{f(U),.A(V)} <0). For example, for #oscars, both of
the covariances are negative. Some hashtags also have Bj,,; and
Bglobar With opposite signs, meaning that one measure over-
estimates the prevalence of the hashtag, while the other under-
estimates it. Many political hashtags in our sample fall in this
category, including #sotu, #occupy, #marriageequality. Additional
examples of these hashtags, as well as negatively biased hashtags,
are listed in Supplementary Note 2.

Estimating global prevalence via polling. The aim of polling is
to estimate the global prevalence E{f(X)} of an attribute by
sampling individuals and averaging their answers to a specific
question. The accuracy of a poll depends on two key factors: (i)
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Fig. 3 The ranking of popular Twitter hashtags based on Local Bias. Top-
20 and bottom-10 are included in the ranking. The bars compare E{f(X)}
(global prevalence) and E{q;(X)} (local perception) and include 95%
confidence intervals. The hashtags can appear to be much more popular
than they actually are (e.g. #ferguson) or, they can appear to be less
popular (e.g. #oscars) due to local perception bias. Definition of some
hashtags: #mike(/michael)brown and #ferguson (an 18-year-old African
American male killed by police), #tbt (Throwback Thursday—for posting an
old picture on Thursdays), #ff (Follow Friday—introducing account worth
following), #tcot (Top Conservatives On Twitter), #rt (Retweet).

the method of sampling individuals and (ii) the question asked of
them. We propose a practical polling algorithm (see Algorithm 1
in Supplementary Note 3) that differs from the currently used
polling algorithms in both aspects. First, our algorithm samples
random followers, instead of random individuals, by selecting b
individuals from the distribution

p, = di(v)
Y evd(V) '
Second, the sampled individuals are asked about their
perceptions instead of their own attribute: “What do you think

is the fraction of individuals with attribute 1?” Their perceptions
are then aggregated in a polling estimate:

]}FPP = ész(")

Vv e V.

(14)

The key idea behind our follower perception polling (FPP)
algorithm is to sample individuals who have more friends, as this
allows them to aggregate more information. According to the
friendship paradox (Eq. (5)), random followers have, on average,
more friends than random individuals do. As a result, the
variance of their perceptions will be smaller than that of random
individuals, and hence it will result in a more accurate estimate of

the global prevalence of the attribute. We analytically show (see

the “Methods” section) that (i) the bias of the estimate fppp
produced by the FPP algorithm is equal to the global perception
bias Bgjobal and, (ii) variance of the estimate f rpp 1s bounded from
above by a function of the correlation between out-degree and the
attribute, as well as spectral properties of the network given by the
second largest eigenvalue of the bibliographic coupling matrix.

The FPP algorithm assumes that every node has a non-zero in-
degree and out-degree. To evaluate the performance of this
polling algorithm, we extract a subgraph of 5409 Twitter users
from our dataset with the same properties. We use the FPP
algorithm to estimate the popularity of the 500 most frequent
hashtags mentioned by users in this subgraph. We compare the
performance of the proposed FPP algorithm on this induced
subgraph to two alternative algorithms:

1. Intent polling (IP): asks random users whether they used a
hashtag (yellow in Fig. 4).

2. Node perception polling (NPP): asks random users what
fraction of their friends used the hashtag (orange in Fig. 4).

3. FPP: asks random followers what fraction of their friends
used the hashtag (green in Fig. 4).

NPP differs from IP in terms of the questions asked: random
nodes are asked about their perception in NPP, whereas they are
asked about their own attribute in IP. FPP differs from NPP in
terms of the sampling method: random followers are sampled in
FPP, while random node sampling is used in NPP. Hence,
comparing the performance of IP with NPP will illustrate the
benefit of polling perceptions instead of attributes, and comparing
the performance of FPP with NPP will illustrate the benefits of
the friendship paradox-based sampling.

Figure 4a shows the bias of estimates produced by polling
algorithms for a fixed sampling budget b = 25, which corresponds
to querying 0.5% of the nodes. As shown in the analysis of the
polling algorithm (see the “Methods” section), FPP produces
biased estimates for each hashtag (Fig. 4a), given by Bgopar value
for that hashtag, although it produces a smaller variance estimates
(Fig. 4b). Hence, in terms of the mean squared error, defined as

MSE{T} = Bias{T}> + Var{T}

for an estimate T, FPP estimates are more accurate compared to
both IP and NPP for most hashtags (Fig. 4c). Increasing the
sampling budget decreases performance gap between FPP and the
other two algorithms (Fig. 4d). However, even with b =250 (5%
of the nodes polled), FPP outperforms IP in more than 80% of the
cases, and it outperforms NPP in more than 55% of the cases.
The variance of the polling estimate (Eq. (19)) is bounded by
an expression that includes A,, the second largest eigenvalue of
the degree-discounted bibliographic coupling matrix. For the
Twitter data A, = 0.5984. Equation (19) with this value serves as

the upper-bound of Var(f wpp) for all 503 hashtags. The bound is
quite loose and could be tightened in future work.

Follower sampling heuristic: The FPP algorithm assumes that
followers are obtained by sampling nodes with probabilities
proportional to their in-degree, or equivalently, sampling links at
random from the network and then selecting the endpoint of the
link. This is feasible when the entire network is known, or when
the links have integer IDs, which can be uniformly sampled from
a range of IDs. In many cases, neither strategy is feasible, either
because the network is too large, or it does not allow access to
individually indexed links. In that case, we can use the following
heuristic to sample followers: select a node at random and ask her
to nominate a random follower. Supplementary Note 3 shows
that this heuristic can estimate hashtag prevalence almost as
accurately as the exact implementation of the FPP algorithm that
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Fig. 4 Comparison of estimates of the prevalence of Twitter hashtags produced by the polling algorithms. Variation of a squared bias (Bias{T}2),

b variance (Var{T}), and ¢ mean squared error (Bias{T}2+ Var{T}) of the polling estimate T as a function of a hashtag's global prevalence E{f(X)}. Each
point represents a different hashtag and a fixed sampling budget b = 25. The polling algorithms used are intent polling (IP), node perception polling (NPP)
and the proposed follower perception polling (FPP). d Fraction of hashtags for which the FPP algorithm outperforms the other two in terms of MSE. The
fraction for NPP approaches 0.5, and for IP approaches 0.8 as sampling budget b increases. These figures illustrate that the proposed FPP algorithm
achieves a bias-variance trade-off by coupling perception polling with friendship paradox to reduce the mean squared error.

samples nodes proportional to their in-degree. Our intuition for
this method is based on the fact that the undirected version of the
friendship paradox holds for a random neighbor of a random
node as well as a random end of a random link?2,

Discussion

Social networks can exhibit surprising, even counter-intuitive
behaviors. For example, previous work has shown that the
“majority illusion” may lead people to observe that the majority
of their friends has some attribute, even when it is globally rare!l,
and to dramatically underestimate the size of the minority
group®. These effects arise due to the friendship paradox, which
can also bias the observations individuals make in directed net-
works. Our analysis identifies the conditions under which
friendship paradox can distort how popular some attribute or
behavior (e.g., drinking, smoking, etc.) is perceived to be, making
it appear several times more prevalent than it actually is. The
following two conditions amplify perception bias: (1) positive
correlation between the attributes of individuals and their
popularity (number of followers in a directed network) and (2)
positive correlation between the attributes of individuals and the
attention of their followers. The first condition suggests that bias
exists when popular people have the attribute, for example,
engage in risky behavior, have a specific political affiliation, or
simply use a particular hashtag. Their influence is amplified when
they are followed by good listeners, i.e., people who follow fewer
others and thus are able to pay more attention to the influentials.
These conditions can be generated by biases in preferences during
network formation, driven for example, by homophily®23.

We validated these findings empirically using data from the
Twitter social network. We measured perceptions of the popu-
larity of hashtags, i.e., words or phrases preceded by a ‘#’ sign that
are frequently used to identify topics on Twitter. Such hashtags
serve many important functions, from organizing content, to

expressing opinions, to linking topics and people. We measured a
hashtag’s global prevalence as the fraction of all people using it,
and its perceived popularity as the fraction of friends using it. Our
analysis identified hashtags that appeared several times more
popular than they actually were, due to local perception bias.
Such hashtags were associated with social movements, memes,
and current events. Interestingly, as our data was collected in
2014, some of the most biased hashtags were #icebucketchallenge
and #alsicebucketchallenge, the explosively popular Ice Bucket
Challenge. Perception bias could have potentially amplified their
spread, as well as the spread of other costly behaviors that require
social proof ?%. For example, the #MeToo movement has grown
into an international campaign to end sexual harassment and
assault in the workplace by highlighting just how endemic
the problem is. It spread through online social networks as
women posted their own stories of harassment using the hashtag
#metoo. Perception bias may have amplified the spread of such
hashtags by making them appear more common and thus easier
to use.

We also presented an algorithm that leverages friendship
paradox in directed networks to estimate the true prevalence of
an attribute with smaller mean-squared error than other methods.
In essence, the idea behind the algorithm is that perceptions of
random followers should have a smaller variance compared to the
perceptions of random individuals, because random followers are
more informed than random people are, since according to
friendship paradox they tend to have more friends. Empirical
results confirm that the proposed algorithm outperforms other
widely used polling algorithms.

Our work suggests that one way to mitigate perception bias is
to alter the local network topology to allow more information to
reach the low-attention users. This opens up new research ave-
nues on how link recommendation can alleviate perception bias.
However, our empirical study has limitations, namely, the nature
of the subsample of the network we considered. Social networks
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Table 1 Properties of the Twitter subgraph.

Properties of nodes

Avg. degree d = E{d(X)} 123.55
variance of out-degree Var{d,(X)} 30,096.16
variance of in-degree Var{d;(X)} 24,338.66
covariance Cov{di(X), do(X)} 14,226.32
Properties of friends and followers

Friend's avg. out-degree E{d,(Y)} 367.14
Friend's avg. in-degree E{d;(Y)} 238.68
Follower's avg. in-degree E{d;(2)} 320.54
Follower's avg. out-degree E{d,(2)} 238.68

are huge, necessitating analysis of subgraphs sampled from the
entire network. However, by leaving out some nodes, data col-
lection process itself may distort the properties of the sample.
Specifically, since we observed only the outgoing links from the
seed nodes, we do not have information about the followers of
these nodes. Addressing the limitations of analysis imposed by
sampling is an important research direction. Despite this limita-
tion, our work shows that friendship paradox can lead to sur-
prising biases, especially in directed networks, and suggests
potential strategies for mitigating them.

Methods
Data. The dataset used in this study was collected from Twitter in 2014. We started
with a set of 100 users who were active discussing ballot initiatives during the 2012
California election and expanded this set by retrieving the accounts of the indi-
viduals they followed and reached a total of 5599 users. We refer to these indivi-
duals as seed users. Next, we identified all friends of the seed users, collecting all
directed links that start with one of the seed users. We then collected all posts made
by the seed users and their friends—over 600K users in total—over the period
June-November 2014. The posts include their activity, i.e. tweets and retweets.
These tweets mention more than 18M hashtags. With this data-collection
approach, seed users are fully observed (their activity and what they see in their
social feeds), and their friends are only partially observed (only their activity).
Table 1 reports properties of the Twitter dataset, considering only the seed
users. Note that the average degree d (where, d = E{d,(X)} = E{d(X)}) is
relatively large at 123.55. However, since the distribution of the in- and out-degree
is highly heterogeneous, the variance of the in- and out-degrees is relatively large
(two orders of magnitude compared to d). The covariance between the in- and out-
degrees of nodes is also relatively large with a correlation coefficient

p{di(X), do(X)} = Cov{d;(X), do(X)}/ v/ Var{d,(X)}Var{d;(X)} = 0.52.

Due to the relatively large variance of the in- and out-degree distributions, the
expected out-degree of a random friend (IE{d,(Y)}) and the expected in-degree of
a random follower (E{d;(Z)}) are larger than the average degree d (see Eq. (5)).
Note also that, due to positive covariance between the in- and out-degrees of nodes,
the expected in-degree of a random friend (E{d;(Y)}) and the expected out-degree
of a random follower (E{d,(Z)}) are also larger than d, as stated in Eq. (7).

Friendship paradox-based polling: performance analysis. The accuracy of a poll
depends on the method of sampling respondents and the question asked of them.
For example, in the case of estimating an election outcome, asking people “Who do
you think will win?” (expectation polling) is better than “Who will you vote for?”
(IP)2>. This is because in expectation polling, an individual names the candidate
more popular among her friends, thus summarizing a number of individuals in the
social network, rather than provide her own voting intention. Our FPP algorithm is
motivated by?>~27, which shows that polling methods asking individuals to sum-
marize information in their neighborhood outperform polling methods that ask
only about the attribute of each individual. Dasgupta et al.2® studied the polling
problem analytically in the context of an undirected network and, proposed a
method to obtain an unbiased estimate of the global prevalence with bounds on its
variance. The analysis of the FPP algorithm for directed graphs is motivated by
these results in ref. 26 for undirected social networks. Nettasinghe and Krishna-
murthy?” proposed to ask the simple question “What fraction of your neighbors
have the attribute 1?” (neighborhood expectation polling) from randomly sampled
neighbors (instead of random nodes) on undirected social networks. In this case,
sampled individuals will provide the average opinion among their neighbors.
Further, since random friends have more friends than random individuals, this
approach would yield an estimate with a smaller variance than asking it from

random nodes. Motivated by these works, the FPP algorithm exploits the friend-
ship paradox on directed networks to obtain a statistically efficient estimate of the
global prevalence of an attribute using biased perceptions of random followers.

Recall that in order to reduce the variance, the FPP algorithm polls perceptions
qdZ) of random followers Z instead of attributes f(X) of random individuals X.
However, it is not guaranteed that the estimate f ppp Will be unbiased. The following
result shows that the bias of the FPP algorithm is the same as the global perception
bias Bgiopal- X

The bias of the estimate fp,, computed by the FPP algorithm (see
Supplementary Note 3 for the derivation) is equal to the global perception bias:

Bias(frep) = E{feep} — E{f(X)} = Byopal (15)
Hence, the same factors (specified in Eq. (8)) that increase (decrease) the global
perception bias will increase (decrease) the bias of the estimate fppp produced by
the FPP algorithm. The aim of the FPP algorithm is to compensate for the bias
Bgiobal Of the algorithm with a reduced variance and thereby achieve a smaller mean
squared error. Also, we highlight that FPP algorithm can be modified to generate
an unbiased estimate by replacing Eq. (14) with

~ Unbiased 1 1 f(u)
fevp =7 :
b ; NPV u€Fr(v) d"(u)

(16)

~ Unbiased
The unbiased estimate f, FP:, " is based on the concept of social sampling

proposed in ref. 26 for undirected social networks where, queried individuals
provide a weighted value of their friends’ attributes in a manner that results in an
unbiased estimate. This estimate is useful in contexts where unbiasedness is
preferred over mean-squared error to assess the performance of the estimate.
However, this does not result in an intuitive and easily implementable algorithm

similar to the FPP algorithm, since the modified estimate fpli,r;blmd involves each
sampled individual calculating a weighted average of the attributes of her
neighbors.

Before analyzing the variance of the polling estimate f produced by the FPP
algorithm, we digress briefly to review the bibliographic coupling matrix.
Bibliographic coupling originated from the analysis of citation networks3, and is
used to symmetrize a directed graph by transform it into an undirected graph for
purposes of clustering, etc. The bibliographic coupling matrix B of a directed graph
with adjacency matrix A is defined as B = AAT. Hence, the weight of the link
between nodes i, j in the new undirected graph is B(i, j) = X,evA(i, v)A(j, v) which
corresponds to the number of mutual followers of i and j. Hence, the weight of the
link between two nodes i and j in B is the number of individuals who follow both of
these nodes. This conveys the similarity of i, j in terms of the number of mutual
followers. However, when determining the similarity of two nodes i, j using B, a
mutual follower with a large number of friends (a likely scenario), is weighted the
same as a mutual follower with a small number of friends (a rarer scenario). Hence,
the latter type of mutual follower should be given more weight compared to the
former type when evaluating the similarity of two nodes. Similarly, the number of
followers of i and j should also be taken into consideration when assessing their
similarity. Based on these observations, Satuluri and Parthasarathy?? proposed the
degree-discounted bibliographic coupling matrix

(17)
where D, and D; are the N x N dimensional diagonal matrices with D,(i, i) = d(i)
and Dj(i, i) = dj(i), respectively. The (i, j) element of By is

1 Ai, k)A(, k)
do(i)d, (j) kev d;(k) 7
which discounts the contributions of the nodes i, j by their out-degrees and each

mutual follower k by her in-degree. Please see refs. 2230 for more details on the
degree-discounted bibliographic coupling.

Bd — D;l/ZAD;lATD(;l/Z

By(i,j) = (18)

Returning to the analysis of the estimate f’ rpp> We can calculate the upper bound
on the variance of this estimate under certain conditions on the structure of the
network. Specifically, if the degree-discounted bibliographic coupling matrix By is
connected, non-bipartite, then

7oy

A (19)

DY?11"D}/?
M

Var(fFPP) = (D;l/ZAD;lATD;l/Z - )D;/zf

1 1/24)12
< oo halID (20)
where, M = X,evdi(v), A, is the second largest eigenvalue of By, f is the Nx 1
dimensional vector of binary attributes (see Supplementary Note 3 for the full
derivation).

This result shows that the variance of the FPP algorithm depends on the
correlation between the out-degrees and attributes ||DL/2f||* and the structure of
the graph via second largest eigenvalue A, of the matrix By. Specifically, a smaller 1,
implies that the bibliographic coupling network has a good expansion (i.e. absence
of bottlenecks)3!. Hence, if the nodes in the network G = (V, E) cannot be clustered
into distinct groups based on their mutual followers (i.e. bibliographic similarity)
then, the variance of the algorithm will be smaller (due to smaller A,).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The Twitter network and used hashtags by users data are available in https://osf.io/pjkr9/.
Due to Twitter restrictions on sharing raw data, we are unable to share the raw Tweet
content.

Code availability
Codes to generate the results of the paper are available on https://github.com/ninoch/
perception_bias.
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