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Estimating growth patterns and driver effects
in tumor evolution from individual samples
Leonidas Salichos 1,2, William Meyerson1,2, Jonathan Warrell 1,2 & Mark Gerstein 1,2,3,4*

Tumors accumulate thousands of mutations, and sequencing them has given rise to methods

for finding cancer drivers via mutational recurrence. However, these methods require large

cohorts and underperform for low recurrence. Recently, ultra-deep sequencing has enabled

accurate measurement of VAFs (variant-allele frequencies) for mutations, allowing the

determination of evolutionary trajectories. Here, based solely on the VAF spectrum for an

individual sample, we report on a method that identifies drivers and quantifies tumor growth.

Drivers introduce perturbations into the spectrum, and our method uses the frequency of

hitchhiking mutations preceding a driver to measure this. As validation, we use simulation

models and 993 tumors from the Pan-Cancer Analysis of Whole Genomes (PCAWG)

Consortium with previously identified drivers. Then we apply our method to an ultra-deep

sequenced acute myeloid leukemia (AML) tumor and identify known cancer genes and

additional driver candidates. In summary, our framework presents opportunities for perso-

nalized driver diagnosis using sequencing data from a single individual.
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Over the past several decades, researchers have proposed
different models to explain tumor progression, including
stochastic progression, the mutator phenotype, and clo-

nal evolution1–3. Originally suggested about 40 years ago3, Navin
and colleagues provided strong evidence that the “punctuated
clonal evolution” model constitutes a major force in cancer
progression. According to this model, tumor progression is an
evolving system subject to selective pressure while accumulating
thousands of mutations4,5.

Advances in technology have allowed scientists to sequence
thousands of genomes, revealing millions of variants per indivi-
dual6–8. In cancer genomics, The Cancer Genome Atlas (TCGA)4

offers access to thousands of cases encompassing over 30 types of
cancer. Similarly, the International Cancer Genome Consortium
(ICGC) recently announced “data release 26”, which comprises
data from more than 17,000 cancer donors and 21 tumor sites.
Within ICGC, the pancancer analysis of whole genomes
(PCAWG) study is an international collaboration to identify
common patterns of mutations in over 2800 sequenced whole-
cancer genomes9. As cancer databases continue to expand, the
amount of fully sequenced genomes will continue to increase,
with future plans setting goals for the storage of more than a
million genomes10. Concurrently, deeper sequencing signifies less
noise, more accurate variant-allele frequencies (VAFs), and more
accurate subclonal and single-nucleotide variant (SNV) identifi-
cation, while increasing the detection of novel drivers11–13.

Recent studies have tackled the effect of selection in tumor
progression in the context of clonal evolution, neutral evolution,
and selection, providing valuable insights about the clonal pro-
gression of the disease5,14–16. By considering tumor progression
as an evolutionary process, cancer development follows the tra-
jectory of different evolutionary pathways based on cell and
population dynamics, optimization strategies, and selective forces.
These evolutionary trajectories have been shown to influence
primary tumor growth17 and the timing of landmark events18.
However, the evolutionary and selective mechanisms during
tumor progression remain unexplored and strongly debated19–21.

Accumulated SNVs have been characterized as drivers or pas-
sengers, depending on whether or not they provide a selective
advantage for the tumor cells. If the selective advantage or their
respective effect is weak, the mutations are known as mini-drivers,
although the existence and detectability of mini-drivers has been
debated22,23. Identifying SNV and gene drivers has been one of the
focal points of cancer genomics, where different methods aim to
detect driver mutations based on selection, recurrence or changes
in mutational density22,24. These methods rely on the deviation
from our expectation of the underlying genomic mutation rates,
often by considering additional covariates such as replication
timing and gene expression25–27. Other methods, characterized as
ratiometric, assess the composition of mutations, normalized by
the total mutations in a gene22. This includes the proportion of
inactivating mutations, recurrent missense mutations, functional
impact bias, mutational composition, or clustering patterns28–31.
However, if only a small proportion of mutations within a
genomic region (which is potentially under negative selection or
functional restrictions) facilitates cancer progression, driver
detection requires either a very large sample, a strong effect or
otherwise the driver’s presence is undetectable22. Further, muta-
tional heterogeneity in cancer poses an additional problem for
large cohorts; as the sample size increases, so does the list of
putatively significant genes, producing many false-positive driver
genes26. More importantly, only a minimal portion of driver
mutations are, in fact, true drivers32. This is particularly important
in a clinical context as assessing a cancer gene mutation as a true
functional driver is a critical problem for drug selection32,33.

According to recent studies34 and in agreement with past
theories35, a few major genetic hits (strong drivers) can induce
tumorigenesis. At the same time, a driver mutation may not
actually be the cause of tumorigenesis, but instead only increase
growth rate and therefore be under positive selection36. One of
the most common and widely used lists of cancer genes is the
Vogelstein list28, consisting of ~140 oncogenes and tumor-
suppressor genes (TSGs). While high-impact mutations in TSGs
might favor cancer progression by deactivating tumor suppres-
sion, oncogenes need altered expression levels to favor tumor
growth. Thus, high-impact mutations, such as nonsense muta-
tions in oncogenes might decrease gene expression and burden
tumor cells37. Less appreciated is the role of noncoding mutations
in tumor progression36,38,39. Interestingly, in the case of TSGs,
different studies have reported the role of noncoding intronic
mutations that alter correct exon splicing, resulting in faulty
tumor suppression40–43. Similarly, in the case of oncogenes dif-
ferent studies have reported the potential effect of synonymous
mutations39,40,44. For example, Gartner et al.44 showed that the
early synonymous mutation F17F in the BLC2-like 12 gene alters
the binding affinity of regulatory hsa-miR-671-5p, leading to
changes in expression.

In our study, we developed a framework to model tumor
progression and the effect of drivers in individual deep-sequenced
tumors. We successfully applied our model using 993 linear
tumors (linear subclonal expansion, where each parent subclone
has one child subclone) from the PCAWG consortium, and found
that predicted drivers9 are associated with periods of positive
growth. Our results suggest that mutations involved in biological
processes such as cell development, cell differentiation, and
multicellularity appear under strong positive or negative growth
enrichment. Missense or nonsense mutations in TSGs were
enriched during positive growth. We also identified significant
positive enrichment for mutations in the promoter regions of
both TSGs and oncogenes. In addition, in the case of TSGs, we
discovered a small but significant signal from intronic mutations.
Finally, we applied our framework to a deep-sequenced model
acute myeloid leukemia (AML) tumor, where our predicted
growth peaks aligned closely with three missense mutations from
known cancer genes. Notably, our analysis suggests the potential
presence of additional driver candidates.

Results
Method formalism. When sequencing a cell population or tumor
bulk, each mutation is assigned a variant-allele frequency (VAF),
which corresponds to the mutation’s frequency in the resulting
pool. According to the infinite sites model45, once a mutation
occurs it will continue to exist within that cell and its descen-
dants. Therefore, if we assume that there is no selection or
chromosomal duplications, the VAF is associated with the time of
occurrence and population growth rates. That is, in the presence
of a driver (i.e., in cells with higher fitness), nondriver mutations
within that cell lineage will also have higher-than-expected VAF
and are termed “hitchhikers”28 (Fig. 1 and Supplementary Notes).
Hitchhikers that initially occurred before the driver mutation but
continue to exist within that cell lineage will have a VAF that is
higher than or equal to the driver’s frequency. We call these
hitchhikers “generational” (g-hitchhikers) because they essentially
mark the different generations of an ever-increasing number of
tumor cells and thus exhibit a clock-like behavior. Since any
nondriver lineage derived from the division of earlier cells will
result in a mutation having lower frequency, these predriver
hitchhiking mutations will indicate generational growth (Fig. 1).
As the fitness mutation becomes more prevalent over time, so
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does the prevalence of predriver g-hitchhikers, but critically at a
different pace, which we calculate (see Methods).

Our framework’s equations relate the VAF of generational
hitchhiker mutations to the fitness effect of the subclonal driver
with which they are hitchhiking, mediated by various growth and
population parameters (i.e., the base growth rate r, a scalar
multiplier k corresponding to fitness effect of the mutation, the
time t1 when the driver mutation is generated, Ntot the population
size and NF the driver’s subclone size). The existence and fitness
effects of subclonal drivers are not directly observable but are of
primary biomedical importance. The VAF of hitchhiker muta-
tions is directly observable, therefore we chose to use these VAFs

to infer the presence of subclonal drivers and estimate their
fitness effects. Our approach is to fit the known VAFs of the
hitchhiker mutations in the hitchhiker equations to estimate the
growth pattern and the fitness effect of subclonal drivers. This
method requires to simultaneous estimate the various growth and
population parameters, which we performed using nonlinear
least-squares optimization. To address the fact that real tumors
differ from idealized behavior, we make use of sliding windows
and local timepoint reoptimizations in the parameter estimation
to prevent departures from idealized behavior in one part of the
VAF spectrum from interfering with parameter estimation
in other parts of the VAF spectrum. We derived our estimators

a

b

Fig. 1 (g−)Hitchhikers’ frequency depends on driver’s effect. We consider a simple population of cancer cells that grows exponentially N(t)= ert; for
simplicity, we assign one mutation per cell division. At the time of biopsy T, the frequency of a mutation occurring at time tn would be equal to
fn T; tnð Þ ¼ erðT�tn Þ

erT ¼ e�rtn . At time t1, a mutation occurs that increases the growth rate r of the specific subpopulation by a scalar multiplier k, such that the
new population is now expanding as NF ¼ ekrt2 . Thus, at the time of biopsy T= t1+ t2, we expect a generational (g−) hitchhiking mutation that occurred at
time tm < t1 to have a frequency equal to fg T; tmð Þ ¼ er T�tmð ÞþNF�ert2

Ntot
, where Ntot is the total number of cells (or mutations) and NF is the number of cells that

contain the fitness mutation that occurred at t1 and expanded for t2. Therefore NF ¼ ekrt2 . In a, we show the mutational frequencies at the time of biopsy
T for two growth models; one neutral and one with a fitness mutation occurring at time t1= tfg. Hitchhiking mutations “b” (blue), “r” (red), as well as
passenger mutations “g” (gray) and “y” (yellow), also occur at different time points. b Under an exponential model with a fitness mutation occurring at time
t1= tfg, hitchhikers “b” and “r” show an increased frequency compared to neutral, subject to time and effect of the fitness mutation. Passenger mutations
“y” and “g” that occurred before or with the fitness mutation, but on a different cell lineage, end up with lower frequencies. We characterize mutations “b”
and “r” as generational (g−) hitchhikers since they mark the population’s generational growth.
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for r and k through the implementation of a deterministic model
to a stochastic process with a large final population Ntot.

Modeling the frequency of g-hitchhikers. We assume a simple
and neutral population of cancer cells that grows exponentially
with rate r. For simplicity, we here assign each new daughter cell
one new mutation (alternative mutation rates do not affect the
derivation, see Methods). At time t1, a mutation occurs that
accelerates the growth rate of the specific subpopulation by a
scalar multiplier k such that the new population expands with
new rate k × r. At the time of biopsy T= t1+ t2, where the fitness
mutation occurs at t1 and expands for time t2, we expect the
frequency of a generational g-hitchhiker mutation that occurred
at time tm < t1 (see Fig. 1 and Methods) to follow a frequency
function fg

fg T; tmð Þ ¼ NR þ NF � NRF

Ntot
;

or

fg T; tmð Þ

¼
e�rtm Ntot � fd T;t1ð Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

qh i
þ fd T;t1ð Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

q
Ntot

;

ð1Þ
where fd T;t1ð Þ is the frequency of the driver mutation occurring
at t1 and expanding for t2= T− t1, The terms

e�rtm � Ntot � fd T;t1ð Þ � Ntot

h in o
and ffd T;t1ð Þ � Ntotg correspond

to the growth of regular NR and fitness NF populations respec-

tively, while extracting NRF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ � Ntot

k

qn o
for not double

counting the hypothetical regular growth of fitness cells.
Eq. (1) for the mth hitchhiker implicitly allows one to use the

previous m− 1 potential hitchhikers to refine the estimates of
growth rate r and scalar effect k. This estimation is achieved either
through a nonlinear-least-squares optimization, and/or through
the independent calculation of growth r.

The frequency of g-hitchhiking mutations follows the form of
an exponential distribution. Theoretically, this further allows us
to estimate growth rate r from consecutive g-hitchhiking
mutations m1, m2, and m3, which occurred at times tm1, tm2,
and tm3 (tm1, tm2, and tm3 < t1), respectively, according to

r ¼ ln
fg T; tm1ð Þ � fg T; tm2ð Þ
fg T; tm2ð Þ � fg T; tm3ð Þ

 !
: ð2Þ

In practice, to obtain more accurate estimates, our default
algorithm estimates the growth rate r from three more distant
time points t, t+ n, and t+m (n <m and t+m < t1) with final
frequencies fg(T, t), fg(T, tn), and fg(T, tm), respectively (see
Methods).

Optimizing for any time point during tumor progression. In
addition to our independent estimate of growth rate r, and in
order to avoid previous frequency perturbations in our sample
and localize the effect timewise, we also include an extra para-
meter referred to as “generational time (tg)”, which allows us to
calibrate an offset for the number of past generations until that
point without considering previous mutations outside our sliding
window. Thus, similar to Eq. (1), we now have

fg T; tg; ti �m
� �

¼
e�r tgþti�mð Þ ´ Ntot � fd T;tið Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q� �
þ fd T;tið Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q
Ntot

;

ð3Þ

where fd(T, ti) is the frequency of the putative driver i occurring at
time ti.

This approach allows us to reoptimize tg at any time ti during
tumor growth, independently of earlier or later calculations.

Birth-and-death model, Gillespie simulations. First, we tested
our algorithm on simulated data based on various growth models,
including (a) exponential growth, (b) exponential growth with
delayed cell division, and (c) logistic growth (birth-and-death
model). We performed simulation models (a) and (c) using a
stochastic Gillespie algorithm, whereas model (b) represents an
exponential cell growth model with a lag time for cell division,
which prevents a cell from redividing immediately. Briefly, for the
Birth-and-Death Gillespie model, which is the workhorse of our
simulations, we used a stepwise time-branching process to model
the growth of a single transformed cell into a tumor with a
dominant subclone. At each time step, an event type is chosen
with a probability proportional to the event’s prevalence. Then, a
cell of the eligible type is randomly chosen to undergo that event.
In our logistic-growth simulations, the death rate of each cell
climbs proportionally as carrying capacity is reached, whereas in
our exponential simulations, the death rate of each cell is constant
throughout the simulation. The simulation ends randomly, after
the driver subclone reaches a critical prevalence. The Gillespie
algorithm has been frequently used to simulate stochastically
dividing cells46–52, although simulations with special attention to
cell cycle have also been recommended53.

During simulated growth, we assigned a driver mutation with
additional propagating effects from nearly neutral to high (k=
1.1, 2, 3, and 4), thus leading to faster growth for the respective
subpopulation that contains the specific mutation. Using
conservative assumptions, these scalar values represent a range
of projected selection coefficients s* from 0.001 to 0.03 in
biologically sized populations (see Methods). For each simulation,
we calculated each mutation’s frequency in the total population
and ordered them based on that frequency. Then, by applying our
method we calculated the ranking distance D (as the number of
ordered mutations) between the true and our predicted driver
(growth peak), as well as the driver’s scalar effect k.

We tested our method’s performance in simulated tumors of
lower coverage and different effects. Higher sequencing depth and
scalar effect k provided more accurate results and improved our
method’s implementation (Fig. 2a, b). Lower coverage was
associated with worse k calculations and driver predictions, as
well as lower positive-predictive values (PPVs). For weak drivers,
low sequencing coverage made their identification more difficult.

Absolute median ranking distance fDj j was 41 for coverage 100 × /

k= 2, compared to 13 for coverage 1000×/k= 2 and fDj j ¼ 11 for
coverage 1000×/k= 4, respectively. In general, driver identifica-
tion required either a higher than 100× coverage, or a stronger
effect (i.e., k > 2, s* > 0.01 for a projected cell population of
1,000,000 cells) (Fig. 2i).

Overall, we were able to well approximate the driver’s
occurrence and effect (Fig. 2). For the birth-and-death model
with simulated coverage 1000×, the median predicted estimation
for simulated effects k= 2, k= 3, and k= 4 was 2.3, 2.9, and 3.8,
respectively (Fig. 2ii). Moreover, the median ranking distance eD
between simulated and predicted drivers with effect k= 1.1
(nearly neutral), k= 2, and k= 3 was 71, 3. 5, and 6, respectively.
The corresponding median distances for random mutations were
73, 43, and 41 (Supplementary Fig. 1). For our nearly neutral
simulations (k= 1.1, s* ~0.001 for a projected cell population of
1,000,000 cells) the median distance eD in driver predictions and
random predictions was very similar and not significant.
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Simulations with added stochasticity in mutation rates. To
further test our model on a separate independent simulation
dataset, we applied our method to (a) neutral simulations of
tumor progression and (b) nonneutral simulations for various
growth scenarios, as previously developed and described by
Williams et al.16,54 (see also Supplementary Methods). These

simulations, although also based on the Gillespie growth model,
included added stochasticity with varying mutation rates during
tumor progression (�μ ¼ 10 mutations per cell division). For every
simulation, both neutral and nonneutral, we identified our
model’s highest predicted effect peak, calculated the effect k and

absolute median ranking distance fDj j between the simulated and

c

e

a

d

b
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predicted driver in number of ranked mutations. Various sce-
narios for nonneutral growth included a wide range of simulated
selection coefficients s (0–33, for a population size of 10,000 cells),
categorized driver’s VAF (small 0.1–0.2; medium 0.2–0.3; large
0.3–0.4) and larger cell population projections using population
genetic models and method adjustments. Corresponding neutral
simulations were also generated using the same population
parameters. Overall, and in agreement with our previous analyses,
our results suggest a small overlap between neutral and non-
neutral peaks for weak drivers (Fig. 2c and Supplementary Fig. 1f)
and highly significant driver predictability when the predicted
driver effect was larger than our (narrow) neutral-effect dis-
tribution (Fig. 2c, d and Supplementary Fig. 1g–i). For instance,
for simulated populations of 10,000 cell without projection (0 <
simulated s < 33) and 1000× coverage our method provided
accurate driver detections when the predicted effect was larger

than k= 1.29 with fDj j ~50 mutations compared to 444.5 for
random. These results are directly comparable to our previous
analyses, considering the new mutation rates. Similarly, for a
projected cell population of 1,000,000 cells, our method provided
accurate driver detection for projected selection coefficient s* >
0.05 (Fig. 2d). Larger population projections typically decreased
the predicted effect k* and selection coefficient s*, but did not
affect our method’s ability to detect drivers (Supplementary
Fig. 1k) as these projections also decreased the standard deviation
of our neutral-effect distribution (predicted k* for neutral-effect
peaks). When we combined 140 neutral with 360 nonneutral
simulations, drivers with medium final VAF showed the highest
correlation between simulated selection coefficients and our
method’s predicted scalar k effects (Pearson correlation r= 0.60,
Fig. 2c). Drivers with lower final VAFs (small ~0.1–0.2) provided
slightly lower correlation but had the highest driver detectability,

with fDj j ¼ 46 mutations between the simulated and predicted

driver (Supplementary Fig. 1l), where random fDj j was 444.5

mutations. A (tenfold) higher fDj j here is expected since for these
simulations we assumed 10 instead of 1 mutation per cell
division.

Estimator r ̂ for non g-hitchikers. We also tested the behavior of
the estimator for r (Eq. (2)) on non-g-hitchhiking mutations (i.e.,
when the assumption that the mutations are generational hitch-
hikers is not satisfied). For this purpose, we used coalescent
theory to estimate the variation in density of mutations across the
VAF spectrum for a variety of models (see Methods). We first
analyzed the behavior in a constant-size population, and then in
populations with increasing and decreasing exponential growth.
Our analysis shows that the growth indicator does not

qualitatively change its behavior in this context, so that negative
values continue to represent periods of negative growth, and large
positive values represent periods of positive growth. However,
here we expect a small positive value in the case of zero growth
(Fig. 2e, Supplementary Fig. 2).

Growth patterns in 993 linear tumors from PCAWG. Using 993
linear tumors from the PCAWG consortium, we explored the
different patterns and dynamics of tumor growth based on our
model’s assigned growth rates. Tumor linearity (where no par-
ental subclone has two or more children subclones) further
ensures that tumor subclones do not intermingle and that higher
VAF is associated with earlier occurrence. We note that muta-
tional frequency as described in our equations corresponds to 2×
VAF, with correction for purity and copy-number variations.
These VAF corrections were obtained from PCAWG and are not
implemented by our method, which only considers a final
mutational frequency. Using our model, each mutation i from
sample in our database is assigned a potential positive or negative
growth value ri and a driver effect ki. Under ideal conditions, for
each sample, a vector of effect peaks ri−1 × ki corresponds to
potential drivers at position i. However, noise, coverage, and
growth stochasticity can cause these peaks to represent the
potential presence of a nearby driver, especially in low-coverage
sequenced tumors (see Fig. 3a, b).

To identify growth patterns across individual tumors, we (i)
normalized each mutation’s growth rate based on the sample’s
maximum growth value; (ii) divided the ordered mutations into
20 bins; and (iii) applied k-means clustering to the average
normalized value per bin. Our results highlighted three main
clustering patterns (Fig. 3c). As expected, most tumors (n= 525)
showed logistic growth with an increasingly higher growth rate at
the beginning and a stabilization at the later stages. For many
tumors (n= 366), an early high growth period was followed by a
stagnation and potential reduction in tumor size. This effect could
also be artificially enhanced due to sampling errors for mutations
with low VAF (during late tumor progression). The last group of
tumors (n= 102) showed relatively steady, continuous growth.
However, it is uncertain whether this pattern represents tumors
that were sequenced early. Further, some types of cancer seemed
to prefer specific growth patterns (Fig. 3c).

By modeling tumor growth, we can find mutations during
positive or negative growth periods in single or multiple
individual samples. Through positive growth enrichment, we
characterized the degree to which one type of mutation (e.g.,
TSGs/TP53, nonsynonymous) or region (e.g., TP53) was
significantly enriched and associated with periods of positive
growth across multiple samples. We then compared each

Fig. 2 Deeper coverage and stronger drivers improve predictions. In a, using 541 simulations of tumor growth under a birth-and death model, we show
the absolute median distance fDj j as in “absolute number of ordered mutations” between predicted and simulated driver for sequencing depths. With the
exception of k= 2 for 100× (two-tailed t test P= 0.015), we were able to detect the driver’s presence (P < 0.005). Blue line represents the random fDj j as
derived by selecting a random mutation from each simulation and calculate the absolute distance to the simulated driver. Dotted lines represent the 2 × σ
deviation from fDj j while capped bars the median’s standard error. For convenience, we only show bars for k= 2. In b, Using the same simulations, lower
coverage provides less accurate k predictions with a lower effect. Capped bars represent the standard error of the median effect prediction. The three lines
represent simulations with simulated effect of 2–4. In c, using the “Williams et al. 2018” algorithm, we simulated 360 nonneutral and 140 neutral tumors
for 10,000 cells. Then, we adjusted our effect predictions for n* equal to 1,000,000. In addition, we also adjusted the simulated selection coefficient s* for
the same populations. Pearson’s r between the simulated adjusted coefficient “1+ s*” against adjusted predicted k* was 0.6. In d, after ranking s* for every
nonneutral simulation, we used a sliding window of 20 simulations to estimate fDj j (and 2 × σ) between the simulated and predicted driver within every
window. Dotted lines represent 2 × σ deviation. When s* > 0.05 our driver detection became highly accurate. Blue line represents fDj j for random
predictions (444.5), while black lines represent median standard error (24.5). Simulated s* have been projected for n*= 1,000,000. In e, using Kingman’s
coalescent theory, we show that growth estimator r ̂ remains qualitatively unchanged even for non g-hitchhikers. As mutational density δn increases with n,
and hence with time, r ̂ estimator is predicted to take positive values for both constant and varying populations. Similarly, for negative growth, δn decreases
with time. We let α > 1 corresponding to a decreasing and α < 1 corresponding to an increasing population.
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mutation type to random mutations from their respective
samples. To confirm whether we could detect any signal of
selection at the gene level, we compared positive growth
enrichment (PGE) for mutations between (i) the Vogelstein gene
list28; (ii) a comparable list (in mutational numbers) of randomly
selected genes; and (iii) a list of assigned drivers from the
PCAWG consortium9,32. As expected, PCAWG-assigned driver
SNVs clearly showed the highest positive enrichment, followed by
SNVs that were not individually called by PCAWG as drivers but

that fall within the Vogelstein driver gene list (Fig. 3d). We note,
however, that our random gene list did show a small positive
enrichment, as this list contains several often-mutated genes and
potential drivers or mini-drivers. We obtained similar results
when we repeated the comparison while considering the
difference between additional mutational effect against a random
distribution (Supplementary Fig. 3).

In an effort to better understand the microenvironment of
tumor dynamics, the selective forces, and the biological processes

a

c

b

d

e

Fig. 3 Growth patterns and growth associations using 993 linear tumors. Across 993 linear tumors from PCAWG consortium we expect an under-
selection mutation to be associated with periods of positive growth. We compared several mutation types (driver mutation, mutation within geneX, within
GO categoryX), to a random distribution from their respective sample for association with positive growth. a, b The averaged growth progression,
mutational growth, and mutational effect, for a single low-coverage CNS-oligo tumor and a single low-coverage thyroid adenocarcinoma tumor without any
PCAWG-identified drivers. Green asterisks denote the ordered position of a PCAWG-predicted driver within the sample. Yellow asterisks denote a growth
peak and putative driver presence. In c, we derived three main growth patterns (steady growth, sigmoid growth, and stagnation/shrinkage) for 993 linear
tumors, as they were grouped using a k-means clustering algorithm. Various cancer types showed specific enrichment or depletion for the three clusters
(levels of significance for Fisher’s tests for enrichment noted as *, **, and *** for p < 0.05, 0.01, and 0.001). In d, PCAWG drivers and Vogelstein genes
show significant positive growth enrichment compared to a list of random highly mutated genes. Boxplots represent 2 × σ deviation, lines represent the
mean, while violin plots are trimmed to data range. e We show the GO enrichment for the 20 most affected biological processes, when we use 293 genes,
significantly associated with periods of positive growth.
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that are most keenly affected by tumor progression, we analyzed a
list of 1000 most mutated genes in the PCAWG samples where
we identified 293 genes with significant overall association with
positive growth (Supplementary Data 1). Then we further tested
these genes for Gene Ontology (GO) enrichment. As expected,
developmental and differentiation processes were highly enriched
during periods of positive growth, showing signals for being
under positive selection. Interestingly, we found that genes related
to multicellular processes showed the highest enrichment based
on raw p value (Fig. 3e, Supplementary Data 2).

TSGs vs. oncogenes. Based on each mutation’s genomic prop-
erties (e.g., genomic position, coding vs. noncoding, TSG vs.
oncogene, cancer type, and GO annotation), we can examine
whether the specific type of mutation (or mutation element) is
statistically enriched during periods of positive growth when
compared to random mutations from their respective samples.
However, the more specifically that we defined a mutation type,
the fewer mutations that corresponded to this category. For
example, the Vogelstein TSGs in our dataset contain 321 missense
and 103 nonsense mutations, whereas TP53 in our dataset con-
tains 71 nonsynonymous mutations and 13 nonsense mutations.
Unfortunately, for many tumor genes and cancer types, we cur-
rently have a small number of mutations, precluding significance
in the results.

A recent study by Kumar et al. suggested that high-impact
mutations should have more clear positive effects on tumor
growth when they are located in TSGs vs. oncogenes37. This is
expected, as generally a “defected” oncogene with reduced
expression should not favor cancer progression. To better
understand the behavior of TSGs and oncogenes, we tested for
positive enrichment of synonymous, nonsynonymous, premature
stop, promoter, and intronic mutations (Fig. 4). As expected, our
results showed significant enrichment of missense and nonsense
mutations in TSG regions. During periods of positive growth, 45
nonsense and 128 missense mutations corresponded to an
average of 37.4 and 117.96 random mutations, respectively (100
bootstraps replicates, p values= 7.823348e−30 and 1.632649e
−23). Interestingly, promoter and intronic regions also showed a
significant positive effect on tumor growth, suggesting that some
noncoding mutations in TSGs might favor positive growth
(Fig. 4a).

In the case of oncogenes, we did not find significant
enrichment of missense mutations, but we did find significant
association between their promoter regions and positive growth
(Fig. 4b). This might be due to many reasons including the
pancancer nature of our analysis, lack of power and small sample
size, our modeling assumptions, or the noise due to low
sequencing coverage per tumor sample. However, many genes
including oncogenes might be under negative selection, with only
a small subset of their respective mutations being favorable to
cancer growth. Moreover, high-impact mutations in oncogenic
regions do not necessarily favor tumor growth. Indeed, our data
contain only four nonsense mutations in oncogenic regions. Some
oncogenes such as MET and CTNNB1 showed slight overall
negative enrichment, but their nonsynonymous mutations,
especially in specific cancers, showed enrichment during periods
of positive growth (Supplementary Fig. 3).

To detect mutations during positive growth periods, we applied
our model to individual types of mutations (i.e., missense,
synonymous, intronic, nonsense, and promoter) for each
Vogelstein gene. Overall, our results identified various mutation
elements including promoters, nonsense, and missense with
significant effects (Fig. 4c). Interestingly, synonymous BLC2
mutations that occurred near an early positioned mutational

hotspot were significantly associated with positive growth (Fig. 4c
and Supplementary Fig. 4). Synonymous mutations are not
generally considered to be important in cancer; however, previous
studies have reported recurrent synonymous F17F mutations in
BLC2-like 12, where regulatory hsa-miR-671-5p alters the gene’s
expression44.

Growth peaks and driver effects on a model AML tumor. In
addition to the 993 PCAWG low-coverage tumor samples, we
implemented our model on an ultra-deeply sequenced AML
(>250×) liquid tumor. A ultra-deeply sequenced tumor provides
more accurate global VAF, which should in turn allow for better
estimation of model parameters12.

In general, the predicted peaks of our model mapped very
closely to mutations from known cancer genes (Fig. 5). Deep
valleys followed by the highest growth peaks corresponded with
close approximation to the three missense mutations from known
cancer genes (IDH1, IDH2, and FLT3, p value < 2.2e−16). Thus,
in agreement with previous studies34,35, the derived growth
patterns suggested three to five major genetic hits from cancer
mutations in order to render tumor growth permanent.

In addition, we used all the mutations in our previous database
to evaluate those in the deeply sequenced AML in order to
identify new candidates associated with positive growth. As a
result, we further identified five additional candidates from the
ultra-deep AML sample that belong to genomic elements
associated with positive growth (Fig. 5d). These additional
candidates consist of four missense mutations (SRCAP, CPS1,
GLI1, and COL18A1) and one intronic mutation (MAP3K1),
which appeared to align near observed, previously unexplained
periods of initial growth. Previous recent studies have also linked
CPS1 and GLI1 to various cancers55–58. Finally, based on our
PCAWG database, for each driver candidate we detected possible
positive enrichment across varying effect ranges [0.9, 1.1, 1.3, 1.5,
1.7, 1.9, and 2.1] (Supplementary Fig. 5). Indicatively, our
independent estimation of mutational effect suggested a high
correlation when compared to the calculated effect using the
deep-sequenced model AML tumor (Supplementary Fig. 5).

Discussion
Most approaches to identify driver candidates are based on
recurrent mutations and large cohorts22. More recently, studies
have probed tumor selection either through deviation from
background metrics or by using VAF distribution to quantify the
subclonal effect20. Here, we present a framework that models
tumor progression using generational hitchhikers and localized
time reoptimizations using mutational frequencies from indivi-
dual samples to (i) determine periods of positive or negative
growth, (ii) suggest the presence of candidate drivers and estimate
their effect on tumor progression, and (iii) detect genomic regions
or mutation elements that are associated with positive or negative
growth periods. Overall, our work highlights the importance of
whole genome deep sequencing for modeling tumor progression.

When we applied our framework to 993 individual tumors
from the PCAWG consortium, our growth analysis indicated
different growth patterns across cancer types, including steady
growth, sigmoidal growth, and modes of stagnation. Determining
tumor progression can be useful in understanding each tumor’s
historic aggressiveness, and the effect of driver mutations on
tumor progression (VAFs used by our method typically represent
past growth, as latest mutations tend to have undetected fre-
quency in our sample). In addition, we identified several biolo-
gical processes significantly affected by tumor progression,
including genes involved in multicellularity. These results might
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indicate an evolutionary transition during tumor progression
from multi-cell functionality to single-cell selection.

As expected, we found significant enrichment of known
PCAWG drivers, Vogelstein cancer genes, and nonsense and
missense mutation TSGs during periods of positive growth. In
accordance with some previous studies40–43, our results also
suggested that a small proportion of intronic mutations could
affect TSGs (but not oncogenes), whereas some synonymous
mutations could affect oncogene (but not TSG) expression. Even
though defective splicing in TSGs or changes in the negative

regulation of oncogenes are not entirely unexpected44, noncoding
mutations are not generally considered to be major driver events
in tumor progression. Thus, it is possible that our results are
subject to analytical (e.g., model parametrization, initial para-
meters, window size selection, low sequencing coverage, and
sample size) and biological (e.g., hitchhiking) error.

Using variant-allele frequency to quantify driver effects and
tumor progression can be challenging. Our analysis might be
subject to different types of bias, including sequencing noise,
growth stochasticity, model parameterization, low sequencing

a b

c

Fig. 4 Tumor-suppressor gene and oncogene elements show growth enrichment. We show the positive growth enrichment across different mutation
types (introns, synonymous, missense, nonsense, and promoters). For a, Vogelstein tumor suppressor genes and b Vogelstein oncogenes, boxplots
represent 2 × σ deviation, lines represent the mean, while violin plots are trimmed to data range. In c, we plot gene elements (e.g., {GeneX_mutation type})
from Vogelstein gene list that showed significant positive or negative enrichment. We further zoom in to BCL2’s genomic region to map missense,
nonsynonymous, promoter, and intronic mutations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14407-9 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:732 | https://doi.org/10.1038/s41467-020-14407-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


coverage, tumor ploidy, subclonality, and a low number of tumor
samples per cancer or mutational element. Under a neutral
model, our method would still detect some growth peaks or
suggest the presence of weak drivers. These are false-positive
predictions, possibly due to noise which results in various signal
perturbations in the VAF spectrum, or potential genetic drift.
Moreover, our model does not consider the potential effects from

deleterious passenger mutations or sequencing errors on the VAF
spectrum. However, we consider that -if not depleted- most
deleterious mutations should have a small VAF in our sequenced
sample. Similarly, we expect that sequencing errors tend to pro-
duce spurious mutations of extremely low VAF, which are
ignored by our framework. Although some researchers are
skeptical of the plausibility of VAF quantification19,59, recent

a

b

c d

Fig. 5 Tumor progression on model AML liquid tumor. In a, we show the averaged growth progression for an AML ultra-deep-sequenced tumor. We
ordered the sample’s mutations from highest to lowest frequency and divided them into bins of 200 mutations. Three cancer mutations hit the tumor to
establish a permanent growth (cancer mutations denoted by green bars). In b, we plot the mutational growth ri−1 for each mutation across tumor
progression. The three cancer genes (IDH1 missense, FLT3 missense, and IDH2 missense) aligned well with 3 of our top 5 growth peaks (two-tailed t test
p < 2.2e−16). Candidate driver mutations -denoted by yellow bar—that we identified from our PCAWG database as being associated with positive growth
(see also “(d)”) aligned well with early—previously unjustified growth peaks. In c, we show each mutation’s effect in tumor progression. Effect peaks
corresponds to putative drivers. d By using our PCAWG database from our previous analysis, we tested which mutations from the deep-sequenced sample
were associated with positive growth. The x-axis represents positive growth enrichment, while the y-axis shows the level of significance as the negative
logarithm of a two-tailed t test p value (−log(p value) > 5. Overall, we found 6 mutation types that showed significant positive enrichment across 993
PCAWG tumors, including TP53 missense (appeared during metastasis), IDH1 missense, COL18A1 missense, CPS1 missense, GLI1 missense, and SRCAP
missense. Missense TP53 and SRCAP mutations are not included in graph (b) as they were metastatic mutations. For association with positive growth we
tested all missense mutations (e.g., CPS1 missense), and every mutation in the sample from Vogelstein cancer genes (e.g., NOTCH2 intron).
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analyses have also confirmed that it can be achieved even at low
sequencing coverage16. At the same time, as sequencing cost
decreases exponentially, ultra-deep whole-genome sequencing for
a larger number of samples will become trivially within reach.
This is critical for the personalized assessment and parametriza-
tion of single samples.

Similar to previous Darwinian, bacterial, and viral evolution
analyses, modeling the variations of cell populations allows us to
associate these variations with specific events, even at a single
sample level. Our work contributes to our understanding of
cancer evolution by directly assessing tumor sample progression
at the time of the driver event. This assessment can be very
critical for therapeutic strategies and drug selection32,33. Our
framework presents opportunities for personalized diagnosis via
modeling the tumor’s progression using deep-sequenced whole-
genome data from one single individual.

Methods
Modeling the frequency of g-hitchhiking mutations. Let us assume that a simple
population of cancer cells grows exponentially; for simplicity, we assign one
mutation per cell division.

N tð Þ ¼ ert : ð4Þ
At sequencing time T, the frequency of a mutation occurring at time tn would

be equal to

fn T; tnð Þ ¼ erðT�tnÞ

erT
¼ e�rtn : ð5Þ

At time t1, a mutation occurs that increases the growth rate r of the specific
subpopulation by k, such that the new population is now expanding as

NF ¼ ekrt : ð6Þ
Thus, at total time T= t1+ t2, we expect a generational (g−) hitchhiking

mutation that occurred at time tm < t1 (see Fig. 1) to have a frequency equal to

fg T; tmð Þ ¼ er T�tmð Þ þ NF � ert2

Ntot
; ð7Þ

were Ntot is the total number of cells (or mutations) and NF is the number of cells
that contain the fitness mutation that occurred at t1 and expanded for t2.

Thus;NF ¼ ekrt2 : ð8Þ
or

ert2 ¼ ffiffiffiffiffiffi
NF

k
p

;

and Eq. (7) can be re-written as

fg T; tmð Þ ¼ er T�tmð Þ þ NF �
ffiffiffiffiffiffi
NF

k
p

Ntot
: ð9Þ

Moreover, if we assume that tm ~ t1

then fg T; tm � t1ð Þ ¼ er t1þt2�tmð Þ þNF�
ffiffiffiffi
NF

k
p

Ntot
¼ ert2 þNF �

ffiffiffiffi
NF

k
p

Ntot
¼ NF

Ntot
;or

lim
tm�t1

fg T; tmð Þ ¼ NF

Ntot
¼ fd T; t1ð Þ: ð10Þ

Eq. (9) can be rewritten as

fg T; tmð Þ ¼ er t1þt2�tmð Þ þNF �
ffiffiffiffi
NF

k
p

Ntot
)

fg T; tmð Þ ¼ erðt1þt2Þ ´ e�rtm þNF �
ffiffiffiffi
NF

k
p

Ntot
)

fg T; tmð Þ ¼ Ntot �NF þ ert2ð Þ ´ e�rtm þNF�
ffiffiffiffi
NF

k
p

Ntot
)

fg T; tmð Þ ¼ Ntot �NF þ
ffiffiffiffi
NF

k
pð Þ ´ e�rtm þNF �

ffiffiffiffi
NF

k
p

Ntot

; ð11Þ

which is the frequency function fg for the g-hitchhiking mutations in our sample.
Finally, according to (10) we get

fg T; tmð Þ

¼
e�rtm ´ Ntot � fd T;t1ð Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

qh i
þ fd T;t1ð Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

q
Ntot

;

ð1Þ

We note that the frequency fg(T, tm) of g-hitchhiking mutations also follow the
form of an exponential function.

fg T; tmð Þ ¼ A ´ e�rtm þ B:

This allows the sampling and estimation of growth rate r from consecutive g-
hitchhiking mutations m1, m2, and m3 that happened at corresponding times tm1,

tm2, and tm3 according to

r ¼ ln
fg T; tm1ð Þ � fg T; tm2ð Þ
fg T; tm2ð Þ � fg T; tm3ð Þ

 !
: ð2Þ

Independent calculation of growth r for g-hitchhikers. For three hitchhiking
mutations that occured at times t, t+ n, and t+m (n <m), their respective fre-
quencies are f (t), f (t+ n), and f (t+m)

LetΛ ¼ fg T; tð Þ � fg T; t þ nð Þ
f T; tð Þ � fg T; t þmð Þ ¼

ð1� e�rnÞ
ð1� e�rmÞ : ð12Þ

Thus,

Λ ´ e�r ´m � e�r ´ n � Λþ 1 ¼ 0:

If we set e−r= x
then

Λ ´ xm � xn � Λþ 1 ¼ 0:

By selecting m= 2 × n

Λ ´ x2n � xn � Λþ 1 ¼ 0:

Therefore

xn ¼ 1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 �Λ �Λþ1ð Þ

p
2�Λ ¼ e�r ´ n

x ¼ e�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 �Λ �Λþ1ð Þ

p
2 �Λ

n

q

r ¼ �log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 �Λ �Λþ1ð Þ

p
2 �Λ

n

q� � : ð13Þ

Optimizing for tg at any time point during progression. In (1), we associated g-
hitchhiker frequency with population growth r as

fg T; tmð Þ ¼
e�rtm ´ Ntot � fd T;t1ð Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

qh i
þ fd T ;t1ð Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;t1ð Þ ´Ntot

k

q
Ntot

:

Furthermore, we included an extra parameter for “generational time” (tg)
allowing us to optimize for the number of generations until that point without
knowledge of previous mutations.

Thus

fg T; tg; ti �m
� �

¼
e�r tgþti�mð Þ ´ Ntot � fd T;tið Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q� �
þ fd T ;tið Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q
Ntot

;

ð3Þ
where fd(T, ti) is the frequency of the putative driver i occurring at time ti.

This allows us to reoptimiIe tg at any time ti during tumor growth independent
of earlier calculations.

This allows us to

1. exclude pretumor somatic mutations or duplications in our calculations,
2. reoptimize at any time t during tumor growth independent of earlier

calculations.

Behavior of r̂ estimators on nongenerational mutations. We used the coalescent
theory to analyze the behavior of the estimator

r̂ ¼ log
fg T; tð Þ � fg T; t þ nð Þ

fg T; t þ nð Þ � fg T; t þmð Þ

 !
; ð14Þ

when the assumption that the mutations are generational is not satisfied. Our
results indicate that the growth indicator does not change qualitatively. We first
analyzed the behavior in a constant-size population, and then in populations with
increasing and decreasing exponential growth.

Behavior of r̂ estimators for constant population sizes. We consider a popu-
lation of constant size N with mutation rate μ. Given the population observed at a
fixed time point t0, we can consider the coalescent tree of all cells at t= 0
reaching back to their most recent common ancestor at t= T (where time is
indexed in reverse direction from t0). Writing Tn for the length of time
over which n lineages are present (i.e., the time between the splits of lineage n
and n + 1, hence T ¼PN

n¼1 Tn, where TN is truncated at time 0), using Kingman’s
coalescent60 it can be shown that

Tn ¼ 2
nðn� 1Þ : ð15Þ
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Assuming that the birth-and-death rates remain constant, the number of
mutationsMn acquired during Tn can be expressed up to a constant of proportionality

Mn / μnTn ¼ 2μ
n� 1

: ð16Þ
We can approximate the variation in density of the VAF spectrum by assuming

that all mutations falling in Tn take their expected frequency f= 1/n, and
calculating the density δn within windows [1/n1/(n− 1)), whose lengths are Ln= 1/
(n− 1)−1/n= 1/(n(n− 1))

δn ¼ Mn

Ln
/ 2μn: ð17Þ

As δn increases with n, and hence with time, r̂ as estimated using Eq. (14) is
predicted to take positive values in a constant-size population.

Populations with varying size. To predict the behavior of r̂ in populations of
varying size, we formulated the coalescent as a Markov process. We let t= 0 represent
the time of observation and indexing time in reverse as above, and Xt for a random
variable represent the number of lineages in the coalescent tree at time t, and Nt for
the population size at time t. To define a Markov process over Xt from t= 0…T, we
fixed the initial distribution to p(x0= i)= [i=N], where [.] is the Iverson bracket. We
also defined a transition matrix τ such that τ(i,j) represents the conditional probability
p(xt+1= j|xt= i); that is, the probability that there are j coalescent lineages at time
t+ 1 given there are i lineages at time t. Note that the number of coalescent lineages
present will be less than or equal to the size of the population at a given time.

To calculate τ(i, j), we evaluated the number of maps that take i lineages to
j lineages given the final population size of Nt+1. As there are j final lineages, the

image of the map must have size j, meaning that it must be one of the
Ntþ1
j

� �
subsets of the population at t+ 1. For each of these subsets, the original i lineages
can be partitioned into those taking distinct values at t+ 1, so that there are I

possible partitions of i lineages into j nonempty subsets, where
i
j

� �
¼

1
j!

Pj
k¼0 �1ð Þj�k j

k

� �
kn is a Stirling number of the second kind. Further, there are

(j!) permutations of the image set to which each of these partitions caI be mapped.
Given N i

tþ1 maps in total from the populations from t to t + 1 when restricted to
the ancestors in the coalescent tree

τ i; jð Þ ¼
Ntþ1

j

� �
i

j

� �
ðj!Þ

Ni
tþ1

¼ Ntþ1

j

� �Pj
k¼0 �1ð Þj�k j

k

� �
kn

Ni
tIþ1

I;
ð18Þ

assuming j ≤ i, and τ(i, j)= 0 otherwise.
To investigate the behavior of r̂, we used the Markov chain above to calculate

pt+1= ptτ for a fixed number of time-steps, where pt= [p(xt= 1), p(xt= 2), …,
p(xt=N)]. We then calculated a function g(t) representing the expected number of
lineages present at time t, g tð Þ ¼Pn npðxt ¼ nÞ. We calculated Tn, which
estimates the length of time over which there are exactly n lineages as above as

Tn ¼ min tjg tð Þ � nf gð Þ �min tjg tð Þ � n� 1f gð Þ; ð19Þ
from which the total number of mutationsMn acquired during Tn can be calculated
using Eq. (16), and the variation in density of the VAF spectrum over windows
corresponding to the intervals Tn can be calculated using Eq. (17).

We calculated δn as a function of n in a number of populations, using the
population model Nt+1= αNt, where we let α= [1,1.1,1.2,…,2], corresponding to a
decreasing population (as time is indexed in reverse), and α= [1,0.9,0.8,…,0.5],
corresponding to an increasing population. We used 200 time-steps for all
calculations with μ= 0.01. We started all decreasing populations at N0= 10 and
fixed a maximum population size of Nmax=N0α10, while fixing a minimum size
for all increasing populations at Nmin= 10, and starting at N0=Nminα−10. For all
t after the population reaches its maximum/minimum size, we set Nt+1=Nt.
Supplementary Fig. 2 shows the output for populations of decreasing and
increasing sizes, respectively. As predicted by the earlier analysis, the calculations
show that δn is an increasing function for constant population size (α= 1),
corresponding to a positive value of r,̂ and is approximately linear. Likewise, δn is
increasing for all populations of increasing size (Supplementary Fig. 2b); hence, r ̂ is
predicted to be positive for all such populations, with a magnitude increasing with
α, as the rate of increase of δn increases for larger α. For decreasing populations
(Supplementary Fig. 2a), δn is only strictly decreasing for α > 1.4, corresponding to
r ¼ � log αð Þ � �0:34 in generational units, suggesting that a negative r that is at
least this magnitude will result in a negative estimate for r̂ using Eq. (14).

Reconsidering the assumption of one mutation per division. In our model, we
have assumed for reasons of convenience and simplicity that one new mutation
arises per cell division. However, this assumption is not required to implement our
model. To derive the estimator for r in Eq. (2), all that is required is that the
intervals tm2− tm1 and tm3− tm2 are equal in expectation. For a mutation rate 0.5
\μ= 1 (where \μ is the total number of mutations expected per cell division), this
interval is one generation, but for \μ < 2 the expected interval is 2/\μ.

Model optimization and initial parameters. To optimize our model, we used
custom perl scripts and the R package “Nonlinear Least Squares” (NLS)61,62 with

sliding windows ofm= 150 g-hitchhikers. We optimized for [[“mod <−nls( f
!

~ exp

(−r * (tg+mut order
						!

))*(1− α)+ α, start= list(α= 0.01, tg= 1), control= nls.con-
trol(maxiter= 10,000,000, tol= 1e−04, minFactor= 0.000002, printEval=TRUE,
warnOnly= TRUE))”]], where f is the frequency vector for the g-hitchhickers, tg
corresponds to generational time, and α is a composite parameter associated with the
driver’s prevalence and its respective effect according to equation

fg T; tg; ti �m
� �

¼
e�r tgþti�mð Þ ´ Ntot � fd T;tið Þ ´Ntot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q� �
þ fd T ;tið Þ ´Ntot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki

q
Ntot

;

where fd(T, ti) is the frequency of the putative driver i occurring at time ti.
Growth r can be estimated using equation

r ¼ ln
fg T; tm1ð Þ � fg T; tm2ð Þ
fg T; tm2ð Þ � fg T; tm3ð Þ

 !
;

or alternatively through NLS optimization.
When the population shows an exponential growth and we are only interested

in the first driver or the subclonal effect, we can omit the generational time (tg)
estimation to reduce unnecessary optimizing errors. In this case, we simplify the R
command

[[“mod < - nls( f
!

~ exp(−r * mut order
						!

)*(1 − α)+ α, start= list(α= 0.01),
control= nls.control(maxiter= 10000000, tol= 1e-04, minFactor= 0.000002,

printEval= TRUE, warnOnly= TRUE))”]] or [[“mod < - nls( f
!

~ exp(−r *

mut order
						!

) × α+ β, start= list(α= 0.01, β= 0.1), control= nls.control(maxiter=
10000000, tol= 1e-04, minFactor= 0.000002, printEval= TRUE, warnOnly=
TRUE))”]].

Finding the best sliding window size m. For our PCAWG analysis, we used a
sliding window of m= 100 and 150 g-hitchhikers. Our presented results are based
on m= 150. Overall, larger windows provided a more stable uniformal analysis
across all 993 tumors, allowing the NLS algorithm to converge easier across all
samples, by considering a larger range of mutation frequencies in tumors with
lower coverage. However, especially in deep-sequenced tumors, the size of a sliding
window should be individually optimized based on population assumptions. For
our simulation analyses, we selected the size of a sliding window that minimizes the

absolute median ranking distance |fDj j between true and predicted drivers by
maximizing the p value when compared to a distance distribution of 100 random
mutations. For our independent set of nonneutral simulations based on Williams
et al. software, we were able to calculate an optimal window size by tuning our
algorithm based on 464 nonneutral simulations. The optimal window size that
provided a median effect of 1 for the neutral simulations was 150 hitchhikers,
which is also what we used for the deep-sequenced AML tumor. Smaller window
sizes provided a higher median effect for both neutral and nonneutral simulations,
without burdening our method’s detectability.

Scalar k and selection coefficient s. In real tumors, cells bearing a subclonal
driver mutation can form a distinguishable subclone within a tumor of millions,
billions or trillions of cells, as a result of small growth advantage of these cells
compounded over hundreds to thousands of generations. The k values used in our
simulations should therefore be scaled when predicting the corresponding k* values
in a real population on which our estimators would exhibit similar behavior (due to
similar amounts of variance/genetic drift). Felsenstein60 describes scaling rules for
simulations: to use a smaller population to simulate a larger one, the quantity 4 ×
N × s, where N is the population size and s the selection coefficient must remain the
same. We consider a range of population sizes (106–1010) as being realistic (Wil-
liams et al.16 use an estimate of 1010 cells; we note however that spatial effects may
result in a lower effective population size in many tumors). Using the scaling

k� ¼ 1þ Nsðk�1Þ
Nr

, where Ns and Nr are the simulation and realistic population sizes

respectively, the range of k we considered in our simulations from 1.1 to 4, cor-
responds under this scaling to k* \in [1.001, 1.03], which are noticeably smaller than
1.1 (s*= 0.1 corresponding to a very strong driver effect). We consider these values
to be upper-bounds, as the true effective population size is likely to be substantially
larger than one million cells for most cancers. As an alternative to scaling the
values of k as discussed, we also consider the effects of directly substituting realistic

size estimates (106 to 1010) into the variable Ntot in equation fg T; tg; ti �m
� �

¼
e
�r tgþti�mð Þ ´ Ntot�fd T;tið Þ ´Ntotþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki
p� �

þ fd T;tið Þ ´Ntot�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd T;tið Þ ´Ntot

ki
p

Ntot
. As shown in

Supplementary Fig. 1, this leads to an improvement in the accuracy with which we
detect simulated drivers (in terms of the distance from the simulated driver). Our
simulations thus imply that our algorithm can detect drivers with weak effects
accurately in tumors of realistic sizes.
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Simulating tumors of lower coverage depth in sequencing. To simulate
sequencing coverage depth of 100×, 300×, 500×, and 700×, we first created a cell
population from 1000× coverage based on mutational frequencies. In this sense, a
mutation with a frequency of 0.475 would be associated with 475 out of 1000
individuals that contained the specific mutation (noted as “1”) and 525 individuals
that did not (noted as “0”). Consequently, we sampled with replacement sub-
populations with sizes 100, 300, 500, and 700 cells. Then we recalculated the lower
coverage frequencies as the sum of “1”s divided by the corresponding coverage.

True positives, false positives, sensitivity, and PPV analysis. To test our
model’s performance across simulations with various driver effects and depth
coverage we aimed to determine the number of true positive (TP), false positive
(FP), true negatives (TN) and false negative (FN) predictions. Based on our pre-

vious calculations, we estimated the absolute median distance (|fDj j) between the
true and the predicted driver’s position close to 11 mutations and the standard
error (SE) about 2.5 mutations. For every simulation, a driver prediction was

considered as TP, if |fDj j between our predicted driver and the true driver was less

than |fDj j + 2SE= 16 mutations. If the predicted driver peak was at distance longer
than 15 mutations, the corresponding predicted driver was considered as FP. If a
simulation provided zero TPs, we then considered the lack of TP as FN. Similarly,
if a simulation resulted in zero FPs, we then considered the lack of FP as a TN. We
should note that the cut off of 15 mutations is fairly strict for the detection of TPs,
especially for a real size tumor/samples, but helpful to systematically evaluate our
model across different simulations.

Ranking distance D (between true driver and effect peak). For each simulation,
we calculate the ranking distance D (as a number of ordered mutations) between
the ranked position of simulated driver and the predicted growth or effect peak
(predicted driver). We further calculate the median eD and absolute median dis-

tance fDj j for different k effects, across simulated sequencing coverage, population
size, etc. To assess statistical significance for our method’s ability to detect drivers,
for each simulation, we also draw a random driver prediction. Then, for each
sample we calculate the distance between our random prediction and the simulated
driver as previously described. Finally, we compare the median, absolute median,
standard deviation, and SE against the random distance distribution for all
simulations. p Values are obtained from a two-tailed t-test. In samples where the
true driver is unknown (e.g., PCAWG linear tumors), the ranking distance D from
a growth peak corresponds to the ranked number of order mutations for one
specific mutation from the closest peak (e.g., PCAWG drivers).

Positive growth enrichment. A type of mutation (e.g., TP53 missense) is assessed
if it occurs significantly more often than random during periods of positive growth
r. For every type of mutation that we tested, we picked an equal number of random
mutations from the same individual samples. By repeating this process 100 times
we set our mean expectation for randomly associating mutations with positive
growth. Then we assess if the specific type of mutation is enriched during periods
of positive growth compared to random. For example, for n= 48 “TP53 missense”
mutations in our sample with positive growth, we found a comparative average of
xpr ¼ 40:38 of random mutations with a SE of mean SEM= 0.42. Significance was
then assigned based on z-score. As PGE we report the value of

PGE ¼ ðxp�xprÞ
total#ðof e:g:TP53missenseÞ, where in this example, xp is the number of TP53

missense mutations found during positive growth and xpr is the average number of
random mutations with positive growth r, as sampled 100 times with replacement.

Significance for deep-seq AML tumor drivers. To test the level of significance for
our growth peak prediction in the deep-sequenced tumor, we selected our top five
highest growth peaks and estimated the distance D between the three known cancer
genes and the closest growth peak. Then, for 1000 replicates we sampled random
mutations with replacement to create a random distribution of distances between a
random mutation and its closest peak. For a more conservative approach, we
increased the number of highest peaks to ten and reduced the random mutation
sample to the first 2000 mutations without losing significance. A two-tailed t test
was performed to establish the level of significance.

Enrichment across effect bins. To estimate enrichment across different effect
ranges for specific mutation types (e.g., TP53 missense mutations) we created effect
bins of k= [0.9–1.1, 1.1–1.3, … 2.1–2.3, 2.3–2.5, 2.5–2.7]. Across the PCAWG
samples, for each mutation, we also picked one random mutation from the same
sample. Then, we bootstrapped this process for 100 replicates. Finally, for every bin
we tested whether the specific mutation appeared to be enriched compared to
random.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
PCAWG protected datasets are controlled access that is subject to data usage agreement.
PCAWG datasets are available upon request and authorization from the ICGC Data Access
Compliance Office and dbGaP Authorized Access program for US-based projects. For data
repositories and data request see https://docs.icgc.org/pcawg/data/. Pseudo-VCF files are
provided at https://doi.org/10.6084/m9.figshare.9722651.v1. These files contain real VAF
distributions, mutation type information including gene names, but all genomic coordinates
and variance information have been masked and randomly modified. The source data
underlying Figs. 2–5 and Supplementary Figs are provided as a Source Data file.

Code availability
We are providing a perl script that analyzes a pseudo-VCF derived file format for growth
and effect calculation. It should be noted that our model does not correct for purity and
ploidy inconsistencies, but instead utilizes already derived mutational frequencies. Our
code is publicly available, together with test play data and a readme file at https://github.
com/gersteinlab/Evotum101.
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