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Genetic associations with mathematics tracking and
persistence in secondary school
K. Paige Harden1,8*, Benjamin W. Domingue2,8, Daniel W. Belsky 3, Jason D. Boardman 4, Robert Crosnoe5, Margherita Malanchini1,
Michel Nivard 6, Elliot M. Tucker-Drob1 and Kathleen Mullan Harris7

Maximizing the flow of students through the science, technology, engineering, and math (STEM) pipeline is important to promoting
human capital development and reducing economic inequality. A critical juncture in the STEM pipeline is the highly cumulative
sequence of secondary school math courses. Students from disadvantaged schools are less likely to complete advanced math
courses. Here, we conduct an analysis of how the math pipeline differs across schools using student polygenic scores, which are
DNA-based indicators of propensity to succeed in education. We integrated genetic and official school transcript data from over
3000 European-ancestry students from U.S. high schools. We used polygenic scores as a molecular tracer to understand how the
flow of students through the high school math pipeline differs in socioeconomically advantaged versus disadvantaged schools.
Students with higher education polygenic scores were tracked to more advanced math already at the beginning of high school and
persisted in math for more years. Analyses using genetics as a molecular tracer revealed that the dynamics of the math pipeline
differed by school advantage. Compared to disadvantaged schools, advantaged schools buffered students with low polygenic
scores from dropping out of math. Across all schools, even students with exceptional polygenic scores (top 2%) were unlikely to
take the most advanced math classes, suggesting substantial room for improvement in the development of potential STEM talent.
These results link new molecular genetic discoveries to a common target of educational-policy reforms.
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INTRODUCTION
Math matters for economic success.1 American students who take
math courses beyond Algebra 2 are more likely to enroll in college
and complete a STEM degree2–4 and have better labor market
outcomes.5–7 Students from low-income families and schools are
less likely to take advanced math courses in secondary school,
which impairs their entry to post-secondary STEM education and
ultimately to a STEM career.8–10 There are, however, continuing
debates about whether the underrepresentation of low-income
students in STEM is due to the diminished resources available to
their schools and families or, rather, due to those students having
lower aptitude or interest in math.8,11–14 Despite the intense focus
on STEM outcomes, it is challenging to conduct rigorous studies of
whether and how schools differ in the flow of students through
the math pipeline. In particular, analyses that statistically control
for traditional measures of student aptitude or interest might lead
to biased conclusions about how the math pipeline differs across
schools, because these student characteristics can themselves be
influenced by previous educational experiences.8

Our project addresses the challenge of understanding how
students’ progress through the STEM pipeline might vary as a
function of school characteristics by using a DNA-based measure
of students’ likelihood to succeed in education. A previous
genome-wide association study (GWAS) of 1.1 million people
identified hundreds of genetic variants associated with higher
educational attainment.15 These results can be used to calculate
an education polygenic score (education-PGS), which is a compo-
site index of genetic variants associated with completing more

years of school.16–18 The education-PGS predicts whether or not
an individual completes college about as well as his/her family
income does.15 Moreover, unlike traditional measures of student
aptitude, individual differences in genetic sequence are fixed at
conception and cannot be changed by educational experiences.
Polygenic scores can therefore be used as a molecular tracer to

measure flows of students through the STEM pipeline and assess
how these flows differ across schools. Just as a radiologist might
administer a radioactive tracer to track the flow of blood within
the body, researchers can use genetics as a molecular tracer to get
a clearer image of how students progress through the twists and
turns of the educational system. Here, we use polygenic scores to
follow the curricular histories of students who attended secondary
schools with varying levels of socioeconomic advantage. This
approach offers a way of diagnosing the extent to which students
who have high genetic propensities for success in education leak
out of the STEM pipeline by failing to advance in their
mathematics training.
In mapping the flow of students through the secondary school

math curriculum, we focus on two dimensions of high school
mathematics coursetaking—tracking and persistence. In some
countries (e.g., Germany), students are tracked into different types
of secondary schools at a discrete number of branch points. The
U.S., in contrast, does not have a formal tracking system. Instead,
students are offered curricular options that are differentiated by
content and difficulty (e.g., Pre-Algebra vs. Algebra I vs. Algebra II).
Students are informally tracked toward final math credentials via
their course placement in the first year of secondary school (or

1Department of Psychology and Population Research Center, University of Texas at Austin, Austin, TX, USA. 2Graduate School of Education, Stanford University, Stanford, CA, USA.
3Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA. 4Department of Sociology and Institute of Behavioral Science, University
of Colorado at Boulder, Boulder, CA, USA. 5Department of Sociology and Population Research Center, University of Texas at Austin, Austin, TX, USA. 6Biological Psychology, VU
University Amsterdam, Amsterdam, The Netherlands. 7Department of Sociology and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
8These authors contributed equally: K. Paige Harden, Benjamin W. Domingue. *email: harden@utexas.edu

www.nature.com/npjscilearn

Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0001-5463-2212
http://orcid.org/0000-0001-5463-2212
http://orcid.org/0000-0001-5463-2212
http://orcid.org/0000-0001-5463-2212
http://orcid.org/0000-0001-5463-2212
http://orcid.org/0000-0002-4786-125X
http://orcid.org/0000-0002-4786-125X
http://orcid.org/0000-0002-4786-125X
http://orcid.org/0000-0002-4786-125X
http://orcid.org/0000-0002-4786-125X
http://orcid.org/0000-0003-2015-1888
http://orcid.org/0000-0003-2015-1888
http://orcid.org/0000-0003-2015-1888
http://orcid.org/0000-0003-2015-1888
http://orcid.org/0000-0003-2015-1888
https://doi.org/10.1038/s41539-020-0060-2
mailto:harden@utexas.edu
www.nature.com/npjscilearn


earlier).19 As subsequent coursetaking hinges on successful
completion of pre-requisites and mastery of cumulative con-
tent, students’ curricular decisions become strongly path-
dependent.19–21 Students additionally vary after the first year
in whether they persist in their track throughout secondary
school, move to a less-advanced track, or discontinue mathe-
matics training entirely.
We first sought to validate the education-PGS as a molecular

tracer by testing whether it predicted being tracked into a more
advanced math class at the beginning of high school and whether
it predicted persisting in math for longer. Next, we used the
education-PGS to examine differences between schools in the
flow of students through the STEM pipeline. Specifically, we
focused on the difference between schools that served mainly
students from well-educated families versus schools that served
mainly students from families with less formal education. We
found that the education-PGS predicts movement through the
math coursetaking pipeline but that it also intersects with school
characteristics. We are able to use our genetic analysis to make an
important observation about the role of schools independent of
genetic variation. In particular, we observe that two students with
the same education-PGS might differ substantially in their
progress through the STEM pipeline, depending on their school
characteristics.
While our approach leverages insights from large-scale genetic

studies, we emphasize that genetics are clearly not the only factor
that matters for student achievement. Indeed, by comparing
students who are equivalent in their measured genetic propen-
sities, but who attend different schools, our analyses can
illuminate how mathematics achievement depends on contextual
factors. In this way, we view research that uses genetic tools as
complementing educational research on how school-based
factors, such as instructional practices, can boost mathematics
achievement.22

RESULTS
Mathematics coursetaking can be categorized from school
transcripts
Analyses used genetic and official school transcript data on N=
3,635 unrelated adolescents from the National Longitudinal Study
of Adolescent to Adult Health (Add Health, see Methods;
Supplementary Fig. 1).23 Respondents were enrolled in a U.S.
high school in 1994–1995. We restricted analyses to European-
ancestry participants to prevent inadvertently conflating genetic
variation with racial or ethnic background. Previous analyses of
national population patterns have revealed a fairly standardized
sequence of math coursework, ranging from more basic courses
like Pre-Algebra to more advanced courses like Calculus.24,25 We
used this sequence to categorize each participant’s math course-
work across four years of secondary school, based on information
obtained from schools, including course catalogs, school informa-
tion forms, and interviews with school administrators (Supple-
mentary Table 2).
At the beginning of secondary school (9th grade, age ~14

years), most students were enrolled in Algebra 1 (51%), but some
students were tracked to less advanced (Pre-Algebra or below,
29%) or more advanced (Geometry or above, 20%) courses. A
student’s final level of mathematics training was strongly
dependent on 9th-grade course enrollment: 44% of those enrolled
in Geometry or higher in 9th-grade ultimately completed Calculus,
compared to only 4.2% of those enrolled in Algebra 1 and 1%
enrolled in Pre-Algebra or lower level math class.

Student polygenic score predicts mathematics tracking
Students with higher polygenic scores were more likely to be
tracked into more advanced math courses in 9th grade (Fig. 1a,

b= 0.583, SE= 0.035, 95% CI= [0.516, 0.656], Supplementary
Table 3). However, Add Health participants with a higher
education-PGS more often grew up in high-SES families and
attended high-SES schools, as compared to participants with
lower polygenic scores.26,27 These gene-environment correlations
raise the possibility that genetic associations with mathematics
tracking could be due to clustering of students with higher
polygenic scores in environmental contexts that better support
math achievement. To address this possibility, we repeated our
analysis of tracking in the 9th grade using measures of school-SES
and family SES as covariates (Methods, Supplementary Table 3). As
expected, students from higher SES families were tracked to more
advanced math courses at the beginning of secondary school
(b= 0.419, SE= 0.039, 95% CI= [0.344, 0.5]). The association
between school-SES and tracking was also positive but not
significantly different than zero (b= 0.704, SE= 0.571, 95% CI=
[−0.671, 1.74]). However, including family SES and school-SES as
covariates attenuated the association between the education-PGS
and mathematics tracking in the 9th-grade only by about 20%
(attenuated from b= 0.583, SE= 0.035, to b= 0.469, SE= 0.035,
95% CI= [0.397, 0.53], Supplementary Table 3). Note that the
association with genetics was roughly comparable in magnitude
to the association with family SES. As a stronger test of whether
the genetic association with mathematics tracking was due to
clustering of students with high education-PGS into certain
schools, we repeated our analysis of 9th-grade tracking yet again,
this time using school-fixed-effects regression to compare
students to their schoolmates (Supplementary Table 3).28 Compar-
ing only students who were in Algebra 1 or below, students with
higher education-PGS were less likely, compared to their school-
mates, to be placed in a remedial track (Pre-Algebra or lower) than
in Algebra 1 (b= 0.387, SE= 0.054, 95% CI= [0.294, 0.504]).
Similarly, comparing only students who were in Algebra 1 or
above, students with higher education-PGS were more likely,
compared to their schoolmates, to be placed in an advanced track
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Fig. 1 Students with higher education-associated polygenic
scores are tracked to more advanced math and persist for longer
in math. Error bars represent 95% confidence intervals around
the mean.
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(Geometry or higher) rather than in Algebra 1 (b= 0.587, SE=
0.047, 95% CI= [0.501, 0.681]).

Student polygenic score predicts persistence in mathematics
coursetaking
What happens to students after the 9th-grade? Participants in this
sample attended high school in the mid-1990 s, when the average
high school graduation requirement in U.S. states was 2.4 years of
math coursework.29 Rates of math drop-out accelerated in later
years of secondary school (9th-grade: 2.6%, 10th-grade: 5.2%,
11th-grade: 17.6%, 12th-grade: 44.7%; Supplementary Table 2).
Once students dropped out of math, they tended to remain out of
math coursework; only 8% of students enrolled in a math class after
a year of no math. We summarized persistence across the four years
of transcript follow-up as number of advancing steps in the math
coursework sequence, ranging from zero to three. For example, a
student who completed Algebra 1, Geometry, and Algebra 2 in the
first three years of secondary school but who did not take a math
course in the 12th-grade, took two advancing steps.
Students with higher education-PGS took more advancing steps

(Fig. 1b; b= 0.139, SE= 0.011, 95% CI= [0.117, 0.159]; Supple-
mentary Table 4). We then repeated this analysis using a number
of additional covariates. As we observed for tracking, students
from higher SES families were more likely to persist in math
coursetaking across secondary school (b= 0.120, SE= 0.015, 95%
CI= [0.089, 0.147]). The association with school-SES was similarly
positive but not statistically significant (b= 0.234, SE= 0.0171,
95% CI= [−0.098, 0.572]). But the education-PGS association with
persistence was only modestly attenuated after accounting for
family- and school-SES covariates (b= 0.096, SE= 0.013, 95% CI=
[0.072, 0.12]). We also considered a model including 9th-grade
course placement as a covariate. Students who were tracked to
Pre-Algebra or lower in the 9th-grade persisted less in math than
those in Algebra 1 (b=−0.221, SE= 0.038, 95% CI= [−0.293,
−0.147]). In contrast, students in more advanced math tracks in
9th-grade (Geometry or higher) did not differ from those placed in
Algebra 1 (b=−0.059, SE= 0.044, 95% CI= [−0.147, 0.020]).
Controlling for tracking in the 9th-grade, the education-PGS again
remained associated with persistence (b= 0.087, SE= 0.012, 95%
CI= [0.061, 0.11]). While these analyses suggest a robust associa-
tion between the educational attainment PGS and persistence,
within-family analyses suggested that the polygenic score is not
predictive of the sibling with a higher PGS being more persistent
than the other (see SI) although this finding could partially be a
function of that sample being of limited size.

As with tracking, we repeated this analysis yet again using
school fixed-effects to compare students to others in their school.
Consistent with previous analyses, participants with higher
education-PGSs took more advancing steps in their mathematics
coursetaking than their schoolmates (b= 0.117, SE= 0.013, 95%
CI= [0.091, 0.138]; Supplementary Table 4).
We next analyzed persistence on a year-by-year basis. As shown

in Fig. 2, most students were enrolled in math in 9th-grade, and
their mean education-PGS was the sample mean (i.e., zero). Few of
these students dropped out of math in 10th-grade, but these early
drop-outs had a low average education-PGS (less than 0.3 SD
below the mean). The pace of attrition increased in subsequent
years (note growth in size of the red dots), and students who
continued to take any math class were an increasingly positively
selected group.
We considered whether the education-PGS provided any novel

information above and beyond what could be observed from
students’ performance in math class. It did. This set of analyses
focused on students who were enrolled in any math class in the
9th-, 10th-, and 11th-grades, and tested enrollment in any math
class in the subsequent year. End-of-year grade point averages
(GPAs; on a 4-point scale) in math were obtained from the school
transcripts. At every year, students from higher SES families,
students attending higher SES schools, and students who had
higher math GPAs were more likely to enroll in math the
subsequent year (Supplementary Table 5). After controlling for
these covariates, a 1-SD increase in the education-PGS was still
associated with 1.26 times greater odds of taking a math class in
10th-grade (95% CI= [1.05–1.56]), 1.15 times greater odds in 11th-
grade (95% CI= [1.08–1.28]), and 1.13 times greater odds in the
12th-grade (95% CI= [1.05–1.22]).
Our analyses reveal genetically stratified flows of students

through the mathematics training pipeline. We visualized these
flows using a “river plot” (Fig. 3).30 In the river plot, participants’
math courses (rows) are plotted by year of secondary education
(columns). Courses are ordered from most advanced at the top of
the graph to least-advanced at the bottom. The widths of the
rivers (i.e., the edges connecting row-column nodes) indicate the
number of students moving from one course to another. The color
of the rivers represents the average education-PGS for students
following a particular path (higher in blue, lower in orange).
Collectively, these results support the premise that the education-
PGS can be used as a molecular tracer to evaluate how students
flow through the STEM pipeline in secondary school.

Higher SES schools buffer the risks faced by students predicted to
struggle in math
Building on recent evidence,26,31 we next conducted two analyses
of how STEM pipeline dynamics varied by school advantage. First,
we tested if the genetic association with tracking differed
between high- and low-SES schools using cumulative link models
with product terms to capture interactions between school-SES
and the education PGS (Fig. 4a). The interaction term was positive,
suggesting that the education-PGS predicted 9th-grade tracking
more strongly among students in higher-status schools than in
lower-status schools, but this effect was not statistically significant
(interaction b= 0.59, SE= 0.291, 95% CI [−0.007, 1.11]); Supple-
mentary Table 3). A student with an education-PGS of+ 1 (top
16th percentile) who is in a high-status school has a 33.1%
probability of being tracked to Geometry in the 9th-grade (note
horizontal gray line in Fig. 4a). In order to have the same
probability of being placed in Geometry, a student in a low-status
school would need to have an education-PGS of+ 2.0 (top 2%).
Robustness analyses using non-parametric LOESS and adjacent-
category logit models suggested similar patterns (see Supple-
mentary Fig. 2).

−0.6

−0.4

−0.2

0.0

0.2

M
ea

n 
E

du
ca

tio
n 

P
ol

yg
en

ic
 S

co
re

grade 9 grade 10 grade 11 grade 12

no math
takes math

Fig. 2 Genetic associations with persistence in math recur year-
after-year. Error bars represent 95% confidence intervals around the
mean. Size of the dots represents number of students enrolled or
not enrolled in math in each year.
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Second, we tested the interaction between education-PGS and
school-SES in predicting number of advancing steps in math.
There was a significant and negative interaction on mathematics
persistence, such that low-PGS students were less likely to drop
out of math if attending high-status schools as compared to low-
status schools (b=−0.304, SE= 0.074, 95% CI= [−0.443, −0.147];
Supplementary Table 4). The interaction effect was similar when
including 9th-grade tracking as a covariate (b=−0.282, SE=
0.072, 95% CI= [−0.41, −0.147]). Figure 4b shows how the
number of advancing steps varied as a function of education-PGS
in schools at the 0.25 quantile versus 0.75 quantile of school
status. High-PGS students persisted about equally in their
mathematics training regardless of school status. In contrast,
students with an average or low education-PGS were particularly
likely to drop out of math in low-SES schools. For example, students

attending low-SES schools with an average education-PGS com-
pleted 1.6 advancing steps (note gray horizontal line in Fig. 4b).
However, in high-SES schools, a similarly low level of mathematics
persistence is only seen in students at the very low end of the
genetic distribution (education-PGS=−1.5, bottom 7%-ile).
Our final analyses focused on school differences in whether or

not a student completed Calculus, the most advanced course
category in the 9-course sequence. Results from a logistic
regression found that school-SES and the education-PGS each
predicted taking Calculus, but they did not significantly interact
(Supplementary Table 6). Students with an average education-PGS
had nearly twice the chances of taking Calculus in a high-SES
school (11%) than in a low-SES one (6%). Calculus was rare even
among students with exceptional polygenic scores (top 2%, or
+2 SD above the mean): High-PGS students had a 24% probability
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Fig. 3 Student DNA can be used to visualize the flow of students through the high school math curriculum. Columns represent year of
secondary school; rows represent mathematics course sequence ranging from least to most advanced. Width of the rivers connecting
columns proportional to number of students. Shading of rivers represents the average education polygenic score for students in a particular
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of taking Calculus in a low-SES school and a 31% probability in a
high-SES school.

DISCUSSION
We used data on student genetics as a molecular tracer to test
how the flow of students through the high school math
curriculum varied between disadvantaged versus advantaged
school contexts. Students with higher education polygenic scores
tended to enroll in more advanced mathematics tracks in the 9th-
grade, and they were more likely to persist in these tracks through
the end of high school. Furthermore, genetic associations with
tracking and persistence were not explained by differences
between schools or measured differences in family socioeconomic
status (SES).
However, these student-level results might be complicated by

the existence of gene-environment interactions, as the flow of
students through the mathematics pipeline differed between
high-SES and low-SES schools. Students with low polygenic scores
were buffered from dropping out of math in high-status schools.
Consequently, students in high-status schools had substantially
better math credentials by the end of high school, compared to
students who had comparable polygenic scores but who were
enrolled in low-status schools. This study cannot identify specific
causal factors for school-level differences. Such factors could
include school resources and instructional practices (e.g.,22), as
well as correlated features of neighborhoods and other environ-
mental contexts. Nevertheless, whatever the cause of these
school-level differences, our results underscore that many
students are not going as far in mathematics as we might expect
were they at another school. Furthermore, our results contrast
with previous suggestions that school differences in academic
outcomes might solely reflect differences in the genetic composi-
tion of their student bodies.13

Our findings suggest that genetics may provide a novel
approach to studying challenging educational problems. A
persistent methodological problem in educational research is
how to separate out the effects of teachers and schools from the
effects of student characteristics that are non-randomly distrib-
uted across schools, such as family income.32 Observable student
characteristics are in flux during these crucial years of develop-
ment and are also associated with both upstream and down-
stream developmental influences, such as previous schooling.
Genetics, as a fixed characteristic of the student that is as
predictive of success in schooling as family income,15 offers
researchers an additional tool for studying how student develop-
ment varies by context.
With the caveat that the Add Health data represents an earlier

cohort of students, our results further suggest that even
advantaged school contexts do a poor job of maximizing human
capital. Out of students who both had exceptional polygenic
scores (+2SD above the Add Health sample mean or the top 2%
of the distribution) and attended high status high school, about
31% took Calculus by the end of high school, whereas only 24% of
students who had the same score and attended low-status schools
took calculus. This deficit in advanced coursetaking among
students with exceptional genetic propensities for succeeding in
education suggests that many students who likely could excel in
mathematics are not being put in opportunities to do so. In terms
of our running metaphor: the pipeline is leaking. Badly.
We acknowledge several limitations. First, these analyses do not

inform our understanding of disparities between ethnic and racial
groups, which is one of the most pressing problems in the U.S.
educational system.33 Polygenic scores are useful only for under-
standing individual differences between people who share the
same genetic ancestry, and the validity of education GWAS results
has been established only for people of European ancestry.15 The
extent to which results will generalize to other populations is

uncertain. Just as the biomedical use of polygenic scores
developed in European-ancestry populations has the potential
to exacerbate pre-existing health disparities, using polygenic
scores in educational contexts also has the potential to exacerbate
pre-existing achievement gaps between racial and ethnic
groups.34

Second, the genetic predictor deployed here captures only a
fraction of the genotypic variation relevant for education.
Associations with the polygenic scores are attenuated by
measurement error,35 and other variants (e.g., rare variants36)
relevant for ultimate educational attainment might not operate
through the processes described here. We anticipate that genetic
associations with mathematics coursetaking and other academic
achievement outcomes will increase in magnitude as the sample
sizes of GWASs continue to increase and as polygenic scores
incorporate information from whole-genome sequencing.37

Third, our analyses lacked information on specific features of
policy or programming that might explain why students with
similar genetics fare differently in different schools. Our results
suggest that the relevant factors are linked in some way to the
socioeconomic characteristics of the students served. Future
research is needed to identify what modifiable features of
students’ educational environments are involved in amplifying
or suppressing genetic influences on their skill development as
they move through the STEM pipeline. We encourage researchers
to investigate the panoply of institutional, social, demographic,
and cultural differences that exist between schools and that might
contribute to school-level differences in the association between
student genetics and academic achievement.
Fourth, previous studies have suggested that up to half of the

polygenic score association with educational outcomes might
operate indirectly. In addition to giving information about his/her
own biology, a student’s polygenic score also reflects the
genotype of his/her parents, which is in turn associated with the
environment that the parents provide.38 Consequently, the
association between genotype and math curricular choices might
partially operate not through the genetically-influenced charac-
teristics of the student herself, but through the genetically-
influenced characteristics of her parents, such as the greater
knowledge that college-educated parents have about how to
navigate a differentiated curriculum.39 Work is already beginning
to document such pathways.40–42 Disentangling such indirect
genetic effects43 from genetic effects that operate through the
biology of the student will require larger samples of genetic
relatives, such as parent-offspring trios.44 We conducted an initial
exploration of this question by comparing siblings raised in the
same family (Supplement), but the relatively small number of
sibling pairs with transcript data available in Add Health limits the
definitiveness of our conclusions about the role of indirect genetic
effects.
Fifth, there is limited information on the educational histories of

students prior to the 9th-grade, but students’ secondary school
experiences are, of course, shaped by their previous mathematics
skill development and curricular choices. We suspect that the
genetic associations with tracking in the 9th-grade partially
reflects genetic variation in math skills that have been acquired
prior to high school; however, the roles of attributes other than
math ability, including the constellation of personality and
motivational factors referred to as “non-cognitive” skills, are also
likely important.45 We see potential hints of this here, as polygenic
scores predict persistence in math even after controlling for the
student’s math grades in the previous year. Other genetically
influenced traits that are potentially influential for course
placement are the student’s attention problems, behavioral and
mental health difficulties, academic interests, motivations, and
self-concept, and ability to elicit support and investment from
adults.46–48
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It is now well established that educational attainment is
heritable49 and can be predicted from an individual’s DNA.50–52

What is less well-understood is how genetic differences between
individuals lead to differences in educational outcomes. In order
for genetics research to be of greater relevant to education
research—and, ultimately, to education policy and practice—
greater knowledge is needed about the developmental and social
processes that connect students’ DNA to their educational
outcomes.53 As sample sizes for GWAS continue to increase, more
and more specific genetic variants associated with complex
human phenotypes, like educational attainment, will continue to
be identified. There are dangers associated with genetic research
being used to justify an overly reductionistic or bio-deterministic
account of educational outcomes.54,55 Here, however, we illustrate
how DNA measures offer new opportunities for educational
science. Specifically, we show that genetics can be used to identify
leaks in the STEM pipeline and can refine our understanding who
is benefitting (and who is not) from educational contexts.

METHODS
Sample
The National Longitudinal Study of Adolescent to Adult Health (Add
Health)23 is a nationally-representative cohort drawn from a probability
sample of 80 U.S. high schools and 52 U.S. middle schools (in roughly 90
U.S. communities). Participating schools were representative of all U.S.
schools in 1994–95 with respect to region, urban setting, school size,
school type, and race or ethnic background. Add Health participants
provided written informed consent for participation in all aspects of Add
Health in accordance with the University of North Carolina School of Public
Health Institutional Review Board guidelines that are based on the Code of
Federal Regulations on the Protection of Human Subjects 45CFR46. This
project was approved by the Stanford University IRB (eProtocol #: 35363).
We constructed our analytic sample as follows (see also Supplementary

Table 1). At Wave 1, data was collected for N= 20,369 respondents. At
Wave 3, respondents of the Add Health study, who were then 18–26 years
old, were contacted and asked to give signed consent for the release of
their official high school transcripts (AHAA).25 Transcripts were collected
regardless of whether the student graduated from high school. At Wave 4,
biospecimens were collected for genome-wide genotyping (described
in27,56). Of those in the genetic sample, we focused on unrelated
respondents of European ancestry, due to the problem of population
stratification in diverse samples.33,57 Transcripts (N= 12,032) and genetic
samples (N= 5,045 of European origin) were collected for partially
overlapping subsets of the Wave 1 respondents. Our analytic sample
therefore consisted of 3,635 European ancestry respondents with both
genotypic and transcript data.
Descriptive statistics are contained in Supplementary Table 1. Compared

to the full Add Health sample, our analytic sample had higher family SES,
higher overall GPAs, and higher rates of post-secondary education. Missing
information further reduced sample size in some analyses.

Polygenic scores
Using results from the most recent educational attainment GWAS,15 we
constructed a polygenic score using all single nucleotide polymorphisms
(SNPs) with reported effect sizes that are also in the Add Health genetic
dataset and where the effect allele can be reliably matched to the allele
reported in the Add Health genetic data. We residualized the PGS on the
top 10 principal components of genetic ancestry and then standardized
the PGS based on the full set of respondents in the genetic dataset (N=
5045). A similar PGS has been used in previous work.26,27 Genotyped
respondents who were not in the transcript dataset had a mean education-
PGS of −0.11, whereas the genotyped respondents with transcript data
had a mean education-PGS of 0.04 (Supplementary Table 1).

Transcript coursetaking and course grades
Course content information obtained from the schools was used to identify
the level of each course on a student’s transcript and to assign it a
Classification of Secondary School Courses code. These codes were used to
develop an ordinal indicator of the math course sequence, ranging from 0
(no math) to 9 (calculus). These indicators were developed by the AHAA

project25,58 to be compatible with the 2000 National Assessment of
Educational Progress High School Transcript Study24 and are based on
population patterns of coursetaking as derived from the National
Education Longitudinal Study of 1988.59 The percentages of students
enrolled in each level at each year are in Supplementary Table 2. For
analysis of 9th-grade coursetaking, math courses that focus on remedial
skills (Basic/Remedial and General) were collapsed, as were math classes
beyond Geometry (Algebra 2, Pre-Calculus, Advanced Math, and Calculus).
Students’ final math course grades at each year were obtained from

transcripts and coded on a 0–4 scale (0= F, 1= D, 2= C, 3= B, 4= A). If a
student took the class pass/fail, withdrew, or received an incomplete, then
his/her course grade is missing.25 A cumulative GPA was also computed
from these transcript-based grades.

Family and school SES
Family-of-origin SES was indexed using the first principal component of
parental education, job status, income, and the number of benefits
received (loadings were 0.58, 0.43, 0.49, and 0.49, respectively); see27 for
additional information on this indicator. The family SES variable was
standardized with respect to the full Wave I sample; the current analytic
sample was more advantaged than the full sample (M= 0.34, SD= 1.16).
We used an indicator of school status used previously.26,60 Add Health

administered an in-school survey to all students in participating high
schools (N= 90,118). This information was used to calculate the
percentage of students at each school who report that their mother
graduated high school.

Analyses
Our statistical models varied as a function of the outcome variable. For
non-categorical outcome variables (e.g., number of advancing steps), we fit
baseline generalized linear models of the form

E yij
� �

¼ g�1 b0 þ b1PGSij þ controls
� �

; (1)

where i indexes school, j indexes individual, and an appropriate link
function g is chosen given the distribution of the outcome y. For analyses
of 9th-grade tracking, we fit ordered logistic regressions.61 For analysis of
persistence, we used Poisson regressions. We fit interaction models of the
form:

E yij
� �

¼ g�1 b0 þ b1PGSij þ b2School Statusij þ b3PGSij � School Statusij þ controls
� �

:

(2)

For interaction models, we also included interactions between
covariates and the key main effects, so as to guard against spurious
findings from specification error.62 Thus, in models examining interactions
between the education-PGS and School Status (as in Fig. 4), we also
included interactions between PGS and sex, School Status and sex, PGS
and birth year, and School Status and birth year (see Supplementary Table
3). Standard errors for key models (Tables S3–S6) are adjusted for school-
based clustering using bootstrap resampling of the schools.63

For our ordinal categorical outcomes (e.g., tracking in 9th-grade), we
consider cumulative link models.61 As used here, cumulative link models
assert that:

Pr yijk � j
� �

¼ f θj � b0 þ b1PGSij þ controls
� �� �

; (3)

where k in [0,1,…, K] now indexes the category of the outcome y. We used
a logit link, rendering this model equivalent to the proportional odds
model.64 We again compute cluster-robust standard errors using school-
based bootstrap resampling. One key assumption of this model is that the
effect of the predictors does not vary across categories. We therefore also
present results from alternative models (e.g., adjacent-category logit
models) as robustness checks, see Supplement.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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