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Ranking environmental degradation trends of
plastic marine debris based on physical properties
and molecular structure
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As plastic marine debris continues to accumulate in the oceans, many important questions
surround this global dilemma. In particular, how many descriptors would be necessary to
model the degradation behavior of ocean plastics or understand if degradation is possible?
Here, we report a data-driven approach to elucidate degradation trends of plastic debris by
linking abiotic and biotic degradation behavior in seawater with physical properties and
molecular structures. The results reveal a hierarchy of predictors to quantify surface erosion
as well as combinations of features, like glass transition temperature and hydrophobicity, to
classify ocean plastics into fast, medium, and slow degradation categories. Furthermore, to
account for weathering and environmental factors, two equations model the influence of
seawater temperature and mechanical forces.
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uring the past several decades, accumulation of plastic in

the oceans has emerged as a global challenge!. Currently,

the severity of plastic marine debris continues to increase
and has reached worldwide proportions®3. In spite of the enor-
mous scale, a wide variety of environmental, marine biology,
oceanography, ecology, and toxicology investigations have
already gleaned important insight on ocean plastics. This includes
the arduous task of collecting, sorting, and identifying ocean
plastics along with exploring mechanisms for degradation, and
examining implications for aquatic life#-©.

Due to a wide variety of environmental factors, such as
exposure to UV radiation, wind, waves, seawater, and bacteria,
plastic waste experiences concurrent influences leading to
cracking, surface erosion, abrasion, and breakdown to meso-
plastic (~5-20mm), large microplastic (~1-5mm), small
microplastic (~20-999 um), and nanoplastic (<1 pm) sized pie-
ces’~, This multi-faceted situation has led to questions about size
distribution and composition along with inquiries into how bulk
properties of plastics change in the ocean®!l. Consequently, a
large amount of data on physical (i.e., density, surface roughness,
weight loss over time), thermal [i.e., melting temperature (T,),
glass transition temperature (Tg)], and mechanical (i.e., modulus)
properties have been measured along with molecular weight
changes. Spectroscopic methods, like ATR-FTIR spectroscopy,
and chromatographic techniques, such a gel-permeation chro-
matography (GPC), have greatly assisted in characterization of
plastics!2.

On a molecular level, three important degradation mechanisms
impact physical and thermal properties of plastics in the ocean!?.
First, depending on surface energy, bacteria colonize surfaces in
the ocean and have a propensity for biofilm formation!3-1>, This
provides an opportunity for biodegradation in the form of mass
loss via surface erosion. While the number of bacteria and
microbial enzymes that facilitate surface erosion is enormous!®, a
few examples include biodegradation of polyesters (poly-
caprolactone, PCL)!7, polyamides (Nylon 6)!8, and polyolefins
(ie, polyethylene, PE)!°. Typical rates for these processes
decrease as follows: polyesters > polyamides > polyolefins.

Second, abiotic hydrolysis of functional groups, like esters,
carbonates, and amides, severs the large macromolecules that
comprise a piece of plastic and thereby reduce molecular weight*.
This process is facilitated by the alkalinity of seawater (pH range
~8-8.3) and presence of hydroxide (i.e., OH™) ions?0. Based on
degradation studies at different temperatures and subsequent
calculation of activation energy for abiotic hydrolysis, propensity
for degradation depends on functional groups and polymer
structure such that PCL (81kJmol~!)>bisphenol A poly-
carbonate (PC) (92 kJ mol—1) > PET (125 k] mol—1)21,

Generally, these abiotic and biotic processes proceed slowly
and depend on a number of factors, like type of functional group,
molecular weight, and surface to volume ratio. Functional groups,
like esters, amides, carbonates, and urethanes, allow much faster
surface erosion via enzymatic hydrolysis and abiotic hydrolysis
than plastics without functional groups, such as PE and poly-
styrene (PS). Although Nylon degradation is slower than polye-
sters, biodegradation of nylon rope submerged in the ocean was
1% per month over a 12-month period?2.

Third, exposure to UV radiation and oxygen causes
photodegradation?324. These photodegradation processes occurs
to a depth of 50-100 pm and result in molecular weight reduction
and cracking that facilitates microplastic formation’. In addition,
as C-H bonds oxidize, the resulting carbonyl groups, like alde-
hydes and ketones, facilitate a “higher coverage of biofilms™2°.

Since these photodegradation processes involve a radical
mechanism, the likelihood of photo-initiated C-H oxidation and

chain scission depend on polymer structure. As a result, most
commercial plastics contain additives such as antioxidants and
light stabilizers that delay degradation?®?7. In general terms,
polymers without tertiary hydrogens, like poly(methyl metha-
crylate) (PMMA) and polytetrafluoroethylene (PTFE), are often
highly stable. In contrast, others are moderately stable (PET, PC)
or poorly stable due to the presence of tertiary C-H bonds [PS,
poly(vinyl chloride) (PVC)], allylic C-H bonds [polyisoprene
(PI), polybutadiene (PBD)], C=0O bonds [polyamides (PA),
polyurethanes (PU)], and catalyst residues (PE, polypropylene
(PP)]26. Overall, a comparison of plastics with and without ter-
tiary C-H bonds reveals reactivity (i.e., bond dissociation ener-
gies) decreases as follows: PVC > PS > PP > PE%

Although the enormous scale of plastic debris in the ocean is
daunting, many informative publications have laid a foundation
for understanding the scope of this dynamic, global problem. As a
result, opportunities have emerged to illuminate important fea-
tures that influence the most common types of degradation
mechanisms. Consequently, we hypothesize a combination of
experimental data and computational predictions could translate
polymer structure on a molecular level into a predictive model
that addresses unanswered questions regarding the viability of
degradation in the ocean. Here, thorough analysis of polymer
structure, composition, physical properties, and degradation data,
we predict a hierarchy of features that regulate degradation. As
such, the following investigation starts with a simple comparison
(Fig. 1) and systematically increases complexity (Figs. 2-3) fol-
lowed by further refinement with machine learning (ML)
(Figs. 4-5). Then, inspired by the importance of hydrophobicity
and T, two equations for quantifying surface erosion are
presented.

Results

Database. Initially, constructing a database delineated polymer
structure, physical properties, and experimental degradation data
in the literature. As a caveat, the applicability of biodegradation
tests span a wide range, and biodegradation in one environment
(i.e., soil) may not always transfer to other scenarios (i.e., oceans)?8.
As a result, preference has been given to ocean studies, those using
seawater from the ocean in a laboratory, artificial seawater with
marine bacteria, or enzymes.

Over 110 polymers including polyesters with linear??,
branched®, and cyclic3! structures as well as polyacetals3?,
PA33, polyacrylamides, PC3%, polyethers’>, PE1%:25, pp2236,
polysiloxanes!®, PS37, PU!>38 and PVC*® were investigated
(Supplementary Fig. 1). Plastics in the database included
commercial samples (69) and those made in a laboratory (46).
Polymers were categorized by class (ie., type of polymer),
specimen (i.e., films, powders), physical attributes (i.e., mass,
volume, surface to volume ratio), and experimental parameters
(i.e., time in seawater, temperature). Weight loss during exposure
to seawater as well as abiotic or biotic conditions was also
recorded. Additionally, molecular level descriptors and bulk
polymer descriptors differentiated each polymer.

Bulk property descriptors included density, weight-average
molecular weight (M,,), number-average molecular weight (M,),
dispersity (M,,/M,), Tg, melting temperature (Ty,), % crystallinity,
and enthalpy of melting (i.e., amount of energy required in J g~1).
Molecular level descriptors included types of carbon, oxygen, and
nitrogen atoms using the concept of hybridization (i.e., sp?, sp?)
and the % of these atoms in the polymer. To capture architectural
features on the molecular level, the database denoted the number
of hydrogens per monomer, number of CH;, CH,, and CH
groups per monomer, the number of cyclic rings, and % atoms in
cyclic rings. To quantify the oil-like or water-repellent attribute of
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each polymer on a continuum, a concept termed hydrophobicity
was investigated. Overall, the database contained >110 polymer
samples with >5000 descriptors.

Hydrophobicity. In Fig. 1a, quantifying hydrophobicity involved
a molecular level method that combines theory, simulation, and
experimental validation®0-42. The theory was inspired by phar-
maceutical advances in determining the solubility of drug-like
molecules with computational octanol-water partition coefficients
(LogP)*3. Based on the LogP equation in Fig. la, both negative
and positive values are possible. Negative LogP values predict
water solubility, polymers that swell in water, or polymers that
demonstrate a propensity to absorb water while positive values
predict insolubility in water. Using molecular dynamics (MD)
simulation to minimize energy of molecular models followed by
calculation of surface area (SA) allows comparison of different
polymers.

In addition to the thermodynamic significance of octanol-water
partition coefficients (Eq. 1), which describes the free energy
(AGiransfer) required to transfer a molecule from water to
octanol#4, this strategy underscores the important role of SA
rather than volume*®>. Consequently, LogP(SA)~! values have
provided a molecular level strategy to predict solubility and
structure for applications involving crystallization driven self-
assembly (CDSA) and polymerization induced self-assembly

(PISA)46-48,
AG

transfer

LogP = —
8 RT Inl0

(1)

Screening features. After creation of the database, a question
arose regarding which molecular and bulk descriptors would
provide the best prediction of degradation in the ocean. Accord-
ingly, all the features from the database were screened for trends
using data-analytics approaches, such as correlation matrices
(Supplementary Fig. 2). Out of this initial pre-screening, seven
attributes seemed promising: density, molecular weight, T,, %
crystallinity, enthalpy of melting, % sp> carbons, and LogP(SA)~1.
Interestingly, LogP(SA)~! values have sensitivity to hybridization
(i.e., % sp> and sp? carbons), density, large numbers of atoms (i.e.,
H,C, N, O, Si, P, S, Cl, Br, F) and how these atoms are connected.
Consequently, this descriptor applied to more polymers than
single features, like % nitrogen atoms, which works well for PA, or
% sp> carbons, which was informative but better suited for a single
class of polymers, like polyesters. As a result of the correlation
between LogP(SA)~! and other features (Supplementary Fig. 3),
the list of seven possible predictors shortened to five: molecular
weight, T,, % crystallinity, enthalpy of melting, and LogP(SA)~1.

After pre-screening the database, we wondered how many
features would be necessary to understand the nearly over-
whelming complexity of plastic degradation in the ocean. As a
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Fig. 1 Plastics cover a wide range of hydrophobicity. a Flow chart for calculating hydrophobicity, b range of LogP(SA)~! values for various plastics.
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result, the complexity of analysis systematically increased in
Figs. 1-5. For instance, Fig. 1 explores a straightforward
evaluation of molecular structure with one feature. Then, Fig. 2
compares degradation data under controlled condition in a
laboratory setting with two features. Figure 3 widens the number
of samples by comparing laboratory and ocean conditions on a 5-
tier scale. Then, Figs. 4 and 5 use a ML method to further explore
and refine this question.

Figure 1b arranges common types of plastics found in the ocean
and a wide variety of other examples according to LogP(SA)~!
values. These initial efforts to investigate molecular structure
indicate functional groups substantially lower the hydrophobicity
relative to polyolefins. For example, Nylon 6 [LogP(SA)~!=
0.0045 A—2] and PCL [LogP(SA)~! = 0.0096 A—2] were consider-
ably less than PE [LogP(SA)~!=0.0236 A—2]. Furthermore, this
convenient method helped sort plastics into several groups.

The first group consists of water-soluble plastics [LogP(SA) ™!
<0A~2] in Fig. 1b. These types, like poly(ethylene glycol) (PEG)
or poly(vinyl alcohol) (PVA), have polar functional groups (i.e.,
OH groups) that degrade via microbial oxidation®’. Alternatively,
other functional groups such as amides in Nylon 4 degrade
through biotic hydrolysis®?. A second group in Fig. 1b comprises
insoluble plastics [0 < LogP(SA)~! < ~0.013 A=2] susceptible to
surface erosion via biodegradation, abiotic hydrolysis through
exposure to seawater, and photodegradation. Within this
category, the propensity for polyester surface erosion correlates
with hydrophobicity when the T values < ocean temperature. A
similar trend was noted for nylons as proclivity to degrade
decreased accordingly: Nylon 4 > Nylon 6> Nylon 121850, The
third group [LogP(SA)~! > ~0.015 A~ 2] in Fig. 1b corresponds to
the most hydrophobic plastics that may not have functional
groups for abiotic hydrolysis but most likely have a large
percentage of C-H bonds susceptible to photodegradation. In

addition to oxidation via photo-initiated processes, extremely
slow surface erosion is observed for PE and PP. Recent studies
confirm that plastics produced in the highest volume, like PE and
PP, make up a disproportionate percentage of ocean plastics near
the sea surface®. Interestingly, LogP(SA)~! values for these very
hydrophobic plastics correspond to lower densities (Supplemen-
tary Fig. 3) that would enable floating near the sea surface.

While the ranking in Fig. 1 generally correlates with proclivity
for polyester degradation, plastics with T, values>ocean
temperature, like PLA, PLLA, and PET, degrade more slowly
than expected®®. For instance, although PLA degrades under
composting conditions, in seawater degradation proceeds very
slowly?8. This highlights the need for multiple metrics to
understand degradation in the ocean. As a result, crystallinity,
enthalpy of melting, T,, molecular weight, and LogP(SA) ! values
were investigated in pairs to find patterns of degradation.

Crystallinity. To further explore functional groups and hydro-
phobicity trends in Figs. 1, 2 compares crystallinity and enthalpy
of melting with LogP(SA)~! values for abiotic and biotic condi-
tions. As denoted by the size of the circles in Fig. 2, surface
erosion was calculated using surface area of each plastic object
(SApun), mass loss, and number of days in seawater. To achieve a
systematic variety of hydrophobicity values, the number of
hydrophobic methylene (CH,) units in the monomer structures
ranged from 5 for poly(propylene succinate) (PPS) to 11 for poly
(propylene sebacate) (PPSeb).

In Fig. 2, several meaningful observations are worth mention-
ing. First, enzymatic degradation of polyesters with T, values
below ocean temperature was faster than abiotic hydrolysis.
Although Nylon 6 exhibited a similar trend!$, further comparison
with other plastics was difficult due to the lack of studies
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comparing abiotic and biotic degradation under similar condi-
tions. Interestingly, while laboratory experiments for polyesters in
Fig. 2 fail to account for weathering processes and mechanical
forces in the ocean, controlled conditions help separate the
influence of abiotic hydrolysis from biodegradation and photo-
initiated C-H bond oxidation. If abiotic hydrolysis, biodegrada-
tion, and photo-initiated processes occur simultaneously, then
decreases in molecular weight via abiotic hydrolysis or photo-
initiated reactions could facilitate biotic processes while enzy-
matic hydrolysis might promote abiotic hydrolysis. Second,
abiotic hydrolysis in Fig. 2a and c appears more sensitive
to increases in hydrophobicity, enthalpy of melting, and %
crystallinity than biotic processes. For instance, the largest
abiotic hydrolysis rates for poly(propylene glutarate) (PPGI)
and poly(propylene adipate) (PPAd) slowed as hydrophobicity
(LogP(SA)~1>0.007 A=2) and enthalpy values (>50]g~1)
increased. In contrast, biotic processes demonstrate faster rates
for more hydrophobic polyesters, like poly(propylene pimelate)
(PPPim) and poly(propylene suberate) (PPSub). Third, compar-
ison of polyesters and PA (i.e., Nylon 6, Nylon 6,6) indicate biotic
and abiotic processes still occur for semicrystalline plastics
but crystallinity will slow these processes. A comparison of PLA
and PLLA (Supplementary Fig. 4) indicate the increased %
crystallinity of PLLA slows surface erosion. Although % crystal-
linity, enthalpy of melting and T, values are all informative,

crystallinity and enthalpy of melting allow an easier comparison
of polyesters and PA (i.e., Nylon 6, Nylon 6,6) than T, values.
For example, the relationship between T, values and degradation
show opposite trends for polyesters and PA. As such, degradation
decreases as follows: Nylon 4 (T, ~ 267 °C) > Nylon 6,6 (T, ~
264 °C) > Nylon 6 (T, ~ 220 °C)!1850. In contrast, polyesters with
lower T,, values, such as PCL (T, ~ 60°C), show faster
degradation than poly(ethylene succinate) (PES) (T, ~ 104 °C).

To account for surface to volume ratio and time under
controlled conditions, Fig. 2 compares degradation data for
polymer films using units of mg cm~2 day~!. In many cases, mg
cm~2 day~! values were not reported but could be calculated
when dimension and weight of samples were given with the
experimental section. However, the wide variety of experimental
parameters (i.e. temperature, films, powders, discs), environ-
mental conditions in the ocean, as well various methods
for reporting weight loss [i.e., %, mg cm~2 day~!, and BOD
(% day—1)] makes comparison of data difficult. As a result, in
Figs. 3-5, a second strategy was devised to compare experiments
under controlled conditions in a laboratory with ocean studies.
This method converted various weight loss values into 3-tier
categories (slow, medium, fast) and 5-tier categories (very slow,
slow, medium, fast, very fast). As a reference, poly(butylene
adipate) (PBAdip), which appeared in several studies was
assigned a medium value.
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T, and molecular weight. Figure 3 investigated the combined
effect of T and molecular weight on degradation. In the context
of photo-initiated C-H bond oxidation, abiotic hydrolysis, and
biotic activity, several observations emerged. First, degradation
trends paralleled T, values and decreased accordingly: linear
polymers (i.e., PCL)>branched polymers with methyl groups
(i.e., PHB and PHBV) > polymers with cyclic rings and functional
groups in polymer chain (i.e., PBAT, PET, PC) > polymers with
cyclic rings and all carbon atoms in polymer chain [i.e., PS, poly
(vinyl pyrrolidone)]. These trends suggest degradation occurs
more rapidly with T, values below ocean temperature. However,
some plastics without functional groups, such as polyolefins,
exhibit very slow degradation even though T, values are quite
low. Furthermore, additives in commercial polyolefins slow
degradation for PE (0.45 wt. % month—!) and PP (0.39 wt. %
month—1)22,

Second, the fastest abiotic hydrolysis occurred for molecular
weights below ~25kgmol~!. However, when T, <ocean tem-
perature, enzymatic activity degraded PHB (T, ~ 2-5°C)
reasonably well even when molecular weight was 200-700 kg
mol~1. Third, Fig. 3 provides a framework for estimating plastics
based on two common experimental measurements, namely
molecular weight and T,. However, this framework works best

g
for comparing polymers with either all positive or all negative

LogP(SA)~1 values. In Fig. 3d, the negative LogP(SA)~! value for
the polyol (i.e. polyvinyl alcohol), which is shown by a left-facing
yellow triangle, seems out of place when superimposed on
plastics with positive LogP(SA)~! values. This illustrates the
difficulty in comparing negative and positive LogP(SA)~! values
on a graph of molecular weight versus T,. Additionally, another
example of this challenge occurred in Fig. 3c for T, <ocean
temperature when comparing the negative LogP(SA)~! value for
polyethers (i.e. PEG) with the positive LogP(SA)~! values for
linear polyesters.

Machine learning. In order to further investigate biodegradation
trends, ML analysis of physical property data was conducted.
Although the current data set needs more PC, PA, and PU
samples to develop high-accuracy validated prediction models,
decision trees were explored because of their value in visualizing
information gained from categorizing data. Figures 4 and 5 show
decision trees that classify polymers using the following features:
M,, T, enthalpy of melting, and LogP(SA)~L.

The decision trees were trained on the data using Gini impurity
and manual limiting of the depth to 2-3 levels to avoid
overfitting. Accuracy of the decision tree model on the training
data (Supplementary Fig. 5) increased from 72.2% with two-levels
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containing two features to 87.1% with three-levels comprising
four features. Due to the relatively limited number of samples,
applying ten-fold cross-validation to the models provided an
accuracy of the 57.8% for the two-level model and 63.2% for the
three-level model. In either case, the models avoided incorrectly
classifying a fast degradation process as slow degradation and vice
versa. Based on these results, two to four features are powerful
predictors for degradation categories (i.e., fast, medium, and
slow) for a wide variety of polymers. Even with two features, like
molecular weight versus T, or LogP(SA)~! versus Ty the
compelling results underscore the connection between environ-
mental degradation and structure-property relationships. Inter-
estingly, the division between slow and medium degradation in
Fig. 4 approximates ocean temperature.

Figure 5a shows additional depth to the decision tree with
three-levels of classification. This tree uses four predictor features
and provides improved accuracy over the two-level tree. Given
the wide variety of experimental parameters in the database, some
incorrect predictions are expected. In the case of Fig. 4, most

errors resulted for plastics, like polyolefins, when LogP(SA)~!
exceeded ~0.010 A=2 or when LogP(SA)~! <0 as demonstrated
by water-soluble polymers, like PVA. However, moving from the
two-level tree in Fig. 4 to the three-level tree, the number of
inaccurate predictions decreased from 20 to 8, respectively. This
suggests Fig. 4 applies to a narrower window of LogP(SA)~!
values than Fig. 5.

In order to visualize these errors, Fig. 5b shows the eight
incorrect predictions of the training set on plot of LogP(SA)~!
versus T,. Although this plot reasonably splits into zones of fast,
medium, and slow degradation, most errors congregate on the
fast-medium or medium-slow border where degradation cate-
gories merge together. As a result, these inevitable boundary
errors differ from conflicting literature data. To elaborate, the
data contains instances were differences in environmental
conditions as well as comparison of commercial materials with
those produced in a laboratory produced a range of degradation
behavior. As denoted by a symbol containing an ‘%’ in the slow
category, this was especially true for PET and PC.
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To illustrate the challenge of assessing diverse environmental
conditions, variances in temperature, ocean conditions, and
laboratory studies resulted in ranking of PET degradation from
very slow, slow, medium, and fast on a five-tier scale and slow to
medium on a three-tier scale. The dilemma of deciding which
data trend is the most appropriate highlights the need for a data-
driven method to analysis multiple possibilities. During ML, we
noticed PET was ranked as medium in the two-level decision tree
and slow in a three-level tree. Since the three-level tree in Fig. 5
produced less incorrect predictions than molecular weight and T,
(Supplementary Fig. 6), the location of PET in the slow category
of Fig. 5b is more appropriate for commercial plastics than the
medium category in Figs. 3c and 4b. Moreover, assessment of
PET as slow in Fig. 5b agrees with observations of ~20 year old
PET in marine environments!.

Discussion

In order to understand the applicability of trends in Figs. 4 and 5,
data analysis involved the following considerations: First, to cover
a wide range of environmental conditions, data collection inclu-
ded temperatures ranging from ~0°C! to >30°C3*°2, shallow
ocean depths (1-10 m)22°3, deep seawater (~300 m to >600 m)!7,
and simulated deep sea pressure®*. Second, this study focuses on
plastics in direct contact with either real seawater or artificial
seawater. As a result, certain scenarios, like microplastics that
wash onto beaches due to mechanical action of waves and
weather on beaches in the dry state or cycle back and forth
between the ocean and beach, exceeds the limit of the current
database. Third, regarding the presence of bacteria that could
potentially result in biodegradation, coastal regions and open
oceans to a depth of 225m have similar number of cells®.
Consequently, degradation trends in Figs. 4 and 5 could apply to
both coastal and open ocean. Fourth, since T, values exhibit
sensitivity to polymer structure®®, molecular weight (i.e., Flory-
Fox equation), crosslinking®’, and plasticizers®3, this metric has
some comprehensive potential. Differences in heating rates dur-
ing T, measurements as well as small quantities of plasticizer
introduces variability in the data, but this error is nominal
compared to the breath of the categories in Figs. 4 and 5. Fur-
thermore, due to the availability of data, Figs. 4 and 5 includes
commercial samples of virgin PVC.

The influence of weathering on plastic debris represents a
complex issue that depends on a number of parameters, like
sample  depth, temperature, —mechanical forces, and
sunlight!025>9, Our analysis of polyesters and PA indicates cer-
tain environmental parameters, like seawater temperature (T\yacer)
and sample depth, have potential to speed up or slow degrada-
tion. For instance, examination of PHBV?3 in a coastal area
yielded a relationship between surface erosion and temperature
and these quantities decreased with increasing ocean depth
(Supplementary Fig. 7). Further comparison of PHBV in a coastal
region®> with PHBV in deep sea conditions!” as well as PCL,
PLA®162) and Nylon!822 indicates increasing Tiyer Will increase
surface erosion (Supplementary Fig. 8). In addition, the magni-
tude of this temperature effect, as reflected by the slope, depends
on type of plastic (PCL >PHBYV in coastal area > PHBV in deep
sea>Nylon 6 >PLA) and scales with (Tyaeer — Tp)(LogP) ~1(SA)
(Supplementary Fig. 9).

The relationship between surface erosion rates (k) and physical
properties in Eq. 2 model data from polyesters and PA with LogP
(SA)™! >0 and enthalpy of melting<85]g~!. Essentially, Eq. 2
depends on (Tyater — Tg)(LogP)*l(SA) and predicts the slope
of surface erosion versus temperature with units of mg cm=2 day~!
°C~L. We hypothesize predictions extend to other polymers con-
taining functional groups with carbonyls (C=0), such as PC and

PU. To test this hypothesis, predictions for PC, PU, and PET
(Supplementary Table 1) seem reasonable compared to PCL,
PHBV, Nylon 6, and PLA. As a caveat, the intent of Eq. 2 focuses
on amorphous or semi-crystalline polymers (enthalpy of melting
<~90] g~1) with LogP(SA)~! > 0. Outside of these parameters, Eq.
2 overestimates k for certain polyesters with larger enthalpy of
melting values, such as PBS (~132 ] g~1)% or PBSeb (~125] g~ 1)2°.

T,

‘water
LogP

) )
—————=2| — 28795 | /4177.3
SA

(2)
In a preliminary effort to expand upon Eq. 2 and capture the
multi-faceted processes that influence degradation, a simple
model in Eq. 3 is proposed. Inspired by efforts to describe
weathering®®63:64, this model assumes the total amount of ero-
sion (Ei) depends on abiotic processes, biotic processes, sea-
water temperature (Ty,r), and mechanical forces (Eyayes). AS
such, k from Eq. 2 describes the rate of abiotic and biotic pro-
cesses and b is the y-intercept in the absence of mechanical forces.
To calculate E, .. the difference in surface erosion between
ocean conditions and sheltered locations is proposed. For
example, surface erosion of PHBV increased when exposed to
coastal locations®® (E,ayes =0.017 mg cm~2 day~!) and an estu-
ary®  (Eyaves = 0.005 mgcm—2day~!) compared to sheltered
mangroves. Although more literature data is needed to further
explore the limitations of Eq. 3, initial data analysis (Supple-
mentary Table 2) serves as a starting point for future discussions.

Etotal = kTwater +b+ Ewaves (3)

rate of surface erosion(k) = exp ( (

In summary, the challenging complexity of plastic degradation
in the ocean has been addressed via a database that summarizes
available structure-property information data in combination
with degradation data. Analysis of various strategies with
increasing levels of sophistication resulted in a systematic
structure-property investigation of ocean-based degradation.
These approaches started with a simple, convenient overview in
Fig. 1 and progressed to laboratory conditions in Fig. 2. Then,
Fig. 3 involves a data-analytics approach to evaluate a wider range
of experimental conditions (i.e., laboratory, ocean) using five-tier
categories. Finally, ML refined the analysis in Fig. 3 and provided
two-level (Fig. 4) and three-level (Fig. 5) classification trees as
well as boundaries between fast, medium, and slow categories. To
elaborate on the quantitative and qualitative aspects of Figs. 3-5,
Eq. 2 quantified the rate of surface erosion rate (k) as a function
of temperature.

The outcome of these strategies offers the following benefits:
First, in Fig. 1, functional groups, like carbonates, esters, and
amides, lower the magnitude of LogP(SA)~! values relative to PE
and facilitate abiotic hydrolysis and biotic pathways for degra-
dation. In contrast, larger LogP(SA)~! values (i.e., >0.015 A=2)
indicate a substantial fraction of C-H bonds in the polymer
structure. Nonetheless, even though photo-initiated C-H bond
oxidation is feasible, the presence of additives (i.e., antioxidants,
light stabilizers)?” will delay degradation. Second, quantitative
evaluation of abiotic and biotic processes under controlled con-
ditions in Fig. 2 indicates that biotic processes are often much
faster. In addition, abiotic hydrolysis of polyesters was more
sensitive to increases in LogP(SA)~! and crystallinity than bio-
degradation. Third, in Fig. 3, degradation of plastics with het-
eroatoms (i.e., O, N) substantially slowed as T, values increased
above ocean temperature. For example, slower degradation was
noted for PLA (T, ~ 65°C) and PET (T, ~ 78 °C) compared to
PBAT (T ~ —36 °C). Fourth, a comparison of Figs. 3-5 suggests
a hierarchy of features for predicting the likelihood of degrada-
tion. In this regard, LogP(SA)~1, which reflects composition, may
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be more useful than molecular weight when comparing water-
soluble and water insoluble polymers. Furthermore, LogP(SA)~1,
molecular weight, and T, apply to both amorphous and partially
crystalline (i.e., semicrystalline) plastics whereas Fig. 2 focused on
parameters that relate to semicrystalline polymers (ie., % crys-
tallinity and enthalpy of melting).

Moving forward, we propose data-driven, ML techniques, such
as the classification trees in Figs. 4-5, inform predictive models
like Eq. 2 by identifying the important physical property para-
meters. Although a larger variety of PA, PS, and PU would be
helpful in Figs. 4-5, the k-fold cross validation method indicates
even this moderately sized database is sufficient. One area that
needs further investigation is the issue of mechanical forces on
rate of degradation.

While efforts at sustainable development of plastics has
increased in the last decade®®%7, these efforts struggle to meet the
growing challenge of plastic waste®8. Consequently, we emphasize
the need for recycling to reduce the global carbon footprint and
highlight strategies aimed to accelerate degradation®. These
include incorporation of “weak links” in the polymer that
undergo abiotic hydrolysis faster than the rest of the plastic®,
blends with water-soluble polymers, and additives that promote
photo-initiated oxidation.

Methods

Terminology. To avoid confusion, the term polymer refers to a single molecule
composed of many units. Models of these polymers are shown in Supplementary
Fig. 1. In contrast, plastic refers to a bulk material composed of numerous
polymers. Surface erosion refers to mass loss over time for a given SAy in units
of mg cm~2 day—137. The term feature describes variables used in ML.

Hydrophobicity. Calculation of LogP(SA)~! values was determined with Materials
Studio 2019. LogP values were extracted from the QSAR menu using the ALogP98
option. Since plastics in the database lack ionizable functional groups, like amines
or phenols, changes to LogP values due to seawater was assumed relatively insig-
nificant. Connolly SA was calculated with a 1.40 A probe after conducting a MD
simulation of molecular models. The Forcite Geometry Optimization employed a
Smart algorithm and COMPASS II forcefield to minimize the energy below certain
specifications. Convergence tolerance for the Smart algorithm included a 1.0e-4
kcal mol~! energy convergence, a 0.005 kcal mol~! A~! force convergence, and a
5.0e-5 A displacement convergence. To improve accuracy of LogP(SA)~! values,
multiple models ranging from 10, 12, and 14-monomer units were averaged.

Calculation of surface erosion. Calculation of mg cm~2 day~! for sample films in
the database was apprehended by dividing weight loss by SApc and the number of
days that the films were exposed to seawater. The mg cm~2 day~! values under
biotic conditions are assumed to have a small contribution from abiotic hydrolysis.
In the case of PLA and PLLA3%6!, mg cm~2 day~! values are assumed to include
the effect of mass loss from autocatalytic hydrolysis.

Categories. Surface erosion data in mg cm~2 day~! or biochemical oxygen demand
(BOD) values in % day~! were converted to categories in the following manner. For
5-tier categories, very slow represented 0-2% BOD day~! and 0-0.0003 mg cm~—2
day~1, slow corresponded to 2-4% BOD day~! and 0.0003-0.003 mg cm 2 day 1,
medium represented 4-6% BOD day~! and 0.003-0.03 mg cm~2 day !, fast
denoted 6-8% BOD day~! and 0.03-0.3 mgcm™2 day !, and very fast signified
degradation processes > 8% BOD day~! and > 0.3 mgcm~2 day L. For three-tier
categories, slow denoted 0-4 % BOD day~! and 0-0.003 mg cm~2 day~!, medium
represented 4-8% BOD day~! and 0.003-0.3 mgcm 2 day~!, and fast signified
>8% BOD day~! and >0.3 mgcm~2 day—1. Some mg cm~2 day~! values from
laboratory experiments at higher temperatures were adjusted to fit ocean conditions.
As a reference, poly(butylene adipate) (PBAdip) was ranked as medium for five-tier
and three-tier categories.

Treatment of missing data. In many cases, characterization data from the lit-
erature was incomplete. Missing data was supplemented from databases (i.e., www.
polymerdatabase.com) or extrapolated from literature values. For density deter-
mination (used to calculate mass for surface erosion), calibration curves (Supple-
mentary Fig. 10) for polyesters, nylons, and PHBV were created.

Data processing and ML. Data processing, visualization, and ML was performed
using the Anaconda python distribution (www.anaconda.com) software (python
v3.7.1) (Supplementary Codes 1 and 2), specifically the packages from SciPy”?

including Pandas, Matplotlib, and scikit-learn (v0.21.2). For the classification tree
learning, the Gini impurity index was used for information gain, and the maximum
depth was set manually at two and three levels. For the shaded regions in Fig. 5b, a
support vector machine algorithm was used to classify regions based on a radial
bias function kernel with a gamma of 0.2 and a C parameter of 10.0.

For the 10-fold cross-validation, stratified k-fold datasets were used. The
relatively small size of the dataset limited the prospect for holdout validation, but k-
fold cross validation estimated the accuracy of the modeling approach on new data.
In this method, the dataset was randomly divided into k number of folds (i.e., 10 in
this case) that were stratified, containing equal amounts of target classifiers. Then
over k (i.e, 10) iterations, the data was trained on the k-1 (i.e.,, 9) data sets, using
the remaining set for holdout validation. Then, k iterations are summarized with an
overall accuracy score, estimating the overall accuracy of the model for predicting
outcomes on new data.

Data availability
All data is available upon reasonable request from the authors. The source data is
attached as a Source Data file.

Code availability
The python code for machine learning (Supplementary Code 1) and construction of
Figs. 2-5 (Supplementary Code 2) is attached as a Supplementary Code file.
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