Abstract
Background:
Many imaging techniques have been developed for the detection of rotator cuff tears (RCTs). Despite numerous quantitative diagnostic studies, their relative accuracy remains inconclusive.
Purpose:
To determine which of 3 commonly used imaging modalities is optimal for the diagnosis of RCTs.
Study Design:
Systematic review; Level of evidence, 4.
Methods:
Studies evaluating the performance of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and ultrasound (US) used in the detection of RCTs were retrieved from the PubMed/MEDLINE and Embase databases. Diagnostic data were extracted from articles that met the inclusion/exclusion criteria. A network meta-analysis was performed using an arm-based model to pool the absolute sensitivity and specificity, relative sensitivity and specificity, and diagnostic odds ratio as well as the superiority index for ranking the probability of these techniques.
Results:
A total of 144 studies involving 14,059 patients (14,212 shoulders) were included in this network meta-analysis. For the detection of full-thickness (FT) tears, partial-thickness (PT) tears, or any tear, MRA had the highest sensitivity, specificity, and superiority index. For the detection of any tear, MRI had better performance than US (sensitivity: 0.84 vs 0.81, specificity: 0.86 vs 0.82, and superiority index: 0.98 vs 0.22, respectively). With regard to FT tears, MRI had a higher sensitivity and superiority index than US (0.91 vs 0.87 and 0.67 vs 0.28, respectively) and a similar specificity (0.88 vs 0.88, respectively). The results for PT tears were similar to the detection of FT tears. A sensitivity analysis was performed by removing studies involving only 1 arm for FT tears, PT tears, or any tear, and the results remained stable.
Conclusion:
This network meta-analysis of diagnostic tests revealed that high-field MRA had the highest diagnostic value for detecting any tear, followed by low-field MRA, high-field MRI, high-frequency US, low-field MRI, and low-frequency US. These findings can help guide clinicians in deciding on the appropriate imaging modality.
Keywords: rotator cuff tear, MRA, MRI, ultrasound, shoulder pain
A rotator cuff tear (RCT) is a common source of shoulder pain and disability. Early diagnosis can help determine the treatment strategy to best prevent further loss of function.9,14,41 Imaging, along with physical examinations and clinical history, provides vital information for diagnosis55 and possible surgical interventions.110 Imaging modalities commonly used for the detection of RCTs include magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and ultrasound (US).
The finding of a full-thickness (FT) tear is a strong indication for surgical intervention.95,158 MRA utilizing a contrast agent has high diagnostic accuracy for detecting FT tears, and some authors have even used it as the reference standard when comparing imaging modalities.44 However, the combination of patient characteristics, history, and clinical shoulder tests for the diagnosis of FT tears could improve the ability of MRI,171 and a meta-analysis confirmed that 3.0-T MRI appeared equivalent to 3.0-T MRA.96
In recent years, technological advances in arthroscopic shoulder surgery have made the surgical management of partial-thickness (PT) tears much less invasive and thereby more cost-effective. Consequently, the identification of a PT tear has become more meaningful.25,95 The diagnostic accuracy of MRI and MRA for PT tears is similar, and because MRA is an invasive modality, MRI is routinely used as the first-choice imaging option.25,40,60,141
The initial results of US in the detection of RCTs varied, probably because of low-frequency transducers and limited examiner experience.11,111,142 However, as US technology continues to advance, the advantages of US, including its low cost and capability for real-time dynamic assessments, become more evident.189 US is still not as widely used in clinical practice as it could be, both because of its steep learning curve and the uncertainty regarding its diagnostic accuracy.15 Therefore, a synthesis of the literature is warranted to compare the accuracy of US with MRI and MRA.
Several traditional meta-analyses have been published on the accuracy of medical imaging for the detection of RCTs34,80,96,135,149,163; however, their relative accuracy remains inconclusive, which may be because a traditional meta-analysis allows only for comparisons between 2 diagnostic tests. If multiple modalities are assessed simultaneously, a traditional meta-analysis only compares directly the numerical value of sensitivity and specificity, which, while still informative, is not rigorous or ideal.177 Recently, Nyaga et al115 developed a Bayesian network meta-analysis using an arm-based model based on the assumption that the missing arms occur at random. This method has been applied in several studies50,118 because it not only allows analysis of the variability in the accuracy of multiple tests within and between studies simultaneously but also provides more natural variance-covariance matrix structures, making it more appealing than either a traditional meta-analysis or the contrast-based network meta-analysis model introduced by Menten and Lesaffre.99
The purpose of this study was to compare the diagnostic accuracy of 3 imaging techniques (US, MRI, and MRA) for the diagnosis of RCTs using an arm-based model of a network meta-analysis based on multiple diagnostic tests. The hypothesis was that MRI was equal to US in the diagnosis of RCTs.
Methods
This network meta-analysis was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement (PROSPERO identifier: CRD42018118538) and the PRISMA-DTA (Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies) statement.97
Search Strategy
A comprehensive literature search of 2 electronic databases, PubMed/MEDLINE and Embase, was performed. An initial search was made using the following keywords: “systematic review” or “meta-analysis” AND “rotator cuff.” The full text of every article listed in the references of each identified systematic review or meta-analysis was procured. A second search was performed using the following keywords: “diagnostic,” “diagnostic imaging,” “diagnostic test,” or “diagnosis” AND “ultrasound,” “ultrasonography,” “US,” “MRI,” “magnetic resonance imaging,” “MRA,” or “magnetic resonance arthrography” AND “rotator cuff,” “supraspinatus,” “infraspinatus,” “subscapularis,” “labrum,” “shoulder joint,” “subacromial impingement,” “tendinopathy,” “shoulder,” “shoulder pain,” “shoulder impingement syndrome,” or “bursitis.” The search was limited to the English language, and the search date was from database inception to August 31, 2018.
Inclusion and Exclusion Criteria
The inclusion criteria were studies that (1) involved human patients; (2) assessed the diagnostic performance of imaging modalities for RCTs; (3) provided raw data to calculate diagnostic parameters, including the true positive, false positive, false negative, and true negative; and (4) included a surgical (open or arthroscopic) reference standard, that is, surgical findings to prove/disprove the imaging findings.
The exclusion criteria were the following: (1) commentaries, letters, case reports, reviews, or congress proceedings; (2) studies involving animal and cadaveric experiments; (3) studies providing insufficient data to calculate diagnostic parameters; and (4) non–English language studies.
Data Extraction
The following information was extracted from each study: the first author’s surname, publication year, country of origin, participant characteristics (number, age, and sex), study design, reference standard (arthroscopic or open surgery), time from MRI/MRA to reference standard, blinding, number of readers, readers’ experience, final diagnoses of included patients, muscle tendon involved, tear site, clinical findings of the shoulder, technical parameters of MRA (administration of contrast agent [intravenous: indirect or intra-articular: direct], vendor, model, magnetic strength, method, sequence, slice thickness, analyzed image plane), technical parameters of MRI (vendor, model, magnetic strength, sequence, slice thickness, analyzed image plane), technical parameters of US (vendor, transducer specifications), and diagnostic data (true positive, false positive, true negative, and false negative). If the studies had ≥2 modalities and permitted multiple comparisons, all the information and outcomes of interest were extracted. If ≥2 readers evaluated a diagnostic test in a single study, we calculated the mean average of the diagnostic data.
Risk of Bias
The risk of bias for the included trials was assessed independently by 2 researchers (F.L. and F.X.) utilizing QUADAS-2,181 a quality assessment tool for diagnostic accuracy studies. This system is composed of 11 items, and each item is graded as yes, unclear, or no.
Statistical Analysis
The whole process of searching, filtering, data extraction, and quality assessment was implemented by 2 researchers (F.L. and F.X.) independently and repeatedly. For any discrepancy, a consensus was reached by discussion with a third researcher (J.D.).
A Bayesian network meta-analysis using an arm-based model, developed by Nyaga et al,115 was performed by running 3 chains in parallel until there was convergence. Trace plots were used to visually check whether the distributions of the 3 simulated chains mixed properly and were stationary. We used the potential scale reduction factor, the effective number of independent simulation draws, and the Markov chain Monte Carlo error to assess convergence. To assess the relative performance of the reviewed diagnostic tests, the definitions of superior, inferior, equal, and not comparable were drawn. A diagnostic test that is pairwise superior to a relatively large number of other tests and pairwise inferior to a relatively small number of other tests should have a high superiority value and be ranked higher than those tests that do not perform as well. In this study, the superiority index was pooled to quantify rank probabilities of each diagnostic test. All network meta-analyses were performed using R (Version 3.4.3; Comprehensive R Archive Network), package rstan (Version 2.17.3), package loo (Version 2.0.0), and package plyr. Sensitivity analyses for the detection of FT tears, PT tears, and any tear were implemented according to at least 2 arm-based tests. Subgroup analyses were performed based on the different tendons injured, gold standard (arthroscopic or open surgery), study design, QUADAS-2 score, and publication year.
Results
Studies Retrieved and Characteristics
A selection flowchart for the studies chosen is presented in Figure 1. After comprehensive searching of 2 electronic databases, excluding duplicate records, screening remaining titles and abstracts, and identifying related full text, a total of 144 studies involving 14,059 patients (14,212 shoulders) were included in this network meta-analysis. The pooled characteristics are presented in Table 1.
TABLE 1.
Variable | n (%) |
---|---|
Publication year | |
1980-1999 | 40 (27.8) |
2000-2005 | 31 (21.5) |
2006-2010 | 23 (25.1) |
2011-2015 | 29 (16.0) |
2016-2018 | 21 (14.6) |
No. of shoulders | |
Any tear | 109 (75.7) |
0-50 | 34 |
51-100 | 40 |
>100 | 35 |
FT tear | 87 (60.4) |
0-50 | 30 |
51-100 | 30 |
>100 | 27 |
PT tear | 87 (60.4) |
0-50 | 25 |
51-100 | 35 |
>100 | 27 |
Age range, y | 15.9-66.0 |
Female sex | 5996 (56.6) |
No. of participants | |
Any tear | 11,032 |
FT tear | 8542 |
PT tear | 8575 |
No. of patients | |
Any tear | 109 (75.7) |
0-50 | 35 |
51-100 | 40 |
>100 | 34 |
FT tear | 87 (60.4) |
0-50 | 31 |
51-100 | 30 |
>100 | 26 |
PT tear | 87 (60.4) |
0-50 | 26 |
51-100 | 35 |
>100 | 26 |
Imaging modality | |
MRA | 51 (35.4) |
MRI | 64 (44.4) |
US | 65 (45.1) |
Radiography | 1 |
Computed tomography | 1 |
2D MRI | 1 |
3D MRI | 1 |
2D MRA | 9 |
3D MRA | 8 |
2D US | 1 |
3D US | 2 |
Direct MRA | 31 |
Indirect MRA | 9 |
3.0-T MRI | 13 |
1.5-T MRI | 41 |
1.0-T MRI | 5 |
0.5-T MRI | 4 |
0.2-T MRI | 4 |
0.18-T MRI | 1 |
3.0-T MRA | 15 |
1.5-T MRA | 22 |
1.0-T MRA | 6 |
0.2-T MRA | 15 |
Any tear/FT tear/PT tear | 144/87/87 (100.0/60.4/60.4) |
No. of arms | |
1 | 107/60/66 |
2 | 36/27/21 |
3 | 1/0/0 |
Gold standard | |
Arthroscopic surgery | 75/44/49 |
Open surgery | 35/21/14 |
Arthroscopic or open surgery | 34/22/24 |
No. of readers | |
1 | 16/8/10 |
2 | 56/37/36 |
≥3 | 21/15/14 |
Not reported | 51/27/27 |
Reader experience, y | |
≤10 | 24/12/14 |
>10 | 65/46/46 |
Not reported | 55/29/27 |
Design | |
Prospective | 42 (29.2) |
Retrospective | 74 (51.4) |
Not reported | 27 (18.8) |
Prospective and retrospective | 1 (0.6) |
QUADAS-2 score | |
7 | 17 (11.8) |
8 | 18 (12.5) |
9 | 53 (36.8) |
10 | 34 (23.6) |
11 | 22 (15.3) |
a2D, 2-dimensional; 3D, 3-dimensional; FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
Data Extraction and Quality Assessment
Appendix Table A1 presents the detailed QUADAS-2 score results from each included study.
Comparison of MRA, MRI, and US
For the detection of FT tears, PT tears, or any tear, MRA had the highest sensitivity, specificity, and superiority index. For the detection of any tear, MRI had a better diagnostic value than US (sensitivity: 0.84 vs 0.81, specificity: 0.86 vs 0.82, and superiority index: 0.98 vs 0.22, respectively). With regard to FT tears, MRI had a higher sensitivity and superiority index than US (0.91 vs 0.87 and 0.67 vs 0.28, respectively) and a similar specificity (0.88 vs 0.88, respectively). The results for PT tears were similar to the detection of FT tears (Figure 2 and Table 2).
TABLE 2.
Tests | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Any tear | ||||||||
MRA | 0.89 (0.85-0.91) |
0.91 (0.88-0.93) |
79.72 (49.55-121.35) [1] |
4.92 (3.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
60 | 50 |
MRI | 0.84 (0.82-0.87) |
0.86 (0.83-0.88) |
32.65 (23.99-43.54) [2] |
0.98 (0.33-3.00) [2] |
0.95 (0.91-1.00) |
0.94 (0.90-0.99) |
87 | 69 |
US | 0.81 (0.78-0.85) |
0.82 (0.78-0.85) |
20.14 (14.04-27.79) [3] |
0.22 (0.20-0.33) [3] |
0.92 (0.87-0.98) |
0.90 (0.85-0.95) |
76 | 66 |
FT tear | ||||||||
MRA | 0.95 (0.93-0.97) |
0.96 (0.92-0.98) |
548.55 (198.58-1177.55) [1] |
4.96 (4.50-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
31 | 30 |
MRI | 0.91 (0.88-0.94) |
0.88 (0.84-0.92) |
85.49 (49.85-133.95) [2] |
0.67 (0.33-1.00) [2] |
0.96 (0.92-0.99) |
0.92 (0.88-0.97) |
45 | 45 |
US | 0.87 (0.82-0.90) |
0.88 (0.84-0.92) |
52.71 (30.34-83.37) [3] |
0.28 (0.20-0.33) [3] |
0.91 (0.86-0.95) |
0.93 (0.88-0.97) |
41 | 41 |
PT tear | ||||||||
MRA | 0.81 (0.74-0.86) |
0.90 (0.86-0.93) |
40.79 (21.33-69.11) [1] |
4.79 (3.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
31 | 28 |
MRI | 0.67 (0.60-0.73) |
0.86 (0.81-0.89) |
12.68 (7.95-19.11) [2] |
0.74 (0.20-3.00) [2] |
0.83 (0.74-0.93) |
0.95 (0.89-1.01) |
43 | 41 |
US | 0.62 (0.53-0.71) |
0.85 (0.80-0.89) |
9.91 (5.79-15.74) [3] |
0.35 (0.20-1.00) [3] |
0.77 (0.65-0.89) |
0.95 (0.89-1.01) |
39 | 39 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
High- or Low-field MRA, High- or Low-field MRI, and High- or Low-frequency US
For the detection of FT tears, the diagnostic value rank (from high to low) of these 6 imaging modalities was 3.0-T MRA, 1.5-T MRA, 3.0-T MRI, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 8.66 vs 4.73 vs 2.21 vs 0.88 vs 0.64 vs 0.14, respectively). For the detection of PT tears, the diagnostic value rank (from high to low) was 3.0-T MRA, 3.0-T MRI, 1.5-T MRA, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 8.15 vs 5.25 vs 2.44 vs 0.95 vs 0.35 vs 0.18, respectively). For the detection of any tear, the diagnostic value rank (from high to low) was 3.0-T MRA, 1.5-T MRA, 3.0-T MRI, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 5.85 vs 5.36 vs 2.71 vs 1.39 vs 0.83 vs 0.16, respectively) (Figure 3 and Table 3). A sensitivity analysis was performed by removing studies involving only 1 arm for FT tears, PT tears, or any tear, and the results remained stable.
TABLE 3.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Any tear | ||||||||
3.0-T MRA | 0.87 (0.80-0.92) |
0.88 (0.82-0.93) |
59.59 (25.44-115.74) [2] |
5.85 (0.60-11.00) [1] |
1.10 (0.95-1.38) |
0.99 (0.88-1.20) |
20 | 13 |
1.5-T MRA | 0.85 (0.76-0.92) |
0.90 (0.81-0.95) |
62.97 (20.80-144.99) [1] |
5.36 (0.33-11.00) [2] |
1.08 (0.91-1.36) |
1.00 (0.87-1.22) |
15 | 14 |
3.0-T MRI | 0.80 (0.64-0.90) |
0.90 (0.74-0.97) |
53.09 (9.75-164.12) [3] |
2.71 (0.14-11.00) [3] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
12 | 8 |
1.5-T MRI | 0.84 (0.79-0.88) |
0.81 (0.74-0.87) |
22.76 (12.89-36.73) [5] |
0.83 (0.11-5.00) [5] |
1.06 (0.91-1.31) |
0.91 (0.79-1.10) |
46 | 37 |
≥7.5-MHz US | 0.85 (0.80-0.89) |
0.81 (0.75-0.86) |
26.44 (14.68-43.23) [4] |
1.39 (0.14-5.00) [4] |
1.08 (0.93-1.34) |
0.91 (0.81-1.10) |
42 | 39 |
<7.5-MHz US | 0.76 (0.57-0.89) |
0.61 (0.37-0.81) |
6.87 (1.45-19.87) [6] |
0.16 (0.09-1.00) [6] |
0.97 (0.70-1.26) |
0.69 (0.41-0.94) |
7 | 6 |
FT tear | ||||||||
3.0-T MRA | 0.95 (0.88-0.98) |
0.97 (0.89-0.99) |
1149.53 (129.82-3909.11) [1] |
8.66 (1.67-11.00) [1] |
1.08 (0.95-1.47) |
1.11 (0.97-1.54) |
15 | 13 |
1.5-T MRA | 0.94 (0.83-0.99) |
0.92 (0.77-0.98) |
396.26 (38.23-1538.93) [2] |
4.73 (0.33-11.00) [2] |
1.07 (0.89-1.48) |
1.06 (0.84-1.47) |
10 | 10 |
3.0-T MRI | 0.89 (0.64-0.98) |
0.88 (0.63-0.98) |
194.45 (8.52-889.32) [3] |
2.21 (0.11-9.00) [3] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
1.5-T MRI | 0.89 (0.83-0.94) |
0.85 (0.78-0.91) |
57.06 (23.40-114.52) [5] |
0.64 (0.11-1.67) [5] |
1.01 (0.88-1.40) |
0.99 (0.83-1.36) |
28 | 25 |
≥7.5-MHz US | 0.89 (0.82-0.94) |
0.88 (0.80-0.93) |
72.46 (27.12-154.88) [4] |
0.88 (0.14-2.33) [4] |
1.01 (0.88-1.40) |
1.01 (0.86-1.40) |
22 | 22 |
<7.5-MHz US | 0.76 (0.44-0.93) |
0.70 (0.34-0.90) |
14.75 (1.17-59.51) [6] |
0.14 (0.09-0.43) [6] |
0.86 (0.48-1.26) |
0.81 (0.37-1.22) |
3 | 3 |
PT tear | ||||||||
3.0-T MRA | 0.83 (0.71-0.90) |
0.93 (0.86-0.97) |
80.10 (24.19-186.85) [2] |
8.15 (2.33-11.00) [1] |
1.09 (0.87-1.48) |
1.06 (0.91-1.66) |
15 | 12 |
1.5-T MRA | 0.77 (0.65-0.86) |
0.86 (0.76-0.92) |
24.75 (8.52-54.77) [3] |
2.44 (0.20-9.00) [3] |
1.02 (0.78-1.44) |
0.99 (0.80-1.54) |
14 | 14 |
3.0-T MRI | 0.77 (0.56-0.91) |
0.89 (0.57-1.00) |
141.02 (3.72-866.40) [1] |
5.25 (0.20-11.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 3 |
1.5-T MRI | 0.64 (0.54-0.73) |
0.80 (0.71-0.87) |
7.85 (3.91-13.92) [5] |
0.35 (0.11-1.00) [5] |
0.85 (0.66-1.19) |
0.92 (0.75-1.42) |
25 | 25 |
≥7.5-MHz US | 0.66 (0.54-0.76) |
0.87 (0.80-0.92) |
14.17 (6.26-27.31) [4] |
0.95 (0.14-3.00) [4] |
0.87 (0.66-1.22) |
1.00 (0.83-1.54) |
21 | 21 |
<7.5-MHz US | 0.49 (0.23-0.76) |
0.73 (0.41-0.91) |
4.32 (0.48-15.93) [6] |
0.18 (0.09-1.00) [6] |
0.66 (0.29-1.09) |
0.84 (0.45-1.36) |
3 | 3 |
aData are reported as mean (range) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
Effect of Publication Year on US Accuracy
The stated diagnostic accuracy of US in articles published between 2016 and 2018 was higher than that in articles published between 2011 and 2015 for FT tears (sensitivity: 0.72 vs 0.77, specificity: 0.85 vs 0.75, and superiority index: 1.49 vs 1.10, respectively), PT tears (sensitivity: 0.60 vs 0.61, specificity: 0.82 vs 0.72, and superiority index: 1.72 vs 0.95, respectively), or any tear (sensitivity: 0.71 vs 0.80, specificity: 0.77 vs 0.67, and superiority index: 1.29 vs 1.19, respectively).
Other Subgroup Analyses
In other analyses, 3-dimensional MRA appeared equivalent to 2-dimensional MRA in the diagnosis of any tear (sensitivity: 0.88 vs 0.87, specificity: 0.89 vs 0.88, and superiority index: 1.86 vs 0.89, respectively), although there was a trend toward greater accuracy in the diagnosis of FT tears. Meanwhile, the accuracy of direct MRA in the diagnosis of any tear was higher than that of indirect MRA (sensitivity: 0.88 vs 0.86, specificity: 0.93 vs 0.86, and superiority index: 2.18 vs 0.63, respectively).
Other subgroup analyses for FT tears, PT tears, and any tear based on the different muscles involved (supraspinatus, subscapularis, infraspinatus, supraspinatus-subscapularis, supraspinatus-infraspinatus, and subscapularis-infraspinatus) (Appendix Table A2), study design (prospective or retrospective) (Appendix Table A3), QUADAS-2 score (7, 8, 9, 10, or 11) (Appendix Table A4), publication year (2000-2019) (Appendix Table A5), and gold standard (arthroscopic surgery) (Appendix Table A6) suggested a similar direction and magnitude of effect for studies investigating the diagnostic value.
Discussion
An RCT is one of the most common causes of shoulder pain and disability.18,55 Yamamoto et al186 found that 20.7% of 1366 shoulders had FT RCTs in a Japanese mountain village population. Whether to proceed to arthroscopic or open surgery for RCTs depends not only on clinical findings but also on imaging results; additionally, findings during surgery are largely affected by the availability of imaging reports.178 The diagnostic accuracy and effective use of imaging technology are major concerns for clinicians and patients. Therefore, it is essential to compare the accuracy of MRA, MRI, and US in the diagnosis of RCTs and analyze their advantages and disadvantages under various conditions.
It has long been debated whether to inject contrast agents when using MRI for the detection of RCTs. With regard to lesions of the glenoid labrum and labral capsular ligamentous complex, MRA is thought to be the most accurate.7,19,71,94,125,144 The anatomic resolution is good, subtle defects can be depicted by contrast material, and leakage of contrast agents is usually evident, thus enhancing the diagnostic accuracy of FT tears.26,60,68,120 We found that MRA was also the most accurate method for detecting RCTs regardless of type (FT or PT tear). However, the injection of a contrast agent is an invasive procedure, infections and adverse reactions occur,44 and the examination time is longer.53 The accuracy of MRA is affected by the classification and basic properties of the contrast agent; as a result, the sensitivity and specificity were improved only by 3% to 4% when compared with plain MRI.27 False positive results due to the inflamed tendon showing high intensity,5,53 leakage through the postoperative incompletely healed tendon,30 and false negative results due to the failure of contrast to pass into the bursa can lower the sensitivity, specificity, and accuracy of MRA.25,88 Moreover, in clinical practice, doctors and radiologists make the diagnosis based on a combination of medical history, physical examination, and imaging findings, unlike in a research project, during which the investigator is deliberately blinded to the clinical findings. The differences in specificity and sensitivity between MRA and MRI are quite small, and that may be a good reason to avoid the potential risk/cost of MRA, especially if one suspects an FT tear.
A PT tear is a source of surgically treatable shoulder pain, and it may deteriorate into an FT tear; therefore, the identification and surgical repair of PT tears have recently gained attention.25 Our meta-analysis shows that MRI had a similar sensitivity to MRA in the diagnosis of bursal-side PT tears (0.73 vs 0.75, respectively). It seems not all that beneficial to inject contrast agents when using MRI for the detection of RCTs. However, technological innovations, such as using fat-suppression sequences to distinguish fat from contrast agents169 and using intravascular injections to achieve delineation of the bursal-side PT tears,57,168 make MRA still valuable under specific circumstances in which US and MRI are not definitive.34,154
MRI and US are currently regarded as the modalities of choice for the noninvasive diagnosis of rotator cuff lesions.6,12,60,114,132,161 MRI excels in localizing and defining the extent of the RCT, which is critical for diagnosis and for guiding treatment decisions.137,162 US provides a dynamic assessment of the shoulder, but it is sometimes impossible to achieve full visualization of the entire rotator cuff in patients with restricted range of motion,130 which may reduce its accuracy. MRI has been shown to be a reproducible method, with low observer variability,6,138 as opposed to US, which is considered the most operator-dependent imaging technique in the detection of shoulder disease.95,101 Another barrier to the widespread use of US is the steep learning curve.101,112,136 Murphy et al110 reported that 300 scans are required under the supervision of an experienced musculoskeletal ultrasonographer to become adept, which is not feasible for most clinicians. On the positive side, US allows patient-clinician interactions and real-time feedback101,112 and provides opportunities for patients to point out symptomatic areas.111 There are no contraindications and no artifacts from metal implants, making it the first choice in patients with pacemakers and in postoperative evaluations.30,85,129
Low cost has always been an advantage of US. Roy et al135 recommended US as the best option for the detection of FT tears, when considering economic benefits and safety, even though MRI is more accurate. In 2014, Voigt et al175 reported that false positive and false negative MRI findings in the diagnosis of RCTs resulted in an unnecessary cost of $210 million in the United States. However, Gyftopoulos et al,55 focusing on the detection of FT tears, performed a cost-effectiveness analysis and found MRI to be the preferred imaging strategy rather than US. While taking all types of musculoskeletal disorders into consideration, Bureau and Ziegler15 recommended US as the primary tool to detect RCTs because of its comparable accuracy and high cost-efficiency compared with MRI.
Since the normal rotator cuff anatomy on US was first described by Middleton et al100 in 1984, the technical limitations of US have always been an issue. Nowadays, technical advancements, such as the linear array broad-bandwidth transducers,66,162 and the establishment of a standardized imaging protocol29 have increased the accuracy and reliability of US. Our subgroup analysis based on the publication year found that the newer machines did provide better diagnoses of RCTs. Similarly, the technological innovations in MRI have improved its diagnostic ability. Additionally, the higher accuracy based on MRI and US may be related to the improved ability to diagnose RCTs intraoperatively. Our subgroup analyses based on MRI and US parameters demonstrated that ≥7.5-MHz US is superior to 1.5-T MRI in the detection of FT tears, PT tears, or any tear, although it is inferior to 3.0-T MRI. The differences in specificity and sensitivity between MRI and high-frequency US were quite small, and that may be a good reason to avoid the potential cost of MRI. However, in making final decisions, the available equipment (parameters of MRI and US) and examiner experience should also be taken into consideration.
We acknowledge several limitations in this network meta-analysis. We assessed the diagnostic value of the imaging modalities alone. The roles of patient history and physical examination results were not evaluated. Real-life situations, such as MRI with physical tests and US with physical tests, were not analyzed side by side. Several subgroup analyses, such as specific tendon-based analyses, were implemented based on insufficient data, which makes the results open to question. Insufficient data also made it impossible to conduct several subgroup analyses, including the diagnostic value of 3 imaging modalities for different types of partial tears, such as superficial tears, partial articular supraspinatus tendon avulsion lesions, or interstitial tears. Unfortunately, many other imaging diagnostic measures could not be included in our analysis because of the limited number of studies; these included arthro–computed tomography, which is considered by some surgeons to be the gold standard for diagnosing FT RCTs, and standard radiography, which is regarded as the first choice for the diagnosis of shoulder pain. Additionally, the diagnostic ability of these imaging modalities in evaluating rotator cuff repair postoperatively was not studied. Future advances in MRI and US technology will likely render the conclusions of older studies, and their derivative meta-analyses, out of date. Most surgeons are already using MRI to confirm the presence of RCTs, so this article will not change clinical practice, but it does provide statistical evidence to support the practice.
Conclusion
This network meta-analysis of diagnostic tests revealed that high-field MRA had the highest diagnostic value for detecting any tear, followed by low-field MRA, high-field MRI, high-frequency US, low-field MRI, and low-frequency US. These findings can help guide clinicians on the appropriate imaging modality.
Appendix
TABLE A1.
Author (Year) | Response to QUADAS-2 Questionsb | QUADAS-2 Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Adams1 (2010) | Y | Y | Y | U | Y | Y | Y | U | U | Y | N | 7 |
Al-Shawi2 (2008) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Alasaarela3 (1998) | U | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 8 |
Arend4 (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Balich6 (1997) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | N | 9 |
Bhatnagar8 (2016) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Binkert10 (2001) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Brandt11 (1989) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Brenneke12 (1992) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Bretzke13 (1985) | U | U | Y | U | Y | Y | Y | Y | Y | Y | N | 7 |
Burk16 (1989) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Burk17 (1991) | U | Y | Y | U | Y | Y | Y | U | Y | N | Y | 7 |
Carbone18 (2014) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Chang20 (2002) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Chang21 (2016) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Chen22 (2014) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Choo23 (2015) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Choo24 (2012) | U | U | Y | Y | Y | Y | Y | Y | U | Y | N | 7 |
Chun25 (2010) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Cole28 (2016) | Y | U | Y | U | Y | Y | Y | Y | U | Y | N | 7 |
Crass31 (1988) | U | Y | Y | U | Y | Y | Y | Y | U | Y | N | 7 |
Cullen32 (2007) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Day33 (2016) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Edmonds35 (2015) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Elmorsy36 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | U | Y | N | 9 |
Etancelin-Jamet37 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Farin38 (1996) | Y | U | Y | U | Y | Y | Y | U | Y | N | Y | 7 |
Farshad-Amacker39 (2015) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Ferrari40 (2002) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Fitzgerald42 (2018) | Y | Y | Y | Y | Y | Y | Y | Y | U | Y | Y | 10 |
Foti43 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Fotiadou44 (2008) | U | Y | Y | Y | Y | Y | Y | Y | U | N | N | 7 |
Frei45 (2008) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Friedman46 (1993) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Fritz47 (2007) | Y | Y | Y | U | Y | Y | Y | U | Y | N | Y | 8 |
Furukawa48 (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Gaenslen49 (1996) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Gilat51 (2018) | Y | U | Y | U | Y | Y | Y | U | U | Y | Y | 7 |
Gormeli52 (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Guo54 (2016) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Gyftopoulos56 (2013) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Herold57 (2006) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Hitachi58 (2011) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Hodler59 (1988) | Y | Y | Y | U | Y | Y | Y | U | Y | N | Y | 8 |
Hodler60 (1992) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Horiuchi61 (2018) | Y | Y | Y | Y | Y | Y | Y | Y | U | Y | N | 9 |
Hussain62 (2018) | U | U | Y | Y | Y | Y | Y | Y | U | Y | Y | 8 |
Iannotti63 (2005) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 9 |
Iannotti64 (1991) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Ilozue65 (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Jordan67 (2015) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Jung68 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Jung69 (2010) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Jung70 (2012) | Y | Y | Y | U | Y | Y | Y | U | U | Y | N | 7 |
Jung72 (2009) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Kang73 (2009) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Kluger74 (2003) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Kurol75 (1991) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Lee76 (2014) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Lee77 (2015) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Lee78 (2014) | U | U | Y | Y | Y | Y | Y | Y | U | Y | Y | 8 |
Lee79 (2015) | Y | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Lin81 (2016) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Lo82 (2016) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Loew83 (2000) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 9 |
Mack84 (1988) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Magee86 (2007) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Magee88 (2009) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Magee87 (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Magee89 (2006) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Magee90 (1997) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Malavolta91 (2016) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Martin-Hervas92 (2001) | Y | Y | Y | U | Y | Y | Y | U | Y | N | Y | 8 |
Masaoka93 (1999) | Y | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 9 |
Meister98 (2004) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Middleton101 (2004) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | N | 8 |
Milosavljevic102 (2005) | Y | U | Y | U | Y | Y | Y | U | U | Y | Y | 7 |
Misamore103 (1991) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Modi104 (2013) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Mohtadi105 (2004) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Momenzadeh106 (2015) | Y | Y | Y | Y | Y | Y | Y | Y | U | Y | Y | 10 |
Moosmayer107 (2007) | U | Y | Y | N | Y | Y | Y | N | Y | N | Y | 7 |
Moosmayer108 (2005) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Motamedi109 (2002) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Murphy110 (2013) | Y | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 9 |
Naqvi111 (2009) | U | Y | Y | U | Y | Y | Y | U | Y | Y | N | 7 |
Needell113 (1997) | U | U | Y | Y | Y | Y | Y | Y | U | N | Y | 7 |
Nelson114 (1991) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Oh116 (2009) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Ostor117 (2013) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Paavolainen119 (1994) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Palmer121 (1993) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Park122 (2015) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Park123 (2015) | U | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | 9 |
Park124 (2014) | U | Y | Y | Y | Y | Y | Y | Y | U | Y | Y | 9 |
Pattee126 (1988) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Perez127 (2018) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Pfirrmann128 (1999) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Prickett130 (2003) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Punwar131 (2014) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Quinn132 (1995) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Read133 (1998) | Y | U | Y | U | Y | Y | Y | Y | Y | N | Y | 8 |
Robertson134 (1995) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | 9 |
Rutten137 (2010) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Saqib139 (2017) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Schreinemachers140 (2009) | Y | Y | Y | Y | Y | Y | Y | Y | U | Y | N | 9 |
Shalaby143 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 10 |
Shellock145 (2001) | Y | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 9 |
Shi146 (2015) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Singh147 (2010) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Sipola148 (2010) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Soble150 (1989) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | N | 9 |
Sonin151 (1996) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | N | 8 |
Sonnabend152 (1997) | Y | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 9 |
Sperling153 (2002) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Stetson155 (2005) | U | Y | Y | U | Y | Y | Y | U | Y | N | Y | 7 |
Stoppino156 (2013) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Subhas157 (2017) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Swen158 (1999) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Takagishi159 (1996) | Y | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Teefey160 (2000) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Teefey161 (2005) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Teefey162 (2004) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Torstensen164 (1999) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Toyoda165 (2005) | U | U | Y | Y | Y | Y | Y | Y | U | Y | Y | 8 |
Tuite166 (2001) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Tuite167 (1994) | Y | U | Y | U | Y | Y | Y | Y | Y | Y | Y | 9 |
van Holsbeeck170 (1995) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
van Moppes172 (1995) | Y | Y | Y | U | Y | Y | Y | U | Y | N | Y | 8 |
Venu173 (2002) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Vlychou174 (2009) | U | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | 9 |
Wagner176 (2002) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Waldt178 (2007) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Wallny179 (2001) | U | Y | Y | U | Y | Y | Y | Y | Y | Y | Y | 9 |
Ward180 (2018) | Y | U | Y | U | Y | Y | Y | U | U | Y | Y | 7 |
Wiener182 (1993) | Y | Y | Y | U | Y | Y | Y | Y | Y | N | Y | 9 |
Wnorowski183 (1997) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Yagci184 (2001) | Y | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 9 |
Yamakawa185 (2001) | U | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Yen187 (2004) | U | Y | Y | U | Y | Y | Y | U | Y | Y | Y | 8 |
Zehetgruber188 (2002) | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | 9 |
Ziegler189 (2004) | U | Y | Y | U | Y | Y | Y | U | U | Y | Y | 7 |
Zlatkin190 (2004) | Y | U | Y | Y | Y | Y | Y | Y | Y | U | Y | 9 |
Zlatkin191 (1989) | Y | Y | Y | U | Y | Y | Y | U | Y | N | Y | 8 |
aN, no; U, unclear; Y, yes.
bQUADAS-2 questions are as follows:
1. Was a consecutive or random sample of patients enrolled?
2. Was a case-control design avoided?
3. Did the study avoid inappropriate exclusions?
4. Were the index test results interpreted without knowledge of the results of the reference standard?
5. If a threshold was used, was it prespecified?
6. Is the reference standard likely to correctly classify the target condition?
7. Were the reference standard results interpreted without knowledge of the results of the index test?
8. Was there an appropriate interval between the index test(s) and reference standard?
9. Did all patients receive a reference standard?
10. Did all patients receive the same reference standard?
11. Were all patients included in the analysis?
TABLE A2.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Any tear | ||||||||
Any | ||||||||
MRA | 0.88 (0.82-0.93) |
0.93 (0.88-0.96) |
106.43 (45.91-206.08) [1] |
4.61 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
21 | 21 |
MRI | 0.84 (0.79-0.88) |
0.83 (0.78-0.88) |
28.01 (16.68-44.01) [2] |
0.79 (0.20-3.00) [2] |
0.96 (0.88-1.04) |
0.90 (0.83-0.97) |
32 | 32 |
US | 0.82 (0.77-0.86) |
0.83 (0.77-0.86) |
22.60 (14.21-33.58) [3] |
0.39 (0.20-1.00) [3] |
0.93 (0.86-1.02) |
0.89 (0.83-0.96) |
44 | 44 |
SSP | ||||||||
MRA | 0.82 (0.55-0.96) |
0.84 (0.60-0.95) |
53.96 (4.02-221.20) [1] |
1.95 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
MRI | 0.86 (0.70-0.94) |
0.76 (0.53-0.91) |
29.53 (4.94-91.80) [3] |
1.24 (0.20-5.00) [3] |
1.07 (0.80-1.59) |
0.92 (0.61-1.34) |
7 | 7 |
US | 0.89 (0.76-0.96) |
0.73 (0.54-0.87) |
33.18 (6.58-92.07) [2] |
1.49 (0.20-5.00) [2] |
1.11 (0.86-1.67) |
0.88 (0.62-1.26) |
8 | 8 |
SSC | ||||||||
MRA | 0.79 (0.70-0.85) |
0.84 (0.75-0.91) |
22.72 (9.64-42.89) [1] |
2.07 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 8 |
MRI | 0.70 (0.56-0.82) |
0.87 (0.76-0.93) |
18.45 (6.46-39.34) [3] |
1.54 (0.33-5.00) [2] |
0.89 (0.69-1.07) |
1.03 (0.89-1.17) |
12 | 12 |
US | 0.35 (0.04-0.81) |
0.85 (0.41-1.00) |
42.60 (0.09-312.28) [2] |
0.86 (0.20-3.00) [3] |
0.45 (0.05-1.03) |
1.01 (0.48-1.28) |
2 | 2 |
ISP | ||||||||
MRA | 0.64 (0.26-0.95) |
0.77 (0.33-0.98) |
43.11 (0.50-270.04) [3] |
1.73 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
2 | 2 |
MRI | 0.57 (0.20-0.88) |
0.79 (0.40-1.00) |
150.27 (0.40-1128.94) [2] |
1.69 (0.20-5.00) [2] |
1.00 (0.29-2.37) |
1.13 (0.47-2.43) |
2 | 2 |
US | 0.49 (0.00-1.00) |
0.77 (0.31-1.00) |
6128339.61 (0.01-79792.75) [1] |
1.50 (0.20-5.00) [3] |
0.88 (0.01-2.52) |
1.09 (0.41-2.36) |
1 | 1 |
SSP-ISP | ||||||||
MRA | 0.91 (0.71-0.98) |
0.82 (0.56-0.95) |
108.83 (8.76-424.56) [2] |
2.59 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
6 | 6 |
MRI | 0.87 (0.53-0.98) |
0.82 (0.47-0.97) |
146.28 (3.61-749.30) [1] |
2.44 (0.33-5.00) [2] |
0.97 (0.60-1.23) |
1.02 (0.56-1.52) |
3 | 3 |
US | 0.58 (0.15-0.93) |
0.64 (0.18-0.96) |
12.95 (0.14-87.84) [3] |
0.45 (0.20-3.00) [3] |
0.64 (0.16-1.06) |
0.79 (0.22-1.34) |
1 | 1 |
FT tear | ||||||||
Any | ||||||||
MRA | 0.95 (0.90-0.98) |
0.95 (0.88-0.98) |
632.73 (114.29-1884.37) [1] |
4.80 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
15 | 15 |
MRI | 0.90 (0.86-0.93) |
0.87 (0.83-0.91) |
67.81 (37.58-110.73) [2] |
0.62 (0.20-1.00) [2] |
0.95 (0.90-1.01) |
0.92 (0.86-0.99) |
36 | 36 |
US | 0.86 (0.79-0.90) |
0.88 (0.84-0.91) |
48.09 (21.99-79.30) [3] |
0.34 (0.20-1.00) [3] |
0.90 (0.82-0.97) |
0.92 (0.87-1.00) |
36 | 36 |
SSP | ||||||||
MRA | 0.95 (0.81-0.99) |
0.93 (0.76-0.99) |
1237.91 (40.19-6799.52) [1] |
3.89 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 8 |
MRI | 0.88 (0.63-0.98) |
0.83 (0.56-0.97) |
104.66 (5.64-492.32) [2] |
0.93 (0.20-3.00) [2] |
0.93 (0.67-1.11) |
0.90 (0.61-1.14) |
5 | 5 |
US | 0.85 (0.65-0.95) |
0.83 (0.54-0.97) |
68.59 (5.25-304.86) [3] |
0.69 (0.20-3.00) [3] |
0.90 (0.69-1.07) |
0.90 (0.58-1.13) |
5 | 5 |
SSC | ||||||||
MRA | 0.61 (0.15-0.97) |
0.76 (0.32-1.00) |
10.22 (0.27-27864.06) [2] |
0.81 (0.33-3.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
1 | 1 |
MRI | 0.91 (0.57-1.00) |
0.79 (0.45-0.97) |
164.36 (3.07-174003.30) [1] |
1.83 (0.33-3.00) [1] |
2.03 (0.80-6.41) |
1.16 (0.57-2.52) |
4 | 4 |
ISP | ||||||||
MRA | 0.68 (0.28-1.00) |
0.63 (0.29-1.00) |
4.75 (0.38-13899.95) [1] |
1.62 (0.33-3.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
1 | 1 |
MRI | 0.53 (0.10-0.92) |
0.63 (0.30-1.00) |
2.16 (0.13-1049.20) [2] |
1.07 (0.33-3.00) [2] |
0.89 (0.15-2.14) |
1.10 (0.41-2.49) |
1 | 1 |
SSP-ISP | ||||||||
MRA | 0.87 (0.63-0.97) |
0.89 (0.60-0.98) |
97.16 (7.63-907.87) [1] |
1.62 (0.33-3.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
MRI | 0.82 (0.53-0.95) |
0.88 (0.54-0.99) |
63.07 (3.93-822.75) [2] |
1.05 (0.33-3.00) [2] |
0.95 (0.63-1.26) |
1.00 (0.66-1.38) |
3 | 3 |
SSC-ISP | ||||||||
MRA | 0.54 (0.13-0.93) |
0.74 (0.26-0.99) |
4.99 (0.18-348.87) [2] |
1.25 (0.33-3.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
1 | 1 |
MRI | 0.70 (0.28-1.00) |
0.62 (0.16-0.96) |
5.60 (0.21-6426.07) [1] |
1.31 (0.33-3.00) [1] |
1.70 (0.45-5.68) |
0.98 (0.21-2.64) |
1 | 1 |
PT tear | ||||||||
Any | ||||||||
MRA | 0.80 (0.70-0.88) |
0.91 (0.85-0.95) |
49.27 (19.67-100.56) [1] |
4.77 (3.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
18 | 17 |
MRI | 0.63 (0.55-0.71) |
0.84 (0.78-0.88) |
9.15 (5.28-14.41) [3] |
0.38 (0.20-1.00) [3] |
0.79 (0.66-0.93) |
0.92 (0.84-1.00) |
33 | 33 |
US | 0.58 (0.49-0.67) |
0.87 (0.82-0.91) |
9.85 (5.58-15.73) [2] |
0.52 (0.20-1.00) [2] |
0.73 (0.59-0.89) |
0.96 (0.90-1.03) |
33 | 33 |
SSP | ||||||||
MRA | 0.75 (0.51-0.91) |
0.81 (0.57-0.94) |
23.56 (2.63-89.89) [2] |
1.63 (0.20-5.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
6 | 6 |
MRI | 0.71 (0.44-0.88) |
0.87 (0.54-0.99) |
59.36 (2.31-304.79) [1] |
1.88 (0.20-5.00) [1] |
0.97 (0.57-1.49) |
1.09 (0.66-1.59) |
5 | 4 |
US | 0.78 (0.51-0.95) |
0.73 (0.49-0.89) |
18.77 (2.04-76.67) [3] |
1.15 (0.20-5.00) [3] |
1.07 (0.66-1.63) |
0.91 (0.59-1.33) |
6 | 6 |
SSC | ||||||||
MRA | 0.64 (0.19-0.97) |
0.69 (0.22-0.97) |
48.93 (0.22-218.15) [1] |
1.12 (0.33-3.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
1 | 1 |
MRI | 0.69 (0.35-0.92) |
0.79 (0.44-0.94) |
17.24 (1.09-68.87) [2] |
1.53 (0.33-3.00) [1] |
1.35 (0.49-3.60) |
1.38 (0.60-3.71) |
3 | 3 |
SSP-ISP | ||||||||
MRA | 0.76 (0.55-0.90) |
0.86 (0.64-0.96) |
34.35 (4.16-114.77) [1] |
1.70 (0.33-3.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
6 | 6 |
MRI | 0.69 (0.31-0.91) |
0.80 (0.39-0.97) |
28.57 (0.85-137.52) [2] |
1.03 (0.33-3.00) [2] |
0.92 (0.40-1.36) |
0.93 (0.45-1.27) |
2 | 2 |
PT-A tear | ||||||||
MRA | 0.74 (0.55-0.87) |
0.90 (0.73-0.97) |
38.42 (6.28-116.78) [1] |
1.90 (0.33-3.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 8 |
MRI | 0.67 (0.41-0.85) |
0.82 (0.54-0.97) |
20.06 (1.78-85.39) [2] |
0.85 (0.33-3.00) [2] |
0.92 (0.56-1.32) |
0.92 (0.58-1.18) |
5 | 5 |
PT-B tear | ||||||||
MRA | 0.75 (0.60-0.85) |
0.92 (0.77-0.98) |
62.96 (8.58-193.74) [1] |
1.80 (0.33-3.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 8 |
MRI | 0.73 (0.51-0.87) |
0.84 (0.57-0.97) |
27.80 (3.11-108.51) [2] |
0.89 (0.33-3.00) [2] |
0.99 (0.68-1.28) |
0.92 (0.63-1.12) |
6 | 6 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; ISP, infraspinatus; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; PT-A, articular-side partial-thickness; PT-B, bursal-side partial-thickness; SSC, subscapularis; SSP, supraspinatus; US, ultrasound.
TABLE A3.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Prospective | ||||||||
Any tear | ||||||||
MRA | 0.90 (0.83-0.94) |
0.88 (0.80-0.93) |
76.41 (27.29-169.97) [1] |
4.10 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
19 | 15 |
MRI | 0.88 (0.80-0.93) |
0.79 (0.66-0.88) |
32.13 (10.60-72.44) [2] |
1.30 (0.20-3.00) [2] |
0.98 (0.88-1.08) |
0.90 (0.74-1.03) |
16 | 14 |
US | 0.83 (0.75-0.88) |
0.77 (0.69-0.84) |
17.91 (8.50-32.70) [3] |
0.33 (0.20-1.00) [3] |
0.92 (0.83-1.03) |
0.88 (0.77-0.99) |
29 | 27 |
FT tear | ||||||||
MRA | 0.94 (0.87-0.98) |
0.93 (0.83-0.98) |
387.96 (65.53-1222.98) [1] |
4.64 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
14 | 12 |
MRI | 0.89 (0.79-0.94) |
0.82 (0.67-0.91) |
44.41 (12.99-107.81) [2] |
0.70 (0.20-3.00) [2] |
0.94 (0.83-1.03) |
0.88 (0.72-1.02) |
11 | 11 |
US | 0.85 (0.74-0.92) |
0.83 (0.72-0.90) |
31.65 (10.92-69.40) [3] |
0.41 (0.20-1.00) [3] |
0.90 (0.78-1.00) |
0.89 (0.77-1.01) |
19 | 19 |
PT tear | ||||||||
MRA | 0.77 (0.65-0.86) |
0.87 (0.79-0.93) |
26.72 (9.75-60.58) [1] |
2.99 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
13 | 11 |
MRI | 0.63 (0.46-0.76) |
0.87 (0.77-0.93) |
14.08 (4.49-31.74) [2] |
1.32 (0.20-5.00) [2] |
0.83 (0.59-1.05) |
1.00 (0.87-1.12) |
11 | 11 |
US | 0.61 (0.47-0.74) |
0.87 (0.79-0.92) |
11.29 (4.59-22.88) [3] |
0.72 (0.20-3.00) [3] |
0.80 (0.60-1.02) |
0.99 (0.90-1.10) |
18 | 18 |
Retrospective | ||||||||
Any tear | ||||||||
MRA | 0.87 (0.81-0.91) |
0.93 (0.88-0.95) |
91.72 (44.31-164.17) [1] |
4.79 (3.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
34 | 27 |
MRI | 0.82 (0.78-0.85) |
0.88 (0.85-0.91) |
36.39 (23.47-53.45) [2] |
1.08 (0.33-3.00) [2] |
0.94 (0.88-1.02) |
0.96 (0.91-1.01) |
59 | 45 |
US | 0.77 (0.69-0.84) |
0.83 (0.75-0.89) |
17.43 (8.65-31.14) [3] |
0.23 (0.20-0.33) [3] |
0.89 (0.79-0.98) |
0.89 (0.81-0.97) |
25 | 19 |
FT tear | ||||||||
MRA | 0.94 (0.86-0.98) |
0.96 (0.89-0.99) |
811.66 (97.32-3419.22) [1] |
4.66 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
13 | 13 |
MRI | 0.90 (0.84-0.93) |
0.89 (0.83-0.93) |
80.81 (32.87-151.96) [2] |
0.77 (0.33-3.00) [2] |
0.95 (0.89-1.04) |
0.93 (0.86-1.01) |
29 | 29 |
US | 0.82 (0.71-0.89) |
0.89 (0.80-0.95) |
46.44 (14.80-101.86) [3] |
0.32 (0.20-1.00) [3] |
0.87 (0.76-0.98) |
0.93 (0.83-1.02) |
11 | 11 |
PT tear | ||||||||
MRA | 0.82 (0.72-0.89) |
0.90 (0.82-0.95) |
51.64 (17.15-118.56) [1] |
4.49 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
14 | 13 |
MRI | 0.67 (0.58-0.75) |
0.87 (0.80-0.91) |
14.01 (6.89-24.52) [2] |
0.85 (0.20-3.00) [2] |
0.82 (0.69-0.96) |
0.96 (0.88-1.05) |
26 | 24 |
US | 0.67 (0.46-0.84) |
0.78 (0.62-0.89) |
9.57 (2.21-28.40) [3] |
0.40 (0.20-1.00) [3] |
0.81 (0.55-1.06) |
0.87 (0.69-1.01) |
9 | 9 |
Study type not reported | ||||||||
Any tear | ||||||||
MRA | 0.82 (0.56-0.95) |
0.81 (0.51-0.97) |
50.81 (3.19-243.36) [1] |
2.23 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
6 | 6 |
MRI | 0.86 (0.72-0.94) |
0.69 (0.51-0.83) |
17.53 (4.75-45.42) [3] |
0.97 (0.20-3.00) [3] |
1.06 (0.85-1.52) |
0.88 (0.59-1.37) |
11 | 9 |
US | 0.82 (0.72-0.89) |
0.80 (0.69-0.88) |
21.53 (8.50-44.75) [2] |
1.45 (0.20-5.00) [2] |
1.02 (0.82-1.48) |
1.01 (0.78-1.55) |
22 | 20 |
FT tear | ||||||||
MRA | 0.95 (0.62-1.00) |
0.87 (0.53-0.99) |
1396.42 (8.72-1522623.09) [1] |
2.67 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
4 | 4 |
MRI | 0.92 (0.64-1.00) |
0.86 (0.65-0.95) |
137.15 (8.88-2350.94) [2] |
0.93 (0.20-3.00) [3] |
0.98 (0.66-1.51) |
1.01 (0.71-1.64) |
5 | 5 |
US | 0.90 (0.76-0.96) |
0.92 (0.84-0.96) |
125.69 (29.97-379.75) [3] |
1.20 (0.20-3.00) [2] |
0.96 (0.77-1.49) |
1.09 (0.89-1.76) |
11 | 11 |
PT tear | ||||||||
MRA | 0.78 (0.49-0.94) |
0.90 (0.63-0.99) |
116.05 (4.84-619.64) [1] |
4.11 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
4 | 4 |
MRI | 0.62 (0.41-0.81) |
0.63 (0.37-0.83) |
3.67 (0.77-10.82) [3] |
0.40 (0.20-1.00) [3] |
0.81 (0.52-1.31) |
0.71 (0.40-1.07) |
6 | 6 |
US | 0.58 (0.42-0.74) |
0.85 (0.70-0.93) |
9.90 (2.87-23.58) [2] |
0.92 (0.33-3.00) [2] |
0.77 (0.52-1.24) |
0.95 (0.76-1.34) |
12 | 12 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
TABLE A4.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Score = 7 | ||||||||
Any tear | ||||||||
MRA | 0.75 (0.42-0.95) |
0.74 (0.32-0.96) |
28.52 (0.94-160.41) [1] |
1.66 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
4 | 4 |
MRI | 0.81 (0.67-0.90) |
0.69 (0.48-0.86) |
12.43 (3.31-33.65) [3] |
1.39 (0.20-5.00) [3] |
1.13 (0.79-1.94) |
1.03 (0.58-2.20) |
9 | 7 |
US | 0.80 (0.67-0.89) |
0.75 (0.56-0.89) |
15.27 (4.60-39.26) [2] |
1.74 (0.20-5.00) [2] |
1.12 (0.80-1.91) |
1.12 (0.67-2.37) |
13 | 11 |
FT tear | ||||||||
MRA | 0.86 (0.43-0.99) |
0.89 (0.44-1.00) |
552.22 (2.40-2043809.18) [1] |
2.38 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
2 | 2 |
MRI | 0.89 (0.57-0.99) |
0.81 (0.48-0.94) |
58.99 (4.23-602.78) [3] |
0.99 (0.20-3.00) [3] |
1.08 (0.64-2.08) |
0.97 (0.50-1.93) |
4 | 4 |
US | 0.89 (0.69-0.97) |
0.91 (0.80-0.96) |
103.73 (17.94-411.22) [2] |
1.49 (0.20-5.00) [2] |
1.08 (0.78-2.06) |
1.09 (0.82-2.10) |
7 | 7 |
PT tear | ||||||||
MRA | 0.85 (0.48-0.99) |
0.81 (0.45-0.97) |
154.43 (2.62-933.62) [1] |
3.00 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
3 | 3 |
MRI | 0.69 (0.40-0.89) |
0.73 (0.38-0.94) |
11.40 (0.99-45.01) [3] |
0.86 (0.20-3.00) [3] |
0.83 (0.45-1.49) |
0.94 (0.44-1.78) |
4 | 4 |
US | 0.69 (0.45-0.87) |
0.80 (0.53-0.95) |
15.68 (1.81-58.22) [2] |
1.23 (0.20-5.00) [2] |
0.84 (0.50-1.48) |
1.02 (0.64-1.80) |
6 | 6 |
Score = 8 | ||||||||
Any tear | ||||||||
MRA | 0.87 (0.60-0.97) |
0.75 (0.32-0.96) |
67.44 (2.48-338.83) [2] |
1.64 (0.20-5.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
4 | 3 |
MRI | 0.90 (0.82-0.95) |
0.88 (0.75-0.95) |
91.21 (24.27-226.29) [1] |
3.36 (1.00-5.00) [1] |
1.05 (0.89-1.48) |
1.28 (0.86-2.75) |
9 | 7 |
US | 0.82 (0.66-0.91) |
0.76 (0.61-0.87) |
18.28 (5.12-47.06) [3] |
0.45 (0.20-1.00) [3] |
0.95 (0.73-1.38) |
1.11 (0.70-2.37) |
12 | 10 |
FT tear | ||||||||
MRA | 0.90 (0.46-1.00) |
0.80 (0.32-1.00) |
1096.80 (1.40-18391778.49) [1] |
2.52 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
3 | 3 |
MRI | 0.87 (0.70-0.95) |
0.87 (0.64-0.97) |
63.03 (9.36-346.21) [2] |
1.59 (0.20-5.00) [2] |
1.02 (0.73-1.90) |
1.24 (0.72-2.78) |
6 | 6 |
US | 0.84 (0.61-0.95) |
0.82 (0.61-0.94) |
29.44 (5.33-139.67) [3] |
0.82 (0.20-3.00) [3] |
0.98 (0.65-1.83) |
1.16 (0.69-2.64) |
7 | 7 |
PT tear | ||||||||
MRA | 0.81 (0.41-0.97) |
0.81 (0.33-1.00) |
55.50 (1.08-122796.87) [1] |
2.75 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
2 | 2 |
MRI | 0.74 (0.46-0.91) |
0.84 (0.60-0.95) |
18.97 (2.89-118.01) [2] |
1.71 (0.33-5.00) [2] |
0.97 (0.55-1.86) |
1.16 (0.66-2.55) |
4 | 4 |
US | 0.53 (0.32-0.75) |
0.85 (0.66-0.94) |
7.16 (1.46-30.05) [3] |
0.59 (0.20-3.00) [3] |
0.70 (0.39-1.34) |
1.17 (0.72-2.55) |
7 | 7 |
Score = 9 | ||||||||
Any tear | ||||||||
MRA | 0.85 (0.76-0.91) |
0.90 (0.83-0.95) |
65.18 (22.06-146.99) [1] |
3.54 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
17 | 15 |
MRI | 0.83 (0.77-0.88) |
0.79 (0.72-0.85) |
20.77 (10.56-36.26) [3] |
0.68 (0.20-3.00) [3] |
0.98 (0.88-1.11) |
0.88 (0.79-0.97) |
29 | 25 |
US | 0.84 (0.78-0.89) |
0.81 (0.73-0.87) |
24.16 (11.76-43.90) [2] |
1.09 (0.20-3.00) [2] |
0.99 (0.89-1.12) |
0.89 (0.80-0.99) |
28 | 23 |
FT tear | ||||||||
MRA | 0.94 (0.82-0.99) |
0.93 (0.83-0.98) |
468.91 (43.76-1861.43) [1] |
4.44 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
11 | 11 |
MRI | 0.89 (0.79-0.95) |
0.85 (0.74-0.92) |
55.22 (16.11-135.21) [2] |
0.79 (0.20-3.00) [2] |
0.95 (0.84-1.09) |
0.91 (0.80-1.03) |
16 | 16 |
US | 0.87 (0.78-0.92) |
0.84 (0.73-0.92) |
42.45 (13.19-102.77) [3] |
0.48 (0.20-3.00) [3] |
0.92 (0.82-1.06) |
0.91 (0.79-1.03) |
14 | 14 |
PT tear | ||||||||
MRA | 0.75 (0.60-0.88) |
0.90 (0.80-0.96) |
35.77 (9.49-93.90) [1] |
4.28 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
10 | 10 |
MRI | 0.55 (0.43-0.67) |
0.81 (0.71-0.87) |
5.64 (2.65-10.64) [3] |
0.33 (0.20-1.00) [3] |
0.74 (0.55-0.99) |
0.90 (0.78-1.02) |
18 | 18 |
US | 0.56 (0.42-0.71) |
0.87 (0.79-0.92) |
9.73 (3.92-20.02) [2] |
1.06 (0.20-3.00) [2] |
0.75 (0.53-1.05) |
0.97 (0.87-1.09) |
15 | 15 |
Score = 10 | ||||||||
Any tear | ||||||||
MRA | 0.91 (0.85-0.95) |
0.91 (0.85-0.95) |
130.24 (47.81-274.53) [1] |
3.87 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
17 | 13 |
MRI | 0.86 (0.79-0.90) |
0.89 (0.80-0.94) |
53.57 (20.97-108.59) [2] |
1.07 (0.20-3.00) [2] |
0.94 (0.86-1.01) |
0.97 (0.87-1.06) |
24 | 17 |
US | 0.80 (0.66-0.90) |
0.88 (0.80-0.94) |
37.64 (11.56-90.10) [3] |
0.56 (0.20-3.00) [3] |
0.88 (0.72-1.00) |
0.97 (0.87-1.06) |
14 | 14 |
FT tear | ||||||||
MRA | 0.90 (0.68-0.99) |
0.93 (0.68-1.00) |
934.19 (13.30-5459.56) [1] |
3.21 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
7 | 5 |
MRI | 0.90 (0.81-0.95) |
0.89 (0.74-0.96) |
99.85 (20.03-291.61) [2] |
1.32 (0.20-5.00) [2] |
1.00 (0.86-1.33) |
0.97 (0.79-1.31) |
12 | 12 |
US | 0.75 (0.49-0.92) |
0.89 (0.69-0.98) |
59.43 (4.60-263.72) [3] |
0.60 (0.20-3.00) [3] |
0.84 (0.53-1.18) |
0.97 (0.74-1.32) |
7 | 7 |
PT tear | ||||||||
MRA | 0.85 (0.73-0.91) |
0.89 (0.77-0.94) |
54.45 (14.58-127.76) [1] |
3.06 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 6 |
MRI | 0.73 (0.59-0.85) |
0.88 (0.78-0.93) |
23.44 (7.56-52.95) [2] |
1.05 (0.20-3.00) [2] |
0.87 (0.69-1.05) |
0.99 (0.86-1.15) |
7 | 7 |
US | 0.66 (0.38-0.87) |
0.88 (0.73-0.95) |
21.32 (3.33-71.67) [3] |
0.95 (0.20-3.00) [3] |
0.78 (0.45-1.06) |
0.99 (0.82-1.16) |
6 | 6 |
Score = 11 | ||||||||
Any tear | ||||||||
MRA | 0.83 (0.73-0.90) |
0.89 (0.77-0.96) |
52.94 (13.91-141.90) [1] |
3.56 (0.33-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
17 | 12 |
MRI | 0.77 (0.63-0.87) |
0.87 (0.75-0.94) |
29.63 (7.61-78.05) [2] |
1.68 (0.33-5.00) [2] |
0.93 (0.75-1.11) |
0.98 (0.83-1.14) |
14 | 10 |
US | 0.74 (0.54-0.88) |
0.70 (0.52-0.85) |
8.82 (1.97-25.39) [3] |
0.36 (0.20-1.00) [3] |
0.89 (0.65-1.11) |
0.79 (0.57-0.99) |
8 | 7 |
FT tear | ||||||||
MRA | 0.92 (0.80-0.97) |
0.91 (0.75-0.98) |
245.15 (28.59-905.13) [1] |
3.96 (1.00-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 8 |
MRI | 0.80 (0.52-0.95) |
0.83 (0.63-0.93) |
36.99 (3.95-138.87) [3] |
0.70 (0.20-3.00) [3] |
0.87 (0.56-1.07) |
0.91 (0.68-1.13) |
7 | 7 |
US | 0.84 (0.66-0.94) |
0.84 (0.67-0.94) |
42.51 (7.75-127.78) [2] |
0.85 (0.20-3.00) [2] |
0.91 (0.73-1.07) |
0.93 (0.74-1.12) |
6 | 6 |
PT tear | ||||||||
MRA | 0.71 (0.55-0.82) |
0.82 (0.63-0.94) |
16.45 (3.25-51.45) [1] |
2.58 (0.33-5.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
8 | 7 |
MRI | 0.72 (0.56-0.82) |
0.82 (0.64-0.93) |
15.35 (3.34-44.48) [2] |
2.68 (0.33-5.00) [1] |
1.02 (0.78-1.34) |
1.00 (0.76-1.30) |
10 | 8 |
US | 0.59 (0.36-0.80) |
0.67 (0.44-0.87) |
4.29 (0.76-14.45) [3] |
0.40 (0.20-1.00) [3] |
0.85 (0.49-1.22) |
0.82 (0.55-1.09) |
5 | 5 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
TABLE A5.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
Any tear | ||||||||
3.0-T MRI | 0.80 (0.65-0.90) |
0.90 (0.75-0.97) |
53.50 (10.23-163.38) [2] |
2.10 (0.20-5.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
12 | 9 |
1.5-T MRI | 0.85 (0.78-0.90) |
0.83 (0.74-0.88) |
29.08 (14.12-52.18) [4] |
1.51 (0.20-5.00) [3] |
1.06 (0.91-1.32) |
0.93 (0.81-1.12) |
30 | 24 |
≥7.5-MHz US | 0.91 (0.86-0.95) |
0.76 (0.66-0.85) |
39.46 (15.69-79.17) [3] |
1.91 (0.33-5.00) [2] |
1.15 (0.99-1.41) |
0.86 (0.71-1.04) |
22 | 21 |
<7.5-MHz US | 0.76 (0.25-0.99) |
0.69 (0.21-0.97) |
93.82 (0.37-590.42) [1] |
1.32 (0.14-7.00) [4] |
0.96 (0.31-1.38) |
0.78 (0.24-1.14) |
1 | 1 |
FT tear | ||||||||
3.0-T MRI | 0.87 (0.58-0.98) |
0.90 (0.65-0.98) |
209.97 (7.48-1001.92) [1] |
3.43 (0.20-7.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
1.5-T MRI | 0.90 (0.79-0.96) |
0.86 (0.76-0.93) |
74.25 (21.27-185.38) [3] |
2.26 (0.20-7.00) [2] |
1.06 (0.86-1.56) |
0.98 (0.82-1.34) |
19 | 19 |
≥7.5-MHz US | 0.89 (0.78-0.96) |
0.87 (0.73-0.93) |
74.88 (19.86-193.84) [2] |
2.25 (0.20-7.00) [3] |
1.05 (0.85-1.54) |
0.98 (0.78-1.36) |
14 | 14 |
<7.5-MHz US | 0.66 (0.21-0.97) |
0.69 (0.22-0.96) |
27.19 (0.28-182.49) [4] |
0.46 (0.14-3.00) [4] |
0.78 (0.23-1.30) |
0.78 (0.25-1.21) |
1 | 1 |
PT tear | ||||||||
3.0-T MRI | 0.77 (0.53-0.91) |
0.86 (0.53-0.99) |
125.81 (3.04-844.86) [1] |
4.43 (0.20-7.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
1.5-T MRI | 0.70 (0.58-0.80) |
0.80 (0.68-0.88) |
10.52 (4.22-20.79) [4] |
1.40 (0.20-5.00) [3] |
0.92 (0.70-1.34) |
0.95 (0.72-1.52) |
15 | 15 |
≥7.5-MHz US | 0.66 (0.51-0.78) |
0.83 (0.72-0.90) |
11.07 (4.00-23.44) [3] |
1.42 (0.20-5.00) [2] |
0.87 (0.63-1.26) |
0.99 (0.77-1.57) |
14 | 14 |
<7.5-MHz US | 0.57 (0.16-0.92) |
0.68 (0.23-0.96) |
12.15 (0.18-71.69) [2] |
0.82 (0.14-5.00) [4] |
0.74 (0.19-1.34) |
0.82 (0.26-1.50) |
1 | 1 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
TABLE A6.
Test | Absolute Sensitivity | Absolute Specificity | Diagnostic Odds Ratio [Rank] | Superiority Index [Rank] | Relative Sensitivity | Relative Specificity | Data Sets, n | Studies, n |
---|---|---|---|---|---|---|---|---|
PT tear | ||||||||
3.0-T MRI | 0.84 (0.68-0.93) |
0.88 (0.68-0.97) |
73.13 (8.78-275.67) [2] |
3.02 (0.20-7.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
10 | 8 |
1.5-T MRI | 0.82 (0.71-0.89) |
0.78 (0.68-0.86) |
18.41 (7.41-37.57) [3] |
0.68 (0.14-3.00) [3] |
0.98 (0.81-1.22) |
0.90 (0.74-1.18) |
17 | 15 |
≥7.5-MHz US | 0.92 (0.85-0.95) |
0.86 (0.77-0.92) |
82.87 (30.68-173.75) [1] |
4.84 (1.00-7.00) [1] |
1.10 (0.96-1.36) |
0.99 (0.84-1.29) |
13 | 13 |
<7.5-MHz US | 0.63 (0.17-0.94) |
0.62 (0.19-0.95) |
14.26 (0.17-82.28) [4] |
0.43 (0.14-3.00) [4] |
0.75 (0.20-1.21) |
0.71 (0.22-1.17) |
1 | 1 |
PT tear | ||||||||
3.0-T MRI | 0.87 (0.59-0.98) |
0.89 (0.61-0.98) |
194.03 (6.27-1017.47) [1] |
3.26 (0.20-7.00) [2] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
1.5-T MRI | 0.78 (0.56-0.92) |
0.81 (0.65-0.90) |
20.98 (3.99-58.70) [4] |
0.53 (0.14-3.00) [4] |
0.91 (0.62-1.34) |
0.92 (0.71-1.34) |
9 | 9 |
≥7.5-MHz US | 0.92 (0.72-0.99) |
0.88 (0.76-0.94) |
182.00 (16.49-666.15) [2] |
3.58 (0.33-7.00) [1] |
1.07 (0.81-1.54) |
1.01 (0.82-1.46) |
7 | 7 |
<7.5-MHz US | 0.74 (0.25-0.99) |
0.73 (0.24-0.98) |
136.19 (0.47-821.28) [3] |
1.08 (0.14-7.00) [3] |
0.87 (0.28-1.45) |
0.84 (0.27-1.32) |
1 | 1 |
PT tear | ||||||||
3.0-T MRI | 0.79 (0.58-0.91) |
0.85 (0.51-1.00) |
146.65 (3.13-1052.81) [1] |
3.70 (0.20-7.00) [1] |
1.00 (1.00-1.00) |
1.00 (1.00-1.00) |
5 | 5 |
1.5-T MRI | 0.70 (0.55-0.81) |
0.77 (0.62-0.89) |
9.27 (3.13-19.97) [4] |
0.72 (0.14-3.00) [3] |
0.91 (0.67-1.26) |
0.93 (0.67-1.51) |
12 | 12 |
≥7.5-MHz US | 0.76 (0.57-0.89) |
0.91 (0.78-0.96) |
44.61 (9.60-110.65) [2] |
3.64 (0.33-7.00) [2] |
0.98 (0.71-1.35) |
1.10 (0.85-1.77) |
7 | 7 |
<7.5-MHz US | 0.46 (0.08-0.87) |
0.70 (0.21-0.97) |
11.00 (0.09-69.49) [3] |
0.54 (0.14-3.00) [4] |
0.59 (0.10-1.18) |
0.86 (0.23-1.63) |
1 | 1 |
aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
Footnotes
Final revision submitted September 18, 2019; accepted October 10, 2019.
One or more of the authors has declared the following potential conflict of interest or source of funding: This study was supported by the China Scholarship Council, which funded 2 of the authors (F.L.: No. 201808080126; F.X.: No. 201706920036), and the National Key R&D Program of Shandong Province (J.D.: No. 2016GSF201214). AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.
References
- 1. Adams CR, Schoolfield JD, Burkhart SS. Accuracy of preoperative magnetic resonance imaging in predicting a subscapularis tendon tear based on arthroscopy. Arthroscopy. 2010;26(11):1427–1433. [DOI] [PubMed] [Google Scholar]
- 2. Al-Shawi A, Badge R, Bunker T. The detection of full thickness rotator cuff tears using ultrasound. J Bone Joint Surg Br. 2008;90:889–892. [DOI] [PubMed] [Google Scholar]
- 3. Alasaarela E, Leppilahti J, Hakala M. Ultrasound and operative evaluation of arthritic shoulder joints. Ann Rheum Dis. 1998;57(6):357–360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Arend CF, Arend AA, da Silva TR. Diagnostic value of tendon thickness and structure in the sonographic diagnosis of supraspinatus tendinopathy: room for a two-step approach. Eur J Radiol. 2014;83(6):975–979. [DOI] [PubMed] [Google Scholar]
- 5. Bachmann GF, Melzer C, Heinrichs CM, Mohring B, Rominger MB. Diagnosis of rotator cuff lesions: comparison of US and MRI on 38 joint specimens. Eur Radiol. 1997;7(2):192–197. [DOI] [PubMed] [Google Scholar]
- 6. Balich SM, Sheley RC, Brown TR, Sauser DD, Quinn SF. MR imaging of the rotator cuff tendon: interobserver agreement and analysis of interpretive errors. Radiology. 1997;204(1):191–194. [DOI] [PubMed] [Google Scholar]
- 7. Beltran J, Rosenberg ZS, Chandnani VP, Cuomo F, Beltran S, Rokito A. Glenohumeral instability: evaluation with MR arthrography. Radiographics. 1997;17(3):657–673. [DOI] [PubMed] [Google Scholar]
- 8. Bhatnagar A, Bhonsle S, Mehta S. Correlation between MRI and arthroscopy in diagnosis of shoulder pathology. J Clin Diagn Res. 2016;10(2):RC18–RC21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Bianchi S, Martinoli C, Abdelwahab IF. Ultrasound of tendon tears, part 1: general considerations and upper extremity. Skeletal Radiol. 2005;34(9):500–512. [DOI] [PubMed] [Google Scholar]
- 10. Binkert CA, Zanetti M, Gerber C, Hodler J. MR arthrography of the glenohumeral joint: two concentrations of gadoteridol versus Ringer solution as the intraarticular contrast material. Radiology. 2001;220:219–224. [DOI] [PubMed] [Google Scholar]
- 11. Brandt TD, Cardone BW, Grant TH, Post M, Weiss CA. Rotator cuff sonography: a reassessment. Radiology. 1989;173(2):323–327. [DOI] [PubMed] [Google Scholar]
- 12. Brenneke SL, Morgan CJ. Evaluation of ultrasonography as a diagnostic technique in the assessment of rotator cuff tendon tears. Am J Sports Med. 1992;20:287–289. [DOI] [PubMed] [Google Scholar]
- 13. Bretzke CA, Crass JR, Craig EV, Feinberg SB. Ultrasonography of the rotator cuff: normal and pathologic anatomy. Invest Radiol. 1985;20(3):311–315. [DOI] [PubMed] [Google Scholar]
- 14. Bryant L, Shnier R, Bryant C, Murrell GA. A comparison of clinical estimation, ultrasonography, magnetic resonance imaging, and arthroscopy in determining the size of rotator cuff tears. J Shoulder Elbow Surg. 2002;11(3):219–224. [DOI] [PubMed] [Google Scholar]
- 15. Bureau NJ, Ziegler D. Economics of musculoskeletal ultrasound. Curr Radiol Rep. 2016;4(8):44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Burk DL, Jr, Karasick D, Kurtz AB, et al. Rotator cuff tears: prospective comparison of MR imaging with arthrography, sonography, and surgery. AJR Am J Roentgenol. 1989;153(1):87–92. [DOI] [PubMed] [Google Scholar]
- 17. Burk DL, Jr, Torres JL, Marone PJ, Mitchell DG, Rifkin MD, Karasick D. MR imaging of shoulder injuries in professional baseball players. J Magn Reson Imaging. 1991;1(3):385–389. [DOI] [PubMed] [Google Scholar]
- 18. Carbone S, Napoli A, Gumina S. MRI of adhesive capsulitis of the shoulder: distension of the bursa in the superior subscapularis recess is a suggestive sign of the pathology. Eur J Radiol. 2014;83(2):345–348. [DOI] [PubMed] [Google Scholar]
- 19. Chandnani VP, Gagliardi JA, Murnane TG, et al. Glenohumeral ligaments and shoulder capsular mechanism: evaluation with MR arthrography. Radiology. 1995;196(1):27–32. [DOI] [PubMed] [Google Scholar]
- 20. Chang CY, Wang SF, Chiou HJ, Ma HL, Sun YC, Wu HD. Comparison of shoulder ultrasound and MR imaging in diagnosing full-thickness rotator cuff tears. Clin Imaging. 2002;26(1):50–54. [DOI] [PubMed] [Google Scholar]
- 21. Chang RF, Lee CC, Lo CM. Computer-aided diagnosis of different rotator cuff lesions using shoulder musculoskeletal ultrasound. Ultrasound Med Biol. 2016;42(9):2315–2322. [DOI] [PubMed] [Google Scholar]
- 22. Chen DY, Haw-Chang LH, Lai KL, Chen HH, Chen YM, Chen CP. Diagnostic utility of US for detecting rotator cuff tears in rheumatoid arthritis patients: comparison with magnetic resonance imaging. J Med Ultrasound. 2014;22(4):200–206. [Google Scholar]
- 23. Choo HJ, Lee SJ, Kim JH, et al. Delaminated tears of the rotator cuff: prevalence, characteristics, and diagnostic accuracy using indirect MR arthrography. AJR Am J Roentgenol. 2015;204(2):360–366. [DOI] [PubMed] [Google Scholar]
- 24. Choo HJ, Lee SJ, Kim OH, Seo SS, Kim JH. Comparison of three-dimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder. Radiology. 2012;262(3):921–931. [DOI] [PubMed] [Google Scholar]
- 25. Chun KA, Kim MS, Kim YJ. Comparisons of the various partial-thickness rotator cuff tears on MR arthrography and arthroscopic correlation. Korean J Radiol. 2010;11:528–535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Chung CB, Dwek JR, Feng S, Resnick D. MR arthrography of the glenohumeral joint: a tailored approach. AJR Am J Roentgenol. 2001;177(1):217–219. [DOI] [PubMed] [Google Scholar]
- 27. Co S, Bhalla S, Rowan K, Aippersbach S, Bicknell S. Comparison of 2- and 3-dimensional shoulder ultrasound to magnetic resonance imaging in a community hospital for the detection of supraspinatus rotator cuff tears with improved worktime room efficiency. Can Assoc Radiol J. 2012;63(3):170–176. [DOI] [PubMed] [Google Scholar]
- 28. Cole B, Twibill K, Lam P, Hackett L, Murrell GA. Not all ultrasounds are created equal: general sonography versus musculoskeletal sonography in the detection of rotator cuff tears. Shoulder Elbow. 2016;8(4):250–257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Corazza A, Orlandi D, Fabbro E, et al. Dynamic high-resolution ultrasound of the shoulder: how we do it. Eur J Radiol. 2015;84(2):266–277. [DOI] [PubMed] [Google Scholar]
- 30. Crass JR, Craig EV, Feinberg SB. Sonography of the postoperative rotator cuff. AJR Am J Roentgenol. 1986;146(3):561–564. [DOI] [PubMed] [Google Scholar]
- 31. Crass JR, Craig EV, Feinberg SB. Ultrasonography of rotator cuff tears: a review of 500 diagnostic studies. J Clin Ultrasound. 1988;16(5):313–327. [DOI] [PubMed] [Google Scholar]
- 32. Cullen DM, Breidahl WH, Janes GC. Diagnostic accuracy of shoulder ultrasound performed by a single operator. Australas Radiol. 2007;51(3):226–229. [DOI] [PubMed] [Google Scholar]
- 33. Day M, Phil M, McCormack RA, Nayyar S, Jazrawi L. Physician training ultrasound and accuracy of diagnosis in rotator cuff tears. Bull Hosp Jt Dis (2013). 2016;74(3):207–211. [PubMed] [Google Scholar]
- 34. de Jesus JO, Parker L, Frangos AJ, Nazarian LN. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. AJR Am J Roentgenol. 2009;192(6):1701–1707. [DOI] [PubMed] [Google Scholar]
- 35. Edmonds EW, Eisner EA, Kruk PG, Roocroft JH, Dwek JD. Diagnostic shortcomings of magnetic resonance arthrography to evaluate partial rotator cuff tears in adolescents. J Pediatr Orthop. 2015;35(4):407–411. [DOI] [PubMed] [Google Scholar]
- 36. Elmorsy A, Keightley A, Flannery M. Accuracy of ultrasonography (US) and magnetic resonance imaging (MRI) in detection of rotator cuff tears in district general hospital. Pol J Radiol. 2017;82:634–637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Etancelin-Jamet M, Bouilleau L, Martin A, Bertrand P. Diagnostic value of angled oblique sagittal images of the supraspinatus tendon for the detection of rotator cuff tears on MR imaging. Diagn Interv Imaging. 2017;98(2):161–169. [DOI] [PubMed] [Google Scholar]
- 38. Farin P, Jaroma H. Sonographic detection of tears of the anterior portion of the rotator cuff (subscapularis tendon tears). J Ultrasound Med. 1996;15(3):221–225. [DOI] [PubMed] [Google Scholar]
- 39. Farshad-Amacker NA, Buck FM, Farshad M, Pfirrmann CW, Gerber C. Partial supraspinatus tears are associated with tendon lengthening. Knee Surg Sports Traumatol Arthrosc. 2015;23(2):408–414. [DOI] [PubMed] [Google Scholar]
- 40. Ferrari FS, Governi S, Burresi F, Vigni F, Stefani P. Supraspinatus tendon tears: comparison of US and MR arthrography with surgical correlation. Eur Radiol. 2002;12(5):1211–1217. [DOI] [PubMed] [Google Scholar]
- 41. Ferri M, Finlay K, Popowich T, Stamp G, Schuringa P, Friedman L. Sonography of full-thickness supraspinatus tears: comparison of patient positioning technique with surgical correlation. AJR Am J Roentgenol. 2005;184(1):180–184. [DOI] [PubMed] [Google Scholar]
- 42. Fitzgerald M, Lawler SM, Lowe JT, Nelson R, Mantell MT, Jawa A. Computed tomography underestimates rotator cuff pathology in patients with glenohumeral osteoarthritis. J Shoulder Elbow Surg. 2018;27(8):1451–1455. [DOI] [PubMed] [Google Scholar]
- 43. Foti G, Avanzi P, Mantovani W, et al. MR arthrography of the shoulder: evaluation of isotropic 3D intermediate-weighted FSE and hybrid GRE T1-weighted sequences. Radiol Med. 2017;122(5):353–360. [DOI] [PubMed] [Google Scholar]
- 44. Fotiadou AN, Vlychou M, Papadopoulos P, Karataglis DS, Palladas P, Fezoulidis IV. Ultrasonography of symptomatic rotator cuff tears compared with MR imaging and surgery. Eur J Radiol. 2008;68(1):174–179. [DOI] [PubMed] [Google Scholar]
- 45. Frei R, Chladek P, Trc T, Kopecny Z, Kautzner J. Arthroscopic evaluation of ultrasonography and magnetic resonance imaging for diagnosis of rotator cuff tear. Ortop Traumatol Rehabil. 2008;10(2):111–114. [PubMed] [Google Scholar]
- 46. Friedman RL, Hidalgo HJ, Gilmer PW, Mallon WJ. Ultrasonography of the rotator cuff: analysis of results in a community setting. J Shoulder Elbow Surg. 1993;2(1):22–26. [DOI] [PubMed] [Google Scholar]
- 47. Fritz LB, Ouellette HA, O’Hanley TA, Kassarjian A, Palmer WE. Cystic changes at supraspinatus and infraspinatus tendon insertion sites: association with age and rotator cuff disorders in 238 patients. Radiology. 2007;244:239–248. [DOI] [PubMed] [Google Scholar]
- 48. Furukawa R, Morihara T, Arai Y, et al. Diagnostic accuracy of magnetic resonance imaging for subscapularis tendon tears using radial-slice magnetic resonance images. J Shoulder Elbow Surg. 2014;23(11):e283–e290. [DOI] [PubMed] [Google Scholar]
- 49. Gaenslen ES, Satterlee CC, Hinson GW. Magnetic resonance imaging for evaluation of failed repairs of the rotator cuff: relationship to operative findings. J Bone Joint Surg Am. 1996;78(9):1391–1396. [DOI] [PubMed] [Google Scholar]
- 50. Ge L, Pan B, Song F, et al. Comparing the diagnostic accuracy of five common tumour biomarkers and CA19-9 for pancreatic cancer: a protocol for a network meta-analysis of diagnostic test accuracy. BMJ Open. 2017;7(12):e018175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Gilat R, Atoun E, Cohen O, et al. Recurrent rotator cuff tear: is ultrasound imaging reliable? J Shoulder Elbow Surg. 2018;27(7):1263–1267. [DOI] [PubMed] [Google Scholar]
- 52. Gormeli C, Gormeli G, Yucesoy C, Ataoglu B, Kanatli U. Comparison of the results of ultrasonographic evaluation and arthroscopy in patients scheduled for surgery of the supraspinatus tendon rupture. Ann Saudi Med. 2014;34(6):522–526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Grainger AJ, Elliott JM, Campbell RS, Tirman PF, Steinbach LS, Genant HK. Direct MR arthrography: a review of current use. Clin Radiol. 2000;55(3):163–176. [DOI] [PubMed] [Google Scholar]
- 54. Guo LP, Wang WM, Wang YH, Liu YP, Yu XB, Ma XJ. Ultrasound in assessment of supraspinatus tendon injury: correlation with arthroscopy. Chin Med J (Engl). 2016;129(3):361–363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Gyftopoulos S, Guja KE, Subhas N, Virk MS, Gold HT. Cost-effectiveness of magnetic resonance imaging versus ultrasound for the detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2017;26(12):2067–2077. [DOI] [PubMed] [Google Scholar]
- 56. Gyftopoulos S, O’Donnell J, Shah NP, Goss J, Babb J, Recht MP. Correlation of MRI with arthroscopy for the evaluation of the subscapularis tendon: a musculoskeletal division’s experience. Skeletal Radiol. 2013;42(9):1269–1275. [DOI] [PubMed] [Google Scholar]
- 57. Herold T, Bachthaler M, Hamer OW, et al. Indirect MR arthrography of the shoulder: use of abduction and external rotation to detect full- and partial-thickness tears of the supraspinatus tendon. Radiology. 2006;240:152–160. [DOI] [PubMed] [Google Scholar]
- 58. Hitachi S, Takase K, Tanaka M, et al. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil: noninvasive detection without intraarticular contrast material. Jpn J Radiol. 2011;29(7):466–474. [DOI] [PubMed] [Google Scholar]
- 59. Hodler J, Fretz CJ, Terrier F, Gerber C. Rotator cuff tears: correlation of sonographic and surgical findings. Radiology. 1988;169(3):791–794. [DOI] [PubMed] [Google Scholar]
- 60. Hodler J, Kursunoglu-Brahme S, Snyder SJ, et al. Rotator cuff disease: assessment with MR arthrography versus standard MR imaging in 36 patients with arthroscopic confirmation. Radiology. 1992;182(2):431–436. [DOI] [PubMed] [Google Scholar]
- 61. Horiuchi S, Nozaki T, Tasaki A, et al. Comparison between isotropic 3-dimensional fat-suppressed T2-weighted fast spin echo (FSE) and conventional 2-dimensional fat-suppressed proton-weighted FSE shoulder magnetic resonance imaging at 3-T in patients with shoulder pain. J Comput Assist Tomogr. 2018;42(4):559–565. [DOI] [PubMed] [Google Scholar]
- 62. Hussain A, Muzzammil M, Butt F, Valsamis EM, Dwyer AJ. Effectiveness of plain shoulder radiograph in detecting degenerate rotator cuff tears. J Ayub Med Coll Abbottabad. 2018;30(1):8–11. [PubMed] [Google Scholar]
- 63. Iannotti JP, Ciccone J, Buss DD, et al. Accuracy of office-based ultrasonography of the shoulder for the diagnosis of rotator cuff tears. J Bone Joint Surg Am. 2005;87(6):1305–1311. [DOI] [PubMed] [Google Scholar]
- 64. Iannotti JP, Zlatkin MB, Esterhai JL, Kressel HY, Dalinka MK, Spindler KP. Magnetic resonance imaging of the shoulder: sensitivity, specificity, and predictive value. J Bone Joint Surg Am. 1991;73(1):17–29. [PubMed] [Google Scholar]
- 65. Ilozue T, Fotiadou A, Amarah S. Evaluating the success of preoperative imaging for diagnosing rotator cuff tears in a regional centre. Acta Orthop Belg. 2014;80(3):322–330. [PubMed] [Google Scholar]
- 66. Jacobson JA, Lancaster S, Prasad A, van Holsbeeck MT, Craig JG, Kolowich P. Full-thickness and partial-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology. 2004;230(1):234–242. [DOI] [PubMed] [Google Scholar]
- 67. Jordan RW, Naeem R, Srinivas K, Shyamalan G. A comparison of magnetic resonance arthrography and arthroscopic findings in the assessment of anterior shoulder dislocations. Skeletal Radiol. 2015;44(5):653–657. [DOI] [PubMed] [Google Scholar]
- 68. Jung JY, Jee WH, Chun CW, Kim YS. Diagnostic performance of MR arthrography with anterior trans-subscapularis versus posterior injection approach for subscapularis tendon tears at 3.0 T. Eur Radiol. 2017;27(3):1303–1311. [DOI] [PubMed] [Google Scholar]
- 69. Jung JY, Jee WH, Chun HJ, Ahn MI, Kim YS. Magnetic resonance arthrography including ABER view in diagnosing partial-thickness tears of the rotator cuff: accuracy, and inter- and intra-observer agreements. Acta Radiol. 2010;51(2):194–201. [DOI] [PubMed] [Google Scholar]
- 70. Jung JY, Jee WH, Park MY, Lee SY, Kim YS. Supraspinatus tendon tears at 3.0 T shoulder MR arthrography: diagnosis with 3D isotropic turbo spin-echo SPACE sequence versus 2D conventional sequences. Skeletal Radiol. 2012;41:1401–1410. [DOI] [PubMed] [Google Scholar]
- 71. Jung JY, Yoon YC, Choi S-H, Kwon JW, Yoo J, Choe B-KJR. Three-dimensional isotropic shoulder MR arthrography: comparison with two-dimensional MR arthrography for the diagnosis of labral lesions at 3.0 T. Radiology. 2009;250(2):498–505. [DOI] [PubMed] [Google Scholar]
- 72. Jung JY, Yoon YC, Yi SK, Yoo J, Choe BK. Comparison study of indirect MR arthrography and direct MR arthrography of the shoulder. Skeletal Radiol. 2009;38(7):659–667. [DOI] [PubMed] [Google Scholar]
- 73. Kang CH, Kim SS, Kim JH, et al. Supraspinatus tendon tears: comparison of 3D US and MR arthrography with surgical correlation. Skeletal Radiol. 2009;38(11):1063–1069. [DOI] [PubMed] [Google Scholar]
- 74. Kluger R, Mayrhofer R, Kroner A, et al. Sonographic versus magnetic resonance arthrographic evaluation of full-thickness rotator cuff tears in millimeters. J Shoulder Elbow Surg. 2003;12(2):110–116. [DOI] [PubMed] [Google Scholar]
- 75. Kurol M, Rahme H, Hilding S. Sonography for diagnosis of rotator cuff tear: comparison with observations at surgery in 58 shoulders. Acta Orthop Scand. 1991;62:465–467. [DOI] [PubMed] [Google Scholar]
- 76. Lee CS, Davis SM, McGroder C, et al. Analysis of low-field MRI scanners for evaluation of shoulder pathology based on arthroscopy. Orthop J Sports Med. 2014;2(7):2325967114540407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Lee JH, Yoon YC, Jee S. Diagnostic performance of indirect MR arthrography for the diagnosis of rotator cuff tears at 3.0 T. Acta Radiol. 2015;56(6):720–726. [DOI] [PubMed] [Google Scholar]
- 78. Lee JH, Yoon YC, Jee S, Kwon JW, Cha JG, Yoo JC. Comparison of three-dimensional isotropic and two-dimensional conventional indirect MR arthrography for the diagnosis of rotator cuff tears. Korean J Radiol. 2014;15(6):771–780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79. Lee JH, Yoon YC, Jung JY, Yoo JC. Rotator cuff tears noncontrast MRI compared to MR arthrography. Skeletal Radiol. 2015;44(12):1745–1754. [DOI] [PubMed] [Google Scholar]
- 80. Lee SH, Yun SJ, Jin W, Park SY, Park JS, Ryu KN. Comparison between 3D isotropic and 2D conventional MR arthrography for diagnosing rotator cuff tear and labral lesions: a meta-analysis. J Magn Reson Imaging. 2018;48(4):1034–1045. [DOI] [PubMed] [Google Scholar]
- 81. Lin L, Yan H, Xiao J, et al. The diagnostic value of magnetic resonance imaging for different types of subscapularis lesions. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2252–2258. [DOI] [PubMed] [Google Scholar]
- 82. Lo HC, Hung ST, Kuo DP, Chen YL, Lee HM. Quantitative diffusion-weighted magnetic resonance imaging for the diagnosis of partial-thickness rotator cuff tears. J Shoulder Elbow Surg. 2016;25(9):1433–1441. [DOI] [PubMed] [Google Scholar]
- 83. Loew R, Kreitner KF, Runkel M, Zoellner J, Thelen M. MR arthrography of the shoulder: comparison of low-field (0.2 T) vs high-field (1.5 T) imaging. Eur Radiol. 2000;10(6):989–996. [DOI] [PubMed] [Google Scholar]
- 84. Mack LA, Gannon MK, Kilcoyne RF, Matsen RAR. Sonographic evaluation of the rotator cuff: accuracy in patients without prior surgery. Clin Orthop Relat Res. 1988;234:21–27. [PubMed] [Google Scholar]
- 85. Mack LA, Nyberg DA, Matsen FR, 3rd, Kilcoyne RF, Harvey D. Sonography of the postoperative shoulder. AJR Am J Roentgenol. 1988;150(5):1089–1093. [DOI] [PubMed] [Google Scholar]
- 86. Magee T. Can isotropic fast gradient echo imaging be substituted for conventional T1 weighted sequences in shoulder MR arthrography at 3 Tesla? J Magn Reson Imaging. 2007;26:118–122. [DOI] [PubMed] [Google Scholar]
- 87. Magee T. MR versus MR arthrography in detection of supraspinatus tendon tears in patients without previous shoulder surgery. Skeletal Radiol. 2014;43:43–48. [DOI] [PubMed] [Google Scholar]
- 88. Magee T. 3-T MRI of the shoulder: is MR arthrography necessary? AJR Am J Roentgenol. 2009;192:86–92. [DOI] [PubMed] [Google Scholar]
- 89. Magee T, Williams D. 3.0-T MRI of the supraspinatus tendon. AJR Am J Roentgenol. 2006;187(4):881–886. [DOI] [PubMed] [Google Scholar]
- 90. Magee TH, Gaenslen ES, Seitz R, Hinson GA, Wetzel LH. MR imaging of the shoulder after surgery. AJR Am J Roentgenol. 1997;168(4):925–928. [DOI] [PubMed] [Google Scholar]
- 91. Malavolta EA, Assuncao JH, Guglielmetti CL, et al. Accuracy of preoperative MRI in the diagnosis of subscapularis tears. Arch Orthop Trauma Surg. 2016;136(10):1425–1430. [DOI] [PubMed] [Google Scholar]
- 92. Martin-Hervas C, Romero J, Navas-Acien A, Reboiras JJ, Munuera L. Ultrasonographic and magnetic resonance images of rotator cuff lesions compared with arthroscopy or open surgery findings. J Shoulder Elbow Surg. 2001;10(5):410–415. [DOI] [PubMed] [Google Scholar]
- 93. Masaoka S, Hashizume H, Senda M, Nishida K, Nagoshi M, Inoue H. Ultrasonographic analysis of shoulder rotator cuff tears. Acta Med Okayama. 1999;53(2):81–89. [DOI] [PubMed] [Google Scholar]
- 94. Massengill AD, Seeger LL, Yao L, et al. Labrocapsular ligamentous complex of the shoulder: normal anatomy, anatomic variation, and pitfalls of MR imaging and MR arthrography. Radiographics. 1994;14(6):1211–1223. [DOI] [PubMed] [Google Scholar]
- 95. Matava MJ, Purcell DB, Rudzki JR. Partial-thickness rotator cuff tears. Am J Sports Med. 2005;33(9):1405–1417. [DOI] [PubMed] [Google Scholar]
- 96. McGarvey C, Harb Z, Smith C, Houghton R, Corbett S, Ajuied A. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis. Skeletal Radiol. 2016;45(2):251–261. [DOI] [PubMed] [Google Scholar]
- 97. McInnes MDF, Moher D, Thombs BD, et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA statement. JAMA. 2018;319(4):388–396. [DOI] [PubMed] [Google Scholar]
- 98. Meister K, Thesing J, Montgomery WJ, Indelicato PA, Walczak S, Fontenot W. MR arthrography of partial thickness tears of the undersurface of the rotator cuff: an arthroscopic correlation. Skeletal Radiol. 2004;33(3):136–141. [DOI] [PubMed] [Google Scholar]
- 99. Menten J, Lesaffre E. A general framework for comparative Bayesian meta-analysis of diagnostic studies. BMC Med Res Methodol. 2015;15:70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100. Middleton WD, Edelstein G, Reinus WR, Melson GL, Murphy WA. Ultrasonography of the rotator cuff: technique and normal anatomy. J Ultrasound Med. 1984;3(12):549–551. [DOI] [PubMed] [Google Scholar]
- 101. Middleton WD, Teefey SA, Yamaguchi K. Sonography of the rotator cuff: analysis of interobserver variability. AJR Am J Roentgenol. 2004;183(5):1465–1468. [DOI] [PubMed] [Google Scholar]
- 102. Milosavljevic J, Elvin A, Rahme H. Ultrasonography of the rotator cuff: a comparison with arthroscopy in one-hundred-and-ninety consecutive cases. Acta Radiol. 2005;46(8):858–865. [DOI] [PubMed] [Google Scholar]
- 103. Misamore GW, Woodward C. Evaluation of degenerative lesions of the rotator cuff: a comparison of arthrography and ultrasonography. J Bone Joint Surg Am. 1991;73(5):704–706. [PubMed] [Google Scholar]
- 104. Modi CS, Karthikeyan S, Marks A, et al. Accuracy of abduction-external rotation MRA versus standard MRA in the diagnosis of intra-articular shoulder pathology. Orthopedics. 2013;36(3):e337–e342. [DOI] [PubMed] [Google Scholar]
- 105. Mohtadi NG, Vellet AD, Clark ML, et al. A prospective, double-blind comparison of magnetic resonance imaging and arthroscopy in the evaluation of patients presenting with shoulder pain. J Shoulder Elbow Surg. 2004;13(3):258–265. [DOI] [PubMed] [Google Scholar]
- 106. Momenzadeh OR, Gerami MH, Sefidbakht S, Dehghani S. Assessment of correlation between MRI and arthroscopic pathologic findings in the shoulder joint. Arch Bone Jt Surg. 2015;3(4):286–290. [PMC free article] [PubMed] [Google Scholar]
- 107. Moosmayer S, Heir S, Smith HJ. Sonography of the rotator cuff in painful shoulders performed without knowledge of clinical information: results from 58 sonographic examinations with surgical correlation. J Clin Ultrasound. 2007;35:20–26. [DOI] [PubMed] [Google Scholar]
- 108. Moosmayer S, Smith HJ. Diagnostic ultrasound of the shoulder: a method for experts only? Results from an orthopedic surgeon with relative inexpensive compared to operative findings. Acta Orthop. 2005;76:503–508. [DOI] [PubMed] [Google Scholar]
- 109. Motamedi AR, Urrea LH, Hancock RE, Hawkins RJ, Ho C. Accuracy of magnetic resonance imaging in determining the presence and size of recurrent rotator cuff tears. J Shoulder Elbow Surg. 2002;11(1):6–10. [DOI] [PubMed] [Google Scholar]
- 110. Murphy RJ, Daines MT, Carr AJ, Rees JL. An independent learning method for orthopaedic surgeons performing shoulder ultrasound to identify full-thickness tears of the rotator cuff. J Bone Joint Surg Am. 2013;95(3):266–272. [DOI] [PubMed] [Google Scholar]
- 111. Naqvi GA, Jadaan M, Harrington P. Accuracy of ultrasonography and magnetic resonance imaging for detection of full thickness rotator cuff tears. Int J Shoulder Surg. 2009;3(4):94–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112. Nazarian LN. The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. AJR Am J Roentgenol. 2008;190(6):1621–1626. [DOI] [PubMed] [Google Scholar]
- 113. Needell SD, Zlatkin MB. Comparison of fat-saturation fast spin echo versus conventional spin-echo MRI in the detection of rotator cuff pathology. J Magn Reson Imaging. 1997;7(4):674–677. [DOI] [PubMed] [Google Scholar]
- 114. Nelson MC, Leather GP, Nirschl RP, Pettrone FA, Freedman MT. Evaluation of the painful shoulder: a prospective comparison of magnetic resonance imaging, computerized tomographic arthrography, ultrasonography, and operative findings. J Bone Joint Surg Am. 1991;73(5):707–716. [PubMed] [Google Scholar]
- 115. Nyaga VN, Aerts M, Arbyn M. ANOVA model for network meta-analysis of diagnostic test accuracy data. Stat Methods Med Res. 2018;27(6):1766–1784. [DOI] [PubMed] [Google Scholar]
- 116. Oh DK, Yoon YC, Kwon JW, et al. Comparison of indirect isotropic MR arthrography and conventional MR arthrography of labral lesions and rotator cuff tears: a prospective study. AJR Am J Roentgenol. 2009;192(2):473–479. [DOI] [PubMed] [Google Scholar]
- 117. Ostor AJ, Richards CA, Tytherleigh-Strong G, et al. Validation of clinical examination versus magnetic resonance imaging and arthroscopy for the detection of rotator cuff lesions. Clin Rheumatol. 2013;32(9):1283–1291. [DOI] [PubMed] [Google Scholar]
- 118. Owen RK, Cooper NJ, Quinn TJ, Lees R, Sutton AJ. Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making. J Clin Epidemiol. 2018;99:64–74. [DOI] [PubMed] [Google Scholar]
- 119. Paavolainen P, Ahovuo J. Ultrasonography and arthrography in the diagnosis of tears of the rotator cuff. J Bone Joint Surg Am. 1994;76(3):335–340. [DOI] [PubMed] [Google Scholar]
- 120. Palmer WE, Brown JH, Rosenthal DI. Labral-ligamentous complex of the shoulder: evaluation with MR arthrography. Radiology. 1994;190(3):645–651. [DOI] [PubMed] [Google Scholar]
- 121. Palmer WE, Brown JH, Rosenthal DI. Rotator cuff: evaluation with fat-suppressed MR arthrography. Radiology. 1993;188(3):683–687. [DOI] [PubMed] [Google Scholar]
- 122. Park HJ, Lee SY, Kim MS, et al. Evaluation of shoulder pathology: three-dimensional enhanced T1 high-resolution isotropic volume excitation MR vs two-dimensional fast spin echo T2 fat saturation MR. Br J Radiol. 2015;88(1047):20140147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123. Park HJ, Lee SY, Rho MH, Kwon HJ, Kim MS, Chung EC. The usefulness of the three-dimensional enhanced T1 high-resolution isotropic volume excitation MR in the evaluation of shoulder pathology: comparison with two-dimensional enhanced T1 fat saturation MR. Br J Radiol. 2015;88(1054):20140830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124. Park SY, Lee IS, Park SK, Cheon SJ, Ahn JM, Song JW. Comparison of three-dimensional isotropic and conventional MR arthrography with respect to the diagnosis of rotator cuff and labral lesions: focus on isotropic fat-suppressed proton density and VIBE sequences. Clin Radiol. 2014;69(4):e173–e182. [DOI] [PubMed] [Google Scholar]
- 125. Park YH, Lee JY, Moon SH, et al. MR arthrography of the labral capsular ligamentous complex in the shoulder: imaging variations and pitfalls. AJR Am J Roentgenol. 2000;175(3):667–672. [DOI] [PubMed] [Google Scholar]
- 126. Pattee GA, Snyder SJ. Sonographic evaluation of the rotator cuff: correlation with arthroscopy. Arthroscopy. 1988;4(1):15–20. [DOI] [PubMed] [Google Scholar]
- 127. Perez JR, Massel D, Barrera CM, et al. Rotator cuff tears in the pediatric population: comparing findings on arthroscopic evaluation to pre-operative magnetic resonance imaging. J Clin Orthop Trauma. 2018;9(suppl 1):S123–S128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128. Pfirrmann CW, Zanetti M, Weishaupt D, Gerber C, Hodler J. Subscapularis tendon tears: detection and grading at MR arthrography. Radiology. 1999;213(3):709–714. [DOI] [PubMed] [Google Scholar]
- 129. Pierce JL, Nacey NC, Jones S, et al. Postoperative shoulder imaging: rotator cuff, labrum, and biceps tendon. Radiographics. 2016;36(6):1648–1671. [DOI] [PubMed] [Google Scholar]
- 130. Prickett WD, Teefey SA, Galatz LM, Calfee RP, Middleton WD, Yamaguchi K. Accuracy of ultrasound imaging of the rotator cuff in shoulders that are painful postoperatively. J Bone Joint Surg Am. 2003;85:1084–1089. [DOI] [PubMed] [Google Scholar]
- 131. Punwar S, Blewitt N. Pre-operative departmental ultrasound of the rotator cuff: sensitivity and specificity in a regional specialist orthopaedic centre. Shoulder Elbow. 2014;6(2):72–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132. Quinn SF, Sheley RC, Demlow TA, Szumowski J. Rotator cuff tendon tears: evaluation with fat-suppressed MR imaging with arthroscopic correlation in 100 patients. Radiology. 1995;195(2):497–500. [DOI] [PubMed] [Google Scholar]
- 133. Read JW, Perko M. Shoulder ultrasound: diagnostic accuracy for impingement syndrome, rotator cuff tear, and biceps tendon pathology. J Shoulder Elbow Surg. 1998;7(3):264–271. [DOI] [PubMed] [Google Scholar]
- 134. Robertson PL, Schweitzer ME, Mitchell DG, et al. Rotator cuff disorders: interobserver and intraobserver variation in diagnosis with MR imaging. Radiology. 1995;194(3):831–835. [DOI] [PubMed] [Google Scholar]
- 135. Roy JS, Braen C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br J Sports Med. 2015;49(20):1316–1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136. Rutten MJ, Maresch BJ, Jager GJ, Blickman JG, van Holsbeeck MT. Ultrasound of the rotator cuff with MRI and anatomic correlation. Eur J Radiol. 2007;62(3):427–436. [DOI] [PubMed] [Google Scholar]
- 137. Rutten MJ, Spaargaren GJ, van Loon T, de Waal Malefijt MC, Kiemeney LA, Jager GJ. Detection of rotator cuff tears: the value of MRI following ultrasound. Eur Radiol. 2010;20(2):450–457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. Sahin-Akyar G, Miller TT, Staron RB, McCarthy DM, Feldman F. Gradient-echo versus fat-suppressed fast spin-echo MR imaging of rotator cuff tears. AJR Am J Roentgenol. 1998;171(1):223–227. [DOI] [PubMed] [Google Scholar]
- 139. Saqib R, Harris J, Funk L. Comparison of magnetic resonance arthrography with arthroscopy for imaging of shoulder injuries: retrospective study. Ann R Coll Surg Engl. 2017;99(4):271–274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140. Schreinemachers SA, van der Hulst VP, Willems WJ, Bipat S, van der Woude HJ. Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography? Skeletal Radiol. 2009;38:967–975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141. Seibold CJ, Mallisee TA, Erickson SJ, Boynton MD, Raasch WG, Timins ME. Rotator cuff: evaluation with US and MR imaging. Radiographics. 1999;19(3):685–705. [DOI] [PubMed] [Google Scholar]
- 142. Seltzer SE, Finberg HJ, Weissman BN, Kido DK, Collier BD. Arthrosonography: gray-scale ultrasound evaluation of the shoulder. Radiology. 1979;132(2):467–468. [DOI] [PubMed] [Google Scholar]
- 143. Shalaby MH, Shehata KAA, Farouk MA. Conventional MR in rotator cuff pathology: is it sufficient? The Egyptian Journal of Radiology and Nuclear Medicine. 2017;48(1):183–188. [Google Scholar]
- 144. Shankman S, Bencardino J, Beltran J. Glenohumeral instability: evaluation using MR arthrography of the shoulder. Skeletal Radiol. 1999;28(7):365–382. [DOI] [PubMed] [Google Scholar]
- 145. Shellock FG, Bert JM, Fritts HM, Gundry CR, Easton R, Crues JVR. Evaluation of the rotator cuff and glenoid labrum using a 0.2-Tesla extremity magnetic resonance (MR) system: MR results compared to surgical findings. J Magn Reson Imaging. 2001;14:763–770. [DOI] [PubMed] [Google Scholar]
- 146. Shi LL, Mullen MG, Freehill MT, Lin A, Warner JJ, Higgins LD. Accuracy of long head of the biceps subluxation as a predictor for subscapularis tears. Arthroscopy. 2015;31(4):615–619. [DOI] [PubMed] [Google Scholar]
- 147. Singh H, Yuvarajan P, Maini L, Gautam VK. Evaluation of ultrasound as a tool for etiological diagnosis of painful arc syndrome. J Clin Orthop Trauma. 2010;1:81–84. [Google Scholar]
- 148. Sipola P, Niemitukia L, Kroger H, Hofling I, Vaatainen U. Detection and quantification of rotator cuff tears with ultrasonography and magnetic resonance imaging: a prospective study in 77 consecutive patients with a surgical reference. Ultrasound Med Biol. 2010;36(12):1981–1989. [DOI] [PubMed] [Google Scholar]
- 149. Smith TO, Back T, Toms AP, Hing CB. Diagnostic accuracy of ultrasound for rotator cuff tears in adults: a systematic review and meta-analysis. Clin Radiol. 2011;66(11):1036–1048. [DOI] [PubMed] [Google Scholar]
- 150. Soble MG, Kaye AD, Guay RC. Rotator cuff tear: clinical experience with sonographic detection. Radiology. 1989;173(2):319–321. [DOI] [PubMed] [Google Scholar]
- 151. Sonin AH, Peduto AJ, Fitzgerald SW, Callahan CM, Bresler ME. MR imaging of the rotator cuff mechanism: comparison of spin-echo and turbo spin-echo sequences. AJR Am J Roentgenol. 1996;167(2):333–338. [DOI] [PubMed] [Google Scholar]
- 152. Sonnabend DH, Hughes JS, Giuffre BM, Farrell R. The clinical role of shoulder ultrasound. Aust N Z J Surg. 1997;67(9):630–633. [DOI] [PubMed] [Google Scholar]
- 153. Sperling JW, Potter HG, Craig EV, Flatow E, Warren RF. Magnetic resonance imaging of painful shoulder arthroplasty. J Shoulder Elbow Surg. 2002;11(4):315–321. [DOI] [PubMed] [Google Scholar]
- 154. Steinbach LS, Palmer WE, Schweitzer ME. Special focus session: MR arthrography. Radiographics. 2002;22(5):1223–1246. [DOI] [PubMed] [Google Scholar]
- 155. Stetson WB, Phillips T, Deutsch A. The use of magnetic resonance arthrography to detect partial-thickness rotator cuff tears. J Bone Joint Surg Am. 2005;87:81–88. [DOI] [PubMed] [Google Scholar]
- 156. Stoppino LP, Ciuffreda P, Rossi M, et al. Lesions of the rotator cuff footprint: diagnostic performance of MR arthrography compared with arthroscopy. Musculoskelet Surg. 2013;97(suppl 2):S197–S202. [DOI] [PubMed] [Google Scholar]
- 157. Subhas N, Benedick A, Obuchowski NA, et al. Comparison of a fast 5-minute shoulder MRI protocol with a standard shoulder MRI protocol: a multiinstitutional multireader study. AJR Am J Roentgenol. 2017;208(4):W146–W154. [DOI] [PubMed] [Google Scholar]
- 158. Swen WA, Jacobs JW, Algra PR, et al. Sonography and magnetic resonance imaging equivalent for the assessment of full-thickness rotator cuff tears. Arthritis Rheum. 1999;42(10):2231–2238. [DOI] [PubMed] [Google Scholar]
- 159. Takagishi K, Makino K, Takahira N, Ikeda T, Tsuruno K, Itoman M. Ultrasonography for diagnosis of rotator cuff tear. Skeletal Radiol. 1996;25(3):221–224. [DOI] [PubMed] [Google Scholar]
- 160. Teefey SA, Hasan SA, Middleton WD, Patel M, Wright RW, Yamaguchi K. Ultrasonography of the rotator cuff: a comparison of ultrasonographic and arthroscopic findings in one hundred consecutive cases. J Bone Joint Surg Am. 2000;82(4):498–504. [PubMed] [Google Scholar]
- 161. Teefey SA, Middleton WD, Payne WT, Yamaguchi K. Detection and measurement of rotator cuff tears with sonography: analysis of diagnostic errors. AJR Am J Roentgenol. 2005;184(6):1768–1773. [DOI] [PubMed] [Google Scholar]
- 162. Teefey SA, Rubin DA, Middleton WD, Hildebolt CF, Leibold RA, Yamaguchi K. Detection and quantification of rotator cuff tears: comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. J Bone Joint Surg Am. 2004;86(4):708–716. [PubMed] [Google Scholar]
- 163. Teng A, Liu F, Zhou D, He T, Chevalier Y, Klar RM. Effectiveness of 3-dimensional shoulder ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. Medicine (Baltimore). 2018;97(37):e12405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164. Torstensen ET, Hollinshead RM. Comparison of magnetic resonance imaging and arthroscopy in the evaluation of shoulder pathology. J Shoulder Elbow Surg. 1999;8(1):42–45. [DOI] [PubMed] [Google Scholar]
- 165. Toyoda H, Ito Y, Tomo H, Nakao Y, Koike T, Takaoka K. Evaluation of rotator cuff tears with magnetic resonance arthrography. Clin Orthop Relat Res. 2005;439:109–115. [DOI] [PubMed] [Google Scholar]
- 166. Tuite MJ, Asinger D, Orwin JF. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images. Skeletal Radiol. 2001;30(5):262–269. [DOI] [PubMed] [Google Scholar]
- 167. Tuite MJ, Yandow DR, DeSmet AA, Orwin JF, Quintana FA. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging. Skeletal Radiol. 1994;23(7):541–545. [DOI] [PubMed] [Google Scholar]
- 168. Vahlensieck M, Peterfy CG, Wischer T, et al. Indirect MR arthrography: optimization and clinical applications. Radiology. 1996;200(1):249–254. [DOI] [PubMed] [Google Scholar]
- 169. Vahlensieck M, Sommer T, Textor J, et al. Indirect MR arthrography: techniques and applications. Eur Radiol. 1998;8(2):232–235. [DOI] [PubMed] [Google Scholar]
- 170. van Holsbeeck MT, Kolowich PA, Eyler WR, et al. US depiction of partial-thickness tear of the rotator cuff. Radiology. 1995;197(2):443–446. [DOI] [PubMed] [Google Scholar]
- 171. van Kampen DA, van den Berg T, van der Woude HJ, et al. The diagnostic value of the combination of patient characteristics, history, and clinical shoulder tests for the diagnosis of rotator cuff tear. J Orthop Surg Res. 2014;9:70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172. van Moppes FI, Veldkamp O, Roorda J. Role of shoulder ultrasonography in the evaluation of the painful shoulder. Eur J Radiol. 1995;19(2):142–146. [DOI] [PubMed] [Google Scholar]
- 173. Venu KM, Howlett DC, Garikipati R, Anderson HJ, Bonnici AV. Evaluation of the symptomatic supraspinatus tendon: a comparison of ultrasound and arthroscopy. Radiography. 2002;8:235–240. [Google Scholar]
- 174. Vlychou M, Dailiana Z, Fotiadou A, Papanagiotou M, Fezoulidis IV, Malizos K. Symptomatic partial rotator cuff tears: diagnostic performance of ultrasound and magnetic resonance imaging with surgical correlation. Acta Radiol. 2009;50(1):101–105. [DOI] [PubMed] [Google Scholar]
- 175. Voigt JD, Mosier M, Huber B. In-office diagnostic arthroscopy for knee and shoulder intra-articular injuries: its potential impact on cost savings in the United States. BMC Health Serv Res. 2014;14(1):203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176. Wagner SC, Schweitzer ME, Morrison WB, Jr, Fenlin JM, Bartolozzi AR. Shoulder instability: accuracy of MR imaging performed after surgery in depicting recurrent injury. Initial findings. Radiology. 2002;222:196–203. [DOI] [PubMed] [Google Scholar]
- 177. Wahl RL, Siegel BA, Coleman RE, Gatsonis CG; Group PETS. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol. 2004;22(2):277–285. [DOI] [PubMed] [Google Scholar]
- 178. Waldt S, Bruegel M, Mueller D, et al. Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation. Eur Radiol. 2007;17(2):491–498. [DOI] [PubMed] [Google Scholar]
- 179. Wallny TA, Schild RL, Schulze Bertelsbeck D, Hansmann ME, Kraft CN. Three-dimensional ultrasonography in the diagnosis of rotator cuff lesions. Ultrasound Med Biol. 2001;27(6):745–749. [DOI] [PubMed] [Google Scholar]
- 180. Ward JRN, Lotfi N, Dias RG, McBride TJ. Diagnostic difficulties in the radiological assessment of subscapularis tears. J Orthop. 2018;15(1):99–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. [DOI] [PubMed] [Google Scholar]
- 182. Wiener SN, Seitz WH., Jr Sonography of the shoulder in patients with tears of the rotator cuff: accuracy and value for selecting surgical options. AJR Am J Roentgenol. 1993;160(1):103–107. [DOI] [PubMed] [Google Scholar]
- 183. Wnorowski DC, Levinsohn EM, Chamberlain BC, McAndrew DL. Magnetic resonance imaging assessment of the rotator cuff: is it really accurate? Arthroscopy. 1997;13(6):710–719. [DOI] [PubMed] [Google Scholar]
- 184. Yagci B, Manisali M, Yilmaz E, et al. Indirect MR arthrography of the shoulder in detection of rotator cuff ruptures. Eur Radiol. 2001;11(2):258–262. [DOI] [PubMed] [Google Scholar]
- 185. Yamakawa S, Hashizume H, Ichikawa N, Itadera E, Inoue H. Comparative studies of MRI and operative findings in rotator cuff tear. Acta Med Okayama. 2001;55(5):261–268. [DOI] [PubMed] [Google Scholar]
- 186. Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19(1):116–120. [DOI] [PubMed] [Google Scholar]
- 187. Yen CH, Chiou HJ, Chou YH, et al. Six surgery-correlated sonographic signs for rotator cuff tears: emphasis on partial-thickness tear. Clin Imaging. 2004;28(1):69–76. [DOI] [PubMed] [Google Scholar]
- 188. Zehetgruber H, Lang T, Wurnig C. Distinction between supraspinatus, infraspinatus and subscapularis tendon tears with ultrasound in 332 surgically confirmed cases. Ultrasound Med Biol. 2002;28:711–717. [DOI] [PubMed] [Google Scholar]
- 189. Ziegler DW. The use of in-office, orthopaedist-performed ultrasound of the shoulder to evaluate and manage rotator cuff disorders. J Shoulder Elbow Surg. 2004;13(3):291–297. [DOI] [PubMed] [Google Scholar]
- 190. Zlatkin MB, Hoffman C, Shellock FG. Assessment of the rotator cuff and glenoid labrum using an extremity MR system: MR results compared to surgical findings from a multi-center study. J Magn Reson Imaging. 2004;19:623–631. [DOI] [PubMed] [Google Scholar]
- 191. Zlatkin MB, Iannotti JP, Roberts MC, et al. Rotator cuff tears: diagnostic performance of MR imaging. Radiology. 1989;172(1):223–229. [DOI] [PubMed] [Google Scholar]