Table 2.
Efficacy of models for identifying mediastinal LNM in the training and validation groups
Model | Group | AUC | SEN | SPE | ACC | PPV | NPV |
---|---|---|---|---|---|---|---|
1 | training | 0.926 | 0.879 | 0.860 | 0.871 | 0.906 | 0.821 |
validation | 0.925 | 0.952 | 0.769 | 0.882 | 0.870 | 0.909 | |
2 | training | 0.875 | 0.929 | 0.609 | 0.804 | 0.786 | 0.848 |
validation | 0.876 | 0.976 | 0.423 | 0.765 | 0.732 | 0.917 | |
3 | training | 0.857 | 0.919 | 0.469 | 0.742 | 0.728 | 0.789 |
validation | 0.802 | 0.905 | 0.500 | 0.750 | 0.745 | 0.765 | |
4 | training | 0.850 | 0.949 | 0.563 | 0.798 | 0.770 | 0.878 |
validation | 0.813 | 0.952 | 0.423 | 0.750 | 0.727 | 0.846 | |
5 | training | 0.831 | 0.879 | 0.594 | 0.767 | 0.770 | 0.760 |
validation | 0.800 | 0.952 | 0.615 | 0.824 | 0.889 | 0.889 | |
6 | training | 0.841 | 0.979 | 0.281 | 0.706 | 0.678 | 0.900 |
validation | 0.702 | 0.928 | 0.192 | 0.647 | 0.650 | 0.625 |
SEN sensitivity, SPE specificity, ACC accuracy, PPV positive predictive value, NPV negative predictive value