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The metabolic basis for observed differences in the yield response of rice to
projected carbon dioxide concentrations (CO2) is unclear. In this study, three
rice cultivars, differing in their yield response to elevated CO2, were grown
under ambient and elevated CO2 conditions, using the free-air CO2 enrich-
ment technology. Flag leaves of rice were used to determine (1) if manipulative
increases in sink strength decreased the soluble sucrose concentration for the
‘weak’ responders and (2), whether the genetic expression of sucrose trans-
porters OsSUT1 and OsSUT2 was associated with an accumulation of soluble
sugars and the maintenance of photosynthetic capacity. For the cultivars that
showed a weak response to additional CO2, photosynthetic capacity declined
under elevated CO2 and was associated with an accumulation of soluble
sugars. For these cultivars, increasing sink relative to source strength did not
increase photosynthesis and no change in OsSUT1 or OsSUT2 expression was
observed. In contrast, the ‘strong’ response cultivar did not show an increase
in soluble sugars or a decline in photosynthesis but demonstrated significant
increases in OsSUT1 and OsSUT2 expression at elevated CO2. Overall, these
data suggest that the expression of the sucrose transport genes OsSUT1 and
OsSUT2 may be associated with the maintenance of photosynthetic capacity
of the flag leaf during grain fill; and, potentially, greater yield response of rice
as atmospheric CO2 increases.

Introduction

Based on the continual record of atmospheric CO2
measured in Mauna Loa, Hawaii, atmospheric CO2
has increased ∼30% (from 315 to 405 μmol mol−1)
since the mid-1950s (https://www.esrl.noaa.gov/gmd/
ccgg/trends/). Although CO2 as a ‘greenhouse gas’ is
well recognized, increases in CO2 have also been shown
in multiple studies to stimulate photosynthesis, growth,

Abbreviations – FACE, free-air CO2 enrichment; RT-PCR, reverse transcription-PCR; WYJ23, Wuyunjing 23; YD6, Yangdao 6.

fertility and yield of numerous C3 crop species, including
rice (Baker et al. 1990, Zhu et al. 2012).

However, the degree of stimulation varies depending
on the functional level studied. For example, leaf photo-
synthetic rates can be stimulated by elevated CO2, but
the extent of photosynthetic stimulation does not neces-
sarily translate into proportional increases in seed yield
(Long et al. 2006, Ainsworth et al. 2008, Leakey et al.
2009). This may, in part, be due to a temporal decline in
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Table 1. Effects of FACE on three rice cultivars, WYJ23, NG9108 and YD6 over two growth seasons (2014 and 2015). % Change is relative difference
at elevated to ambient CO2. Values are means of three replicates. Values and statistics are from Zhu et al. 2015. ns, not significant.

Data from 2014 growing season and the data of YD6 combined from Zhu et al. (2015)

Variety CO2 Panicle number (m−2) Spikelets per panicle Filled pikelet ratio Weight per grain Yield (g m−2)

WYJ23 % Change 14.5 −7.1 3.4 1.8 12.4 ns
YD6 % Change 11.2 6.8 5.9 2.3 29.6*
Data from 2015 growing season
Variety CO2 Panicle number (m−2) Spikelets per panicle Filled pikelet ratio Weight per grain Yield

WYJ23 % Change 13.0 −6.0 2.9 0.0 11.0 ns
NG9108 % Change 12.3 −5.4 1.2 1.4 9.1 ns
YD6 % Change 10.6 11.5 2.6 3.1 29.5*

the photosynthetic rate, as the elevated CO2 treatment
is extended. This is a common phenomenon within C3
plants that is referred to as photosynthetic acclimation or
downregulation (Chen et al. 2005, Kant et al. 2012). The
basis for downregulation may be related to CO2-induced
excess photosynthate accumulation in leaves, if sinks for
the additional carbon are not available (Stitt 1991, Moore
et al. 1999, Haouari et al. 2013, Campany et al. 2017).
However, the role of sucrose, the main transporting form
of fixed photosynthetic carbon in leaves, is not entirely
understood. Specifically, whether the additional photo-
synthate acquired at elevated CO2 is accumulating not
only because of sink limitations, but also because of bio-
chemical limits to transport sucrose out of the leaf.

It is generally recognized that there is significant
variation to elevated CO2 and seed yield stimulation
among rice genotypes (Hasegawa et al. 2013, Wang
et al. 2016a, b). The link between temporal duration of
photosynthetic stimulation with elevated CO2 (i.e. lack
of downregulation) and the observed stimulation of seed
yield is therefore a matter of interest in selecting for
greater seed yield responsiveness to rising atmospheric
CO2 among rice lines.

In situ assessments of rice to elevated CO2 using
free-air CO2 enrichment (FACE) have demonstrated that
genotypes with greater yield response to CO2 also had
bigger panicles and additional spikelets relative to geno-
types with a smaller yield response, suggesting bigger
sink capacity (Hasegawa et al. 2013, Zhu et al. 2015).
This indicated a potential increase in the sink:source
ratio, and an enhanced capacity to accommodate addi-
tional photosynthate and avoid downregulation during
grain development under elevated CO2 conditions (Zhu
et al. 2014). However, the role of sucrose transport per
se under elevated CO2 was not examined.

To determine if a mechanistic link between leaf pho-
tosynthetic acclimation and sucrose transportation exists
among rice lines differing in yield stimulation to elevated
CO2, two ‘weak’ cultivars, Wuyunjing 23 (WYJ23) and

Table 2. Effects of sink:source treatment on single-panicle dry weight
for WYJ23 and NG9108 under elevated CO2 in 2014 and 2015.
‘Enhanced’ indicates the increased sink:source ratio through leaf
removal, and the unaltered sink:source ratio is represented by ‘Con-
trol’. Values are mean of three replicates. P >0.1; †P ≤0.1; *P ≤0.05;
**P ≤0.001.

Variety Sink:source Single-panicle dry weight (g)

WYJ23 (2014) Control 1.314†
Enhanced 1.176

WYJ23 (2015) Control 2.231†
Enhanced 2.068

NG9108 (2015) Control 2.733†
Enhanced 2.573

ANOVA result WYJ23 (2014) WYJ23 (2015) NG9108 (2015)
P-Value 0.088 0.095 0.068

Nanjing 9108 (NG9108; both ∼10% increase in seed
yield at elevated CO2) were compared to a ‘strong’ cul-
tivar [Yangdao 6, (YD6); ∼30% increase in seed yield at
elevated CO2; Zhu et al. 2014]. Our objectives were to
determine: (1) if an increase in the sink to source ratio
(by removal of source leaves 2 and 3 below the flag leaf)
mitigated photosynthetic downregulation in the ‘weak’
cultivars and (2), whether the occurrence of photosyn-
thetic downregulation to elevated CO2 was associated
with changes in the expression of genes associated with
sucrose transportation.

Materials and methods

Experimental site description

The study was conducted at the FACE platform located
in Zongcun village (32∘35′5′′N, 119∘42′0′′E), Yangzhou
city, Jiangsu province in Eastern China. This location rep-
resents a typical rice-wheat rotation system within a sub-
tropical marine climatic zone (Zhu et al. 2012). The soil
is classified as a Shajiang-Aquic Cambiosol with a sandy
loam texture. Operational details for the FACE system
at this location have been described previously (Okada
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Fig. 1. Net photosynthesis rate
(μmol CO2 m−2 s−1) of flag leaves
for three rice cultivars, WYJ23,
NG9108 and YD6 grown at ambi-
ent and elevated CO2 in each
sink:source treatment. Measure-
ments were made at the same
CO2 condition (590 μmol mol−1).
‘Enhanced’ indicates the
increased sink:source ratio
through leaves removal and the
unaltered sink:source ratio is
represented by ‘Control’. Bars
represent average values of
three replicates with standard
errors. Symbols indicate signif-
icant differences in sink:source
treatment for each cultivar as a
function of CO2 treatment. ns,
not significant. P >0.1; †P ≤0.1;
*P ≤ 0.05; **P ≤ 0.001.

et al. 2001). It consists of three identical 17-m-diameter
octagonal rings with the CO2 at the center of each
ring ∼200 μmol mol−1 higher than at ambient condi-
tions (representing elevated CO2 conditions) and three
comparison rings without supplemental CO2 (represent-
ing ambient CO2 conditions). During the seasons in 2014
and 2015, the average daytime CO2 values were 394
and 590 μmol mol−1 and 395 and 588 μmol mol−1 for the
ambient and elevated FACE rings, respectively. The aver-
age air temperature from planting to harvest was 22.1
and 24.8∘C for 2014 and 2015, respectively.

Rice cultivation and sample pre-treatment

Based on their relative yield responses to enhanced CO2,
three rice cultivars, WYJ23, Nanjing 9108 (NG9108)
(Japonica) and YD6 (Indica), were selected. Selection
was based on their differential yield responses to ele-
vated CO2, with WYJ23 and NG9108 demonstrating
weaker stimulation relative to YD6 (ca 10 vs. 30%,
respectively, Table 1; Zhu et al. 2015). Seeds of each
variety were sown at ambient CO2 in late May, 2014
and 2015, and seedlings were manually transplanted to

ambient and elevated rings on June 21 and June 17 for
2014 and 2015, respectively. Two seedlings per hill with
24 hills per m2 were the planting density for all six rings.
Phosphorous (P) and potassium (K) were applied as com-
pound fertilizers at 9 g P2O5 m−2 and 9 g K2O m−2,
using a basal dressing 1 day before transplanting. Nitro-
gen (N, at 22.5 g N m−2 each season) was applied as a
basal dressing (40% of the seasonal total), 1 day prior to
transplanting and as a top dressing at early tillering (30%
of the seasonal total) and again at the panicle initiation
stage (30% of the seasonal total).

At the heading stage in each CO2 treatment, two
tillers of WYJ23 and NG9108 (i.e. the weaker CO2

response cultivars), were chosen and tagged in all repli-
cates, and the 2nd and 3rd leaves were removed from
one of the tillers to increase the sink:source ratio in
2014 and 2015. It has been shown that genotypes
with greater response to CO2 have an adequate sink
capacity (Hasegawa et al. 2013, Zhu et al. 2015). There-
fore, leaves were not removed for YD6, and compar-
isons were made between flag leaves of the different
cultivars.

220 Physiol. Plant. 168, 2020



Table 3. Nitrogen content of flag leaves for the rice cultivars, WYJ23,
NG9108 and YD6 in each treatment. Values are the average of
three replicates of each treatment. ‘Enhanced’ indicates the increased
sink:source ratio through leaves removal, and the unaltered sink:source
ratio is represented by ‘Control’. Two-way ANOVA for CO2 and sink:source
treatment is used in WYJ23 and NG9108 and one-way ANOVA for CO2

treatment is used in YD6. E/A, Elevated/Ambient; -, no data; ns, not sig-
nificant. P >0.1; †P ≤0.1; *P ≤0.05; **P ≤0.001.

Year Variety CO2 Sink:source N (%)

2014 WYJ23 Ambient Control 2.39
Elevated Control 2.09
Changes (E/A) −12.7
Ambient Enhanced 2.47
Elevated Enhanced 2.28
Changes (E/A) −7.7

YD6 Ambient Control 2.56
Elevated Control 2.41
Changes (E/A) −5.9

2015 WYJ23 Ambient Control 2.24
Elevated Control 1.96
Changes (E/A) −12.7
Ambient Enhanced 2.18
Elevated Enhanced 1.94
Changes (E/A) −11.0

NG9108 Ambient Control 2.19
Elevated Control 1.83
Changes (E/A) −16.6
Ambient Enhanced 2.19
Elevated Enhanced 1.86
Changes (E/A) Control −15.1

YD6 Ambient Control 2.35
Elevated Control 2.14
Changes (E/A) −8.6

ANOVA result N (%)
WYJ23 NG9108 YD6

2014 CO2 * - ns
Sink:source ns - -
CO2 × sink:source ns - -

2015 CO2 * * ns
Sink:source ns ns -
CO2 × sink:source ns ns -

Photosynthesis gas exchange measurements

Measurements of leaf net photosynthesis were con-
ducted in situ during the grain filling stage for each
cultivar, using a portable photosynthesis system
equipped with blue and red LED light sources (LI-6400;
LI-COR, Lincoln). Photosynthesis measurements began
at grain fill and continued for a 2-day period: Septem-
ber 19–21 for WYJ23 and YD6 in 2014, September
13, 14 for NG9108 and September 17, 18 for WYJ23
and September 8, 9 for YD6 in 2015. Measurements
were made at a saturating photosynthetic photon
flux density of 1800 μmol m−2 s−1. Leaf tempera-
ture was set to 30∘C and air flow rate was set to
500 μmol s−1.

Sampling and biochemical analyses

Following determination of leaf photosynthesis, during
the first 2 days of grain filling, two of the measured
flag leaves from all cultivars and experimental treat-
ments were sampled from 9:30–14:30 (Beijing time).
Both leaves were stored in liquid nitrogen until analy-
sis. Chosen tillers were divided into panicle and flag leaf
for dry weight (at 80∘C for 72 h), and then flag leaves
were ground to determine soluble sugar and nitrogen
content as published in Olano et al. (2006).

An anthrone colorimetric method was used to mea-
sure the concentration of soluble sugars (Buysse and
Merckx 1993). Leaf tissue nitrogen concentration was
measured using an elemental (Carbon-Hydrogen-
Nitrogen) analyzer (PE2400 series II CHNS/O).

The flag leaves (stored in liquid N) were used to
quantify sucrose transport genetics using an established
procedure (Lin 2010, Wang et al. 2016a, b): 1 μg of
total RNA treated with DNase I (TaKaRa) was used for
reverse transcription-PCR (RT-PCR). RT was performed
using PrimeScript TM RT Master Mix (TaKaRa). PCR was
performed at 37∘C for 15 min, 85∘C for 5 s and cDNA
was stored at 4∘C. Quantitative RT-PCR was carried
out on a CFX96 real-time PCR system (Bio-Rad Labo-
ratories, Hercules) using the SYBR Premix Ex Taq TM
(TaKaRa) with 35 cycles of 95∘C for 5 s and 60∘C for
30 s. Gene expression data analysis included normal-
izing of OsSUT1 and OsSUT2 Ct values to the house-
keeping gene Rac 1 (X16280.1). The expression levels
of OsSUT1 and OsSUT2 were calculated as E-ΔΔCt
(analysis in sequence; OsSUT1: F-5′ CTGTGATTTTC-
CTGTCCCTG 3′ and R-5′ AACACTGCTAGTGGACCAGT
3′, OsSUT2: F-5′ AGGAGGAGAGGTCACCGATAA 3′

and R-5′ CCAACATCCAATGTACAACAGCA 3′) and the
primer sequences mentioned before were used in this
PCR study. Quantitative expression of these genes was
used to represent sucrose transport capacity in the cur-
rent study. Housekeeping gene primer sequences were:
Rac 1: F-5′ GTACCCGCATCAGGCATCT 3′ and R-5′

TCCATCTTGGCATCTCTCAG 3′.

Statistical analysis

Data were analyzed using the SPSS statistical software
(SPSS 19.0; SPSS Inc.) and Excel 2016 for Windows
10. The CO2 treatments (ambient and elevated) were
analyzed as a randomized complete block, and the
sink:source manipulation (removal of leaves) was
analyzed as a split-plot treatment. Each treatment
group consisted of three replicates. Analysis of vari-
ance (ANOVA) was used to test for significant treatment
differences.
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Fig. 2. Soluble sugars con-
centration in flag leaves for
three rice cultivars, WYJ23,
NG9108 and YD6 grown at
ambient and elevated CO2 in
combination with sink:source
treatments. ‘Enhanced’ indicates
the increased sink:source ratio
through leaves removal, and
the unaltered sink:source ratio
is represented by ‘Control’. Bars
represent average values of three
replicates with standard errors.
Symbols indicate the significant
difference in a given sink:source
treatment for each cultivar as a
function of CO2 treatment. ns,
not significant. P >0.1; †P ≤0.1;
*P ≤0.05; **P ≤0.001.

Results

Yield components and single-panicle weight

YD6 showed a consistently greater yield response than
WYJ23 and NG9108 at elevated CO2 (Table 1). Among
the yield components examined, the effect of elevated
CO2 was positive for spikelets per panicle in YD6,
while negative in WYJ23 and NG9108. Leaf removal
and enhanced sink:source ratio consistently, but not
significantly (i.e. P was 0.095 and 0.068 for WYJ23
and NG9108, respectively) lowered single-panicle
dry weight in response to elevated atmospheric CO2
(Table 2).

Leaf net photosynthesis and photochemistry

At elevated CO2 conditions, relative to ambient CO2,
significant photosynthetic downregulation was observed
for WYJ23 and NG9108 (Fig. 1A, C, D). Increasing
sink:source ratios through leaf removal did not negate
photosynthetic downregulation for these cultivars. In
contrast, for YD6, net photosynthetic rate showed no
downregulation in response to elevated CO2 (Fig. 1B, E).

Consistent with downregulation, a decrease in the
photosynthetic rate of the flag leaf was associated with
a significant decline in leaf N concentration at elevated
CO2 conditions (Table 3). This decline was observed for
WYJ23 and NG9108 and was not altered by sink:source
manipulation (Table 3). In contrast, YD6 did not show
any significant change in leaf N concentration (Table 3).

Soluble sugars accumulation and OsSUTs
expression

At elevated CO2 conditions, a significant increase in leaf
soluble sugar concentrations for WYJ23 and NG9108
with and without removal of additional source leaves was
measured (Fig. 2). In contrast, no change in soluble sugar
concentration in the flag leaf was observed for YD6. No
significant differences in leaf soluble sugar concentration
were observed for WYJ123 or NG9108 as a function of
CO2 concentration (Fig. 2A, C, D).

OsSUT1 and OsSUT2 represent the sucrose transport
genes for rice and are characterized as necessary for
sucrose export from source leaves. For YD6, OsSUT1
and OsSUT2 (OsSUTs) expression increased significantly
in response to elevated CO2. In contrast, the enhanced
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Fig. 3. Change of OsSUT1
and OsSUT2 (OsSUTs) expres-
sion level of flag leaves under
elevated CO2 for three rice
cultivars in each sink:source
treatment. ‘Enhanced’ indicates
the increased sink:source ratio
through leaves removal, and
the unaltered sink:source ratio
is represented by ‘Control’. Bars
represent the average (E-A)/A
(relative change at elevated
CO2 to those at ambient CO2)
of three replicates for OsSUTs
expression level with relative
standard errors. Symbols indicate
the significant difference for the
gene expression as a function
of CO2 treatment. ns, not
significant. P >0.1; †P ≤0.1;
*P ≤0.05; **P ≤0.001.

source treatment or elevated CO2 had no effect on
OsSUTs expression for WYJ23 and NG9108 (Fig. 3).

The elevated/ambient CO2 ratios of soluble sugars
and OsSUT expression were analyzed for all cultivars,
treatments and years. The soluble sugar ratio was nega-
tively correlated with the OsSUTs expression ratio (Fig. 4,
P< 0.001). This suggested that if OsSUT expression was
insufficient, soluble sugars would accumulate under
elevated CO2.

Discussion

When grown at projected, elevated levels of CO2, there
is consistent intraspecific variation among crop cultivars
in growth and yield, some showing a strong stimula-
tion of yield, others little or no stimulation (Ziska et al.
2014, Bishop et al. 2015) Understanding the basis for
this variation may be essential in identifying those cul-
tivars that can convert additional CO2 into greater seed
yield.

While the basis for intraspecific variation is likely to
be multifactorial, photosynthetic capacity over time is
of obvious importance. Under elevated CO2 conditions,

inadequate sinks for additional carbon may result in a
surplus accumulation of photosynthate at the leaf level,
with eventual downregulation of photosynthesis (Lin
et al. 1997, Shimono and Okada 2013, Ziska et al. 2014,
Burnett et al. 2016, Ruiz-Vera et al. 2017). This had been
reported for numerous C3 crop species including rice
(Ono et al. 2003, Zhu et al. 2014).

At present, the role of sucrose transport in feedback
inhibition of photosynthesis is unclear. Sucrose trans-
port, an essential part in the carbohydrate distribution
process, can be sensitive to environmental changes, e.g.
cold or heat, with consequences for photoassimilate dis-
tribution and photosynthetic downregulation (Takahashi
et al. 2017, Zhou et al. 2017). However, it is uncer-
tain whether the capacity of sucrose export from source
leaves is related to the overall photosynthetic response
to elevated CO2.

Is the extent of downregulation and/or expression of
sucrose transport related to a relative yield stimulation
among rice cultivars in response to additional CO2? In
this study, YD6 had a higher (∼twofold) yield response
relative to cultivars WYJ23 and NG9108 at elevated
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Fig. 4. Relationship between E/A (relative values at elevated CO2 to
those at ambient CO2) ratio of OsSUTs expression level and E/A ratio
of soluble sugars concentration in flag leaves. Values are the average
of three replicates. Circles represent the values of OsSUT1 expression
level, and boxes represent the values of OsSUT2 expression level. The
open symbols indicate the values of control sink:source treatment, and
the solid symbols indicate the values of enhanced sink:source treatment.
R2 =0.591, P-value=0.000452, **P ≤0.001.

CO2 under field conditions. The yield responses are, in
general, in agreement with the observed changes in the
source:sink and photosynthetic downregulation for the
cultivars WYJ23 and NG9108.

It is interesting to note that when sink limitation was
diminished by increasing the ratio of carbon sinks to
source for these two cultivars, photosynthetic downregu-
lation was still observed (Table 2, Fig. 1). This suggested
that eliminating sink limitation per se did not mitigate
photosynthetic downregulation under elevated CO2
conditions. Rather, it suggested that additional factors
could be involved, including sucrose transport capacity.
For example, sucrose transporter genes OsSUT1 and
OsSUT2 have been reported to play an essential role in
the sucrose apoplastic loading into the phloem (Aoki
et al. 2003, Eom et al. 2011, Braun et al. 2014, Chen
et al. 2015).

At elevated CO2 conditions, the enhancement in gene
expression of OsSUT1 and OsSUT2 was negatively cor-
related with soluble sugar accumulation (Fig. 4), con-
sistent with previous research on chilling temperatures
(Takahashi et al. 2017). In the current experiment, the
relative variation in gene expression among the three
lines, relative to yield stimulation, is of interest in the
context of CO2. In YD6 e.g. additional photosynthate
did not accumulate in the source leaves and photosyn-
thetic downregulation was not observed at elevated CO2
conditions. Conversely, even without the sink restric-
tion, gene expression of OsSUT1 and OsSUT2 was not
upregulated significantly under elevated CO2. Overall,

the change in gene expression was inversely proportional
to the accumulation of photosynthates at elevated CO2
among the examined cultivars.

For this study, the decrease in leaf-nitrogen concentra-
tion of WYJ23 and NG9108 (japonica) was greater than
YD6 (indica) at elevated relative to ambient CO2. There
are other noted differences between japonica and indica
in regard to stomatal conductance, root size and nitrogen
distribution (Kant et al. 2012, Shimoda and Maruyama
2014, Muryono et al. 2017). It is possible that insufficient
sucrose transport under elevated CO2 may be associated
with the relative N shortage. For example, N deficiency
could alter the distribution of sucrose across plant organs
(Lemoine et al. 2013). In addition, sugar accumulation in
functional leaves can inhibit SUT expression and activity
(Chiou and Bush 1998, Cordoba et al. 2015). However,
additional indica and japonica comparisons would be
necessary to validate the role of nitrogen in sucrose gene
expression at elevated CO2.

Overall, the relative stimulation of yield at elevated
CO2 was correlated with a lack of photosynthetic
downregulation that in turn reflected higher expres-
sion levels of OsSUT1 and OsSUT2 in this study.
While a wider array of rice cultivars needs to be
examined to confirm these results, these initial data
indicate that stimulation of sucrose transport genes
during grain filling could be associated with greater
yield sensitivity to rising CO2. Given the global impor-
tance of rice in the context of future food security,
any mechanism that can enhance the conversion of
additional CO2 into seed yield would be of interest in
that regard.
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