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Abstract

Cognitive theories suggest that working memory maintains not only the identity of recently-

presented stimuli but also a sense of the elapsed time since the stimuli were presented. Previous 

studies of the neural underpinnings of working memory have focused on sustained firing, which 

can account for maintenance of the stimulus identity, but not for representation of the elapsed 

time. We analyzed single-unit recordings from the lateral prefrontal cortex (lPFC) of two macaque 

monkeys during performance of a delayed-match-to-category task. Each sample stimulus triggered 

a consistent sequence of neurons, with each neuron in the sequence firing during a circumscribed 

period of time. These sequences of neurons encoded both stimulus identity and the elapsed time. 

The encoding of the elapsed time became less precise as the sample stimulus receded into the past. 

These findings suggest that working memory includes a compressed timeline of what happened 

when, consistent with longstanding cognitive theories of human memory.

Introduction

Theories of human memory have long suggested that memory depends on a representation 

of the recent past in which events are organized on a compressed timeline (James, 1890; 

Crowder, 1976; Brown, Neath, & Chater, 2007; Howard, Shankar, Aue, & Criss, 2015). This 

implies that memory provides access to what happened when; a neural representation 

supporting a timeline should enable reconstruction of the chronological order of previous 

stimuli as well as their identity. If the timeline is compressed, then as stimuli recede into the 

past, their time of occurrence and identity is represented with less and less accuracy.

The neural underpinnings of working memory are studied using tasks which require 

maintenance of a small amount of information across a (typically brief) delay interval. Most 

neural models assume that working memory maintenance relies on sustained firing of 

neurons (Goldman-Rakic, 1995; Goldman, 2009; Egorov, Hamam, Fransén, Hasselmo, & 

Alonso, 2002). According to this model, when a to-be-remembered stimulus is presented, it 

activates a specific population of neurons that remain firing at an elevated rate for as long as 

necessary until the information is no longer required. A great deal of work in computational 

neuroscience has developed mechanisms for sustained stimulus-specific firing at the level of 
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circuits, channels, and LFPs (Amit & Brunel, 1997; Compte, Brunel, Goldman-Rakic, & 

Wang, 2000; Durstewitz, Seamans, & Sejnowski, 2000; Chaudhuri & Fiete, 2016; 

Lundqvist, Herman, & Lansner, 2011; Mongillo, Barak, & Tsodyks, 2008; Sandberg, 

Tegnér, & Lansner, 2003). However, if the firing rate is constant while the stimulus is 

maintained in working memory, then information about the passage of time is lost. Thus a 

memory representation based on sustained firing is not sufficient to represent information 

about time.

Time cells, neurons that fire sequentially, each for a circumscribed period of time, during the 

delay interval of a memory task (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; 

MacDonald, Lepage, Eden, & Eichenbaum, 2011), provide a neural representation that 

includes information about time. By examining which time cell is firing at a particular 

moment, one can reconstruct how far in the past the delay began. Behavioral work on timing 

shows that the accuracy in estimating the elapsed time decreases with the amount of time to 

be estimated (e.g., Rakitin et al., 1998; Lewis & Miall, 2009). Two properties of time cells 

are consistent with an analogous decrease in temporal accuracy. First, time fields later in the 

sequence should be more broad (i.e., less precise). Second, there should be more neurons 

with time fields early in the delay and fewer neurons representing times further in the past. 

Both of these properties have been observed, primarily in rodent work, for time cells in the 

hippocampus (Howard et al., 2014; Salz et al., 2016), entorhinal cortex (Kraus et al., 2015), 

medial prefrontal cortex (mPFC) (Tiganj, Kim, Jung, & Howard, 2016), and striatum (Jin, 

Fujii, & Graybiel, 2009; Mello, Soares, & Paton, 2015; Akhlaghpour et al., 2016).

The cognitive models for a compressed timeline predict that distinct sequences of time cells 

should be triggered by distinct stimuli. In this way, one could directly read off not only what 

stimulus occurred in the past, but also how far in the past that stimulus was presented. 

Despite some dramatic evidence for sequence memory in primate lPFC (Ninokura, 

Mushiake, & Tanji, 2003, 2004), thus far there has been little evidence for conjunctive “what 

and when” information in populations of time cells. Earlier studies of time cells have not 

observed stimulus-specific time cell firing (e.g., Akhlaghpour et al., 2016 but see 

MacDonald, Carrow, Place, & Eichenbaum, 2013) leading some theorists to hypothesize that 

what and when information are maintained separately (Friston & Buzsáki, 2016) in much 

the same way that what and where information are presumably segregated in the visual 

system.

Methods

This paper reports reanalysis of data initially described in Cromer, Roy, and Miller (2010). 

More detailed descriptions of the behavioral and recording methods can be found in that 

paper.

Behavioral task

Two macaque monkeys, one male and one female, performed a delayed match to category 

task. The stimuli were chosen from one of two independent category sets; each category set 

consisted of two categories. One category set was ANIMALS, which consisted of the categories 

DOGS and CATS. The other category set was CARS, which consisted of the categories SPORTS 
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CARS and SEDANS. Stimuli were constructed as morphed images, composed from a mixture of 

two prototype images each taken from a different category within the same category set 

(Figure 2A-B). The test stimulus was always chosen to be from the same category set as the 

sample stimulus, but it could come from either the same or from a different category within 

that category set.

Each trial was initiated by the monkey grabbing a response bar. The trials started with a 

1000 ms fixation period, during which a white cross was presented in the middle on the 

screen. The monkey was required to fixate on it. The fixation period was followed by a 600 

ms sample stimulus presentations and then by a 1000 ms delay interval during which the 

monkey had to maintain a memory of the stimulus category in order to be able to 

successfully complete the task and obtain a reward. The delay period was followed by a test 

stimulus presentation lasting for another 600 ms.

On match trials, when the test stimulus was from the same category as the sample stimulus, 

the monkey had to release the response bar within 600 ms of the test stimulus presentation. 

On nonmatch trials, the monkey had to continue holding the bar during the test stimulus 

presentation and during a subsequent 600 ms delay interval followed by a second test image. 

The second test image was always a category match to the sample image (see Figure 2C for 

a block diagram showing the behavioral protocol). The performance of each monkey was 

correct in more than 80% of trials.

Electrophysiological Recordings

Neural recordings were made using up to 16 individual, epoxy-coated tungsten electrodes 

(FHC Inc., Bowdoin, ME) positioned over the lPFC. Spike sorting was performed on 

digitalized waveforms using principal components analysis (Offline Sorter, Plexon Inc., 

Dallas, TX). A total of 500 isolated units was recorded from the two animals. Recordings of 

455 out of these 500 units were already used for the analysis published in (Cromer et al., 

2010). Eye movements were recorded using an infrared eye tracking system (Iscan, 

Burlington, MA).

Identifying temporal and stimulus selectivity using Maximum likelihood

We used a maximum likelihood approach to evaluate whether time and/or stimulus identity 

were encoded in the firing of the recorded cells. These methods build on analysis methods 

used to identify time cells in rodent hippocampus and mPFC (Salz et al., 2016; Tiganj et al., 

2016). Here we expanded the approach to include the identify of the stimulus in the modeled 

firing rates. This enables the method to identify conjunctive, stimulus-specific time cells. In 

each trial we only analyzed the 1600 ms starting from presentation of the sample and 

terminating at the presentation of the next stimulus. This interval includes the 600 ms 

presentation of the sample stimulus and a 1000 ms blank delay interval. The spike trains of 

each cell were fitted with models that included different variables, such as time and stimulus 

identity. The parameter space of these models was systematically explored in order to 

compute the maximum likelihood fit. To find the best-fitting model the parameter space was 

iteratively searched using a combination of particle swarming and the Quasi-Newton 

method. Particle swarming was performed first (with the swarm size equal to 50) and its 
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output was used to initialize the Quasi-Newton method which was performed second (the 

number of maximum function evaluations was set to 10000). The computations were 

implemented in Matlab 2016a. To avoid solutions that converged to a local minimum, the 

fitting procedure was repeated until the algorithm did not result with better likelihood for at 

least five consecutive runs. As a preprocessing step, spike trains were downsampled to 1 ms 

temporal resolution such that if a spike was observed in a particular 1 ms time bin, the 

corresponding data point was set to 1, otherwise it was set to 0. The maximum likelihood 

was computed for each recorded cell using all available trials.

Identifying temporal receptive fields.—We first identified cells whose firing was 

modulated by the passage of time. This was done by comparing the maximum likelihood of 

the fits from two different models, one containing a Gaussian-shaped time field and the other 

containing only a constant term. The model with Gaussian-shaped time fields had a set of 

parameters Θ, which consisted of a constant term a0, the amplitude of the time fields a1, the 

mean μt and standard deviation σt of the Gaussian time field. With this model the probability 

of a spike at any given time point t was given as:

p (t; Θ) = a0 + a1T(t; σt, μt), (1)

where the Gaussian-shaped time field T(t; σt, μt) was defined as:

T(t; σt, μt) = e

−(t − μt)
2

2σt
2

.
(2)

We refer to cells that were better fit by Eq. 1 than by a constant term (just a0) as time cells, 

subject to several constraints described in detail below.

The mean of the time term μt was allowed to vary between −100 ms and 1700 ms and the 

standard deviation σt varied between 0 and 5 s. In order to ensure that p (t; Θ) can be 

considered as a probability we had to ensure that its values are bounded between 0 and 1. 

Therefore, the coefficients were bounded such that a0 + a1 ≤ 1. The likelihood of the fit was 

defined as a product of these probabilities across all 1600 time bins within each trial and 

across all trials. We expressed the likelihood in terms of the negative log-likelihood (nLL), 

therefore instead of a product, a sum of the probabilities was computed:

arg min
Θ

nLL = − ∑
trial

∑
t

[ f t log(pt) + (1 − f t) log(1 − pt)], (3)

where ft is the spike train.

In order to quantify whether the contribution of the terms that contained time was 

significant, the maximum log-likelihood was computed again, but this time with the time 

term set to zero (a1 = 0), such that the likelihood was affected only by the constant term a0. 

Since the models with and without time are nested, the likelihood-ratio test was used to 

assess the probability that adding the time term significantly improved the fit. The test is 
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based on the ratio of the likelihoods of two different models and expresses how many times 

the data are more likely under one model than the other and it takes into account the 

difference in the number of parameters. To ensure that a unit will not be classified as a time 

cell only due to its activity in a single trial, the analysis was done separately on even and odd 

trials. For a unit to be classified as a time cell it was required that the likelihood-ratio test 

was significant (p < 0.01) for both even and odd trials. In order to eliminate units with 

ramping or decaying firing rate during a delay interval, μt was required to be within the 

delay interval and at least one σt away from either the beginning or the end of the interval. 

Also, to eliminate units with overly flat firing rate from classification as a time cell, σt was 

required to be at most equal to the length of the delay interval.

Quantifying category specificity.—The subset of units that passed the above criteria 

were classified as time cells. We then tested whether these units were also modulated by the 

category of stimulus on each trial (i.e., cats, dogs, sports cars, sedans) or for category sets 

(i.e., animals/cars). Category specificity was tested with a model that allowed four 

parameters, rather than one as above, to modulate the Gaussian-shaped time field, 

determined by the identity of the stimulus category on each trial. The probability of a spike 

at time point t was given as:

p (t; Θ) = a0 + ∑
i = 1

4
aiciT(t; σt, μt), (4)

where a0 to a4 are the parameters to be estimated, while μt and σt are those estimated from 

the previous fit with a single time field eq. (1). The factor ci was equal to 1 for trials when a 

stimulus from i-th category was presented and 0 otherwise. For instance, c1 = 1 for trials 

which started with a sample stimulus from the DOG category and c1 = 0 for trials where the 

sample stimulus was a CAT, SPORTS CAR or SEDAN). The model that includes category 

specificity eq. (4) and the model with a single time field eq. (1) are nested. Therefore, we 

use the likelihood-ratio test to assess the probability that adding the category specificity 

significantly improves the fit. When the outcome of the likelihood ratio test was significant 

(p < 0.01), a time cell was classified as category specific.

Quantifying category set specificity.—The category set specificity of the time cells 

was tested in analogous way to the category specificity, but using two time fields instead of 

four. Each of the two time fields corresponded to a particular category set. Thus the 

probability of a spike at time point t was given as:

p (t; Θ) = a0 + ∑
i = 1

2
aiciT(t; σt, μt) . (5)

The factor ci was equal to 1 for all the data points at trials when a stimulus from i-th 

category set was presented and 0 otherwise. For instance, c1 = 1 for trials which started with 

a sample stimulus from the DOG or CAT categories, and c1 = 0 for trials which started with a 

stimulus from the SPORTS CAR or SEDAN category. As in the case of the category specific cells, 

μt and σt were used as estimated from the fit with a single time field eq. (1). The likelihood-
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ratio test was used again to assess whether adding the category set specificity (eq. (5)) 

provided a better fit (p < 0.01) than the model with four time fields.

As an additional control to evaluate whether category set specificity was meaningful, we 

evaluated whether the number of category set specific time cells was more than one would 

expect from artificial pairings of categories. This was done by comparing the number of time 

cells that distinguished between animal and car category sets to the number of time cells that 

distinguished between artificial (not meaningful) mixtures of categories. One control model 

estimated the number of units that distinguished DOG and SPORTS CAR stimuli from CAT and 

SEDAN CAR stimuli. The other estimated the number of units that distinguished DOG and SEDAN 

CAR stimuli from CAT and SPORTS CAR stimuli. Because these artificial “category sets” are not 

meaningful, if the actual number of units coding for the true category sets—ANIMAL vs CAR—

exceeds the number for the artificial category sets, we can conclude that the population 

contains information about the organization of the stimuli into category sets.

Quantifying sustained activity.—In order to analyze these results in the light of 

previous studies that argued for sustained stimulus-specific firing, we also identified units 

that distinguished category identity, but did not satisfy the criteria to be considered time 

cells. We found all the units that code for category identity by fitting a model in which the 

probability of a spike at time point t depended on a constant term that depended on the 

category identity of the sample stimulus:

p (t; Θ) = ∑
i = 1

4
aici, (6)

where a1 to a4 are the parameters to be estimated, and as above, ci conveys category identity. 

Units were considered as category specific if a better fit was obtained with a model in eq. (6) 

than with a model that contained only one constant term a0. A subset of these units were also 

identified as category specific time cells using the analysis described above.

LDA for cross-temporal classification

In addition to maximum likelihood approach, we used linear discriminant analysis (LDA) to 

quantify the decoding accuracy. We divided the 1.6 s interval composed of sample and delay 

period into 50 ms long non-overlapping time bins. We used the entire population composed 

of 500 units. The units were recorded during multiple recording sessions with different 

number of trials. To even the number of trials across all units we restricted the number of 

trials to the lowest number recorded from a single unit, 857 trials. For each time bin we 

trained an LDA classifier on 80% of randomly chose trials and used the remaining 20% of 

the trials for testing. The objective of classification was to accurately assign each trial to one 

of the four stimulus categories, with chance level being 25%. The testing was done on the 

same time bin as the training (to evaluate the decoding accuracy) but also on every other 

time bin (to evaluate performance of a classifier as a function of temporal distance between 

training and testing time bin). We repeated the training and testing for 10 iterations in order 

to obtain robust results (quantified through standard error of the mean). The classifier was 

implemented using Matlab 2017b function classify. To ensure stability of LDA the 
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dimensionality of the training and testing data was reduced to full rank at before each run of 

the classifier.

Computational model

The computational model used here is based on a previously-published method for 

computing a scale-invariant neural timeline (Shankar & Howard, 2012, 2013). The model 

can be understood as a two-layer feedforward network (Figure 1A). The first layer 

implements an approximation of the Laplace transform of the input to the network (keeping 

only the real part of the coefficients). The second layer approximates an inversion of the 

transform using the Post approximation formula (Post, 1930). Here we assume that the input 

function is a transient that captures information about the identity of the sample stimulus at 

the time it is presented. After the input is presented, the first layer codes the Laplace 

transform of the input function. As the delay progresses, this input function contains the 

identity of the sample stimulus further and further in the past. The Laplace transform 

contains this information and the second layer approximates a reconstruction of this 

function, with different units supporting different parts of the time axis. We compare the 

properties of units in the second layer of the network to experimentally-observed stimulus-

specific time cells. These units estimate the time of the sample stimulus with decreasing 

accuracy as it recedes into the past, resulting in broader time fields and fewer units with time 

fields as the sample stimulus becomes more temporally remote.

To make this more concrete, in the present experiment with four distinct categories of 

stimuli, it is sufficient to consider an input vector f(t) consisting of 4 elements. At each 

moment f(t) gives the vector-valued category of the stimulus currently presented. When a 

stimulus from a particular category A is presented, the component fA is set equal to 1 for a 

brief moment (i.e., a delta function input) and 0 at other times during the delay.

For simplicity, let us first consider the activity of units that receive input only from one 

component of f(t), say fA(t), with the understanding that in general units will receive some 

mixture of inputs from all four categories. Units in the first layer receiving input from fA(t), 
which we denote as FA(t, s), act as leaky integrators (first order low-pass filters):

FA(t, s)
dt = − sFA(t, s) + f A(t) . (7)

After receiving an input, units participating in FA decay exponentially with a rate constant s 
(Figure 1B, middle). Each unit has a unique rate constant and we assume that the probability 

of observing a unit with rate constant s goes down like 1/s (Shankar & Howard, 2013; 

Howard et al., 2015; Howard & Shankar, in press).

Let us denote the activity of units in the second layer receiving input from FA(t) as f A(t, τ∗), 

where τ∗ = − k ∕ s and k is a positive integer that is common across all units. These units 

combine inputs from nearby values of s in FA, computing a kth order derivative with respect 

to s:
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f A(t, τ∗) = Ck sk + 1 FA
(k)(t, s), (8)

where Ck is a constant that depends only on k. Post (1930) proved that in the limit as k goes 

to infinity, f (τ∗) approximates f(t′ < t).

When the input is a delta function at time zero, the activity of units in f A(t, τ∗) obey

f A(t, τ∗) = Ck
1
τ∗

ske
−k t

τ∗ , (9)

where Ck here is another constant that depends only on k. This expression is the product of 

an increasing power term t
τ∗

k
 and a decreasing exponential term e

−k t
τ∗ . Consequently, the 

activity of each node in f A(t, τ∗) peaks at its value of τ∗ (Figure 1B,bottom).

It turns out (Shankar & Howard, 2012) that the width of each unit’s activity as a function of 

time depends linearly on its value of τ∗ with a Weber fraction that is determined by the value 

of k. We found a good correspondence to the empirical data with k = 15. While k = 15 

yielded the best correspondence with the data, all choices yield similar qualitative results 

results. To implement the kth order derivative with respect to s, 2k + 1 neurons from the first 

layer need to project to each neuron in the second layer with an on-center/off-surround 

connectivity pattern. If the neurons in the first layer are anatomically organized by their time 

constant, a spatially local neighborhood of 2k + 1 neurons from the first layer that projects to 

each neuron in the second layer. A higher order derivative could also be computed by 

stacking up layers that implement lower order derivatives. For instance, a 6th order derivative 

could be implemented by stacking up three layers each implementing a 2nd order derivative. 

The values of τ∗ were logarithmically spaced between 100 ms and 1500 ms. Logarithmic 

spacing implements Weber-Fechner scaling.

To mimic stimulus-specificity we assumed that units in f  received a mixture of inputs from 

stimuli from four categories and two category sets (analogous to the behavioral task). For 

each unit, we picked one category as its preferred category and weighted its response by one 

(eq. 9) for that category. For the other categories, we picked coefficients randomly to weight 

the same temporal response. When a stimulus did not belong to the preferred category, but 

was from the same category set as the preferred category, we weighted the impulse response 

by a value taken from a normal distribution with mean 0.6 and standard deviation 0.3. When 

the stimulus was from the other category set, the temporal response was weighted by a value 

taken from a normal distribution with mean 0.3 and standard deviation 0.3. In addition, all of 

the coefficients were bounded between 0 and 1. These values were chosen informally to 

provide rough agreement with the empirical data.
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Results

In this study we analyzed recordings from 500 units in lateral prefrontal cortex (lPFC) of 

two macaque monkeys during performance of a delayed match to category working memory 

task initially reported in Cromer et al. (2010). The method is summarized in Figure 2. 

Neurons in lateral PFC (lPFC) are known to maintain stimulus information during the delay. 

Here we focus on the units that showed temporal modulation, with special attention to the 

existence of stimulus-specific time cells, as predicted by cognitive models of working 

memory (Howard et al., 2015). In order to facilitate comparison of the neural phenomena to 

theoretical models, we also include simulations of a computational model for a compressed 

neural timeline (Shankar & Howard, 2012, 2013; Howard et al., 2014).

Units carrying temporal information

Out of 500 analyzed units, 240 were classified as time cells. Several examples of firing 

activity of those units are shown in Figure 3. The time cells activated sequentially, spanning 

the entire interval. The temporal profiles of all 240 time cells averaged across trials are 

shown on Figure 4A. The cells are sorted by the peak time of the estimated Gaussian shaped 

time fields (μt).

Temporal information was coded with decreasing accuracy as the trial elapsed

There are two ways that a population of time cells would show decreasing temporal 

accuracy. First, the width of time fields should increase as the trial elapses. Second, the 

number of units with time fields earlier in the delay should be larger than the number later in 

the delay. Both of these properties were observed.

First, the width of the central ridge in Figure 4A increases from the left of the plot to the 

right of the plot, suggesting that units that fire earlier in the trial tend to have narrower time 

fields than the units that fire later. This impression was confirmed by analyses of the across-

units relationship between the peak time (μt) and the standard deviation (σt) of the estimated 

Gaussian shaped time fields (Figure 5A). The correlation between the peak time and the 

width was significant (Pearson’s correlation 0.48, p < 10−14). A linear regression model 

linking the peak time (independent variable) and the width (dependent variable) gave an 

intercept of 0.09 ± 0.01 (mean ± SE), p < 10−12, and a slope of 0.15 ± 0.02, p < 10−14. To 

the extent the relationship is linear, it confirms a key quantitative prediction of a scale-

invariant timeline; the dashed green line in Figure 5A is the prediction derived from the 

theoretical model (see methods for details).1

Second, the number of time fields later in the trial was smaller than the number of time 

fields earlier in the interval. This can be seen from the fact that the central ridge in Figure 4A 

does not follow a straight line, as would have been the case if it followed a uniform 

distribution. Rather, the curve flattens as the interval proceeds. To quantify this, we 

examined the distribution of the peak times across time cells (Figure 5B). The KS test 

rejected the hypothesis that the distribution of the peak times is uniform, D(240) = 0.28, p < 

1Other values of k would have also resulted in a straight line, but with a different slope. Smaller values of k result in a steeper slope.
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0.001. The dashed green line in Figure 5B is the cumulative that would be expected if the 

distribution was a power-law with exponent −1 with values between 100 ms and 1500 ms 

(choice of k does not affect this exponent). The correspondence of the observed results and 

this theoretical distribution suggests that the timeline is compressed logarithmically, 

consistent with the Weber-Fechner law. This prediction of the computational model is 

independent of the choice of k.

In addition, we investigated whether the data are better explained by fitting the stimulus 

presentation time (first 0.6 s of the observed interval) separately from the delay period 

(subsequent 1 s). We computed bilinear fit by finding two slopes and two intercepts that 

maximize the likelihood of the data given the bilinear fit. The power-law fit with the 

exponent of −1 explained the data better than the bilinear fit (since the two models had 

different number of parameters the fits were compared in terms of AIC and BIC: ΔAIC = 

12.6, ΔBIC = 23).

The observation that temporal information was coded with decreasing accuracy as the trial 

elapsed was further supported by changes in the ensemble similarity across time. The 

ensemble similarity (Figure 4B) was computed for the population of time cells as a cosine of 

the normalized firing rate vectors between all pairs of time points during the observed 1.6 s 

long time interval.

The population coding for time conjunctively carried information about category identity

Out of 240 units classified as time cells, 175 also distinguished the identity of the category 

of the to-be-remembered stimulus using the criteria described in the methods. Figure 6 

shows several examples of such cells. These units were classified as time cells because they 

fired preferentially at circumscribed periods of time during the trial. However, the magnitude 

of their firing also depended dramatically on what category of stimulus was presented on the 

trial.

Time cells respected category-set structure

The two category sets (ANIMAL vs CAR) differ in their visual similarity. That is CAT and DOG 

stimuli are more visually similar to one another than they are to stimuli from the CAR 

category set. In order to determine whether stimulus-specific time cells respected this visual 

similarity structure, we noted that 45 out of 240 time cells met the definition for category-set 

specific time cells (see methods for details). Figure 7 shows several examples of 

representative units that were classified as category-set specific time cells.

As a control we computed the number of cells that had similar coefficients for artificial 

category sets. The number of category-set specific units significantly exceeded the number 

of cells specific for artificial category sets: 8 units distinguished DOG and SPORTS CAR stimuli 

from CAT and SEDAN stimuli. 15 units distinguished DOG and SEDAN stimuli from CAT and 

SPORTS CAR stimuli. Both of these proportions (8 and 15 out of 175) is reliably different than 

the 45/175 that distinguished the true category sets (ANIMAL vs CAR), χ2 = 28.81, p < 10−7 

and χ2 = 16.91, p < 10−4.
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The results for conjunctive coding of what and when information can be read off directly 

from the heatmaps in Figure 8, which shows the temporal profiles of all 175 stimulus 

specific time cells. The first heatmap Figure 8 shows the temporal profile for each unit in 

response to the category that caused the unit to fire at the highest rate. The middle heatmap 

shows the temporal profile for the same sorting of units for stimuli for the other category 

from the same category set. For instance, if a particular unit responded most to DOG stimuli, 

that temporal profile would be in the left heatmap and its response to CAT stimuli would be in 

the middle heatmap. The heatmap on the right shows the temporal profile for each unit in 

response to stimuli from the category set that did not include the unit’s best category. For 

instance, if a unit responded best to DOG stimuli, its profile in the right heatmap gives its 

response to stimuli from the CAR category set, including trials with sample stimuli from both 

the SPORTS CAR and SEDAN categories.

The sensitivity of the stimulus-specific time cells to category set can be noted from 

observing the difference between the heatmap in the second column and the heatmap in the 

third column. Although a difference between the first and second heatmaps could simply be 

a selection artifact, the difference between the second and the third indicates that time cells 

in this experiment respected the structure of the category sets.

Majority of units that encoded category identity were time cells

The fit with four constant terms was better than the fit with just one constant term for 342 

out of 500 units. These 342 units distinguished category identity. The majority of these units 

also showed temporally modulated firing. 269/342 of the category selective units were also 

temporally-modulated (Figure 9B). The firing dynamics of the remaining 73 category-

specific units seemed irregular rather than sustained in time over the delay (Figure 9A). 

Figure 10 shows rasters for typical cells that were category specific but did not pass the 

threshold for reliable temporal modulation (as modeled by a Gaussian time field). Notice 

that the units that were fitted better with a Gaussian-shaped time field than with a constant 

term were not necessarily considered as time cells. This is because for classifying unit as a 

time cells we imposed an additional set of requirements regarding the peak time and 

standard deviation as described in the methods section (those criteria were necessary to fully 

define the time cells in terms of peak time and width of the temporal fields).

The ensemble contained information about the category identity well above chance at 
almost all time points

Linear discriminant analysis (LDA) was performed to decode category identity of the 

sample stimulus at each 50 ms time bin of the sample and delay intervals (see methods). 

Accuracy for the majority of the time bins was above chance (Figure 12). The accuracy was 

computed for 10 runs, in each run trials were randomly assigned to train the model (80%, 

686 trials) or held out for testing the classifier (20%, 171 trials). For the held out trials, if the 

classifier successfully classified 55 or more trials, this would exceed the Type I error rate at 

the .05 level. As a conservative estimate of decoding accuracy, we took time points for 

which the average over the 10 runs exceeded this value as reliably coding category identity. 

The accuracy was particularly high for the time bins where the classifier was tested on the 

same time bin it was train on (the diagonal in Figure 12). Every time bin after 100 ms along 
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the diagonal was classified above chance (30/32 bins), indicating that the ensemble 

maintained information about category identity.

The performance of LDA decoder appeared decreased as a function of temporal distance 

between the time bin the decoder was trained on and the time bin the decoder was tested on. 

This is indicated by the gradual change in columns of the heatmap in Figure 12. Peak 

accuracy was obtained around the diagonal elements and gradually decreased for points 

further from the diagonal, suggesting that the part of the neural ensemble decoding stimulus 

category changed gradually over the delay. This observation is consistent with the gradual 

change through sequential activation observed in time cells.

Computational model for compressed memory representation

Previous work in computational neuroscience (Shankar & Howard, 2012; Howard et al., 

2014) and cognitive psychology (Shankar & Howard, 2012; Howard et al., 2015) has 

developed a quantitative model for how a compressed timeline could be constructed. This 

method (described in more detail in the methods) makes a strong commitment to scale-

invariance of the temporal representation inspired by robust behavioral results from timing 

and memory experiments (Rakitin et al., 1998; Howard, Youker, & Venkatadass, 2008). 

Consistent with these behavioral findings, and the logarithmic compression of receptive 

fields in the visual system (Schwartz, 1977; Van Essen, Newsome, & Maunsell, 1984), 

theoretical considerations (Shankar & Howard, 2013; Howard & Shankar, in press) strongly 

suggest that time fields should also be logarithmically compressed. This quantitative 

argument makes two clear predictions. First, the width of time fields should go up linearly 

with the time of their peak. Second, the number of time fields centered on a time τ should go 

down like τ−1.

This model can be understood as a two-layer feedforward network. However, because it can 

be well-described mathematically, analytic results can be readily obtained (see methodsfor 

details). Figure 5 provides a means to evaluate whether these quantitative predictions are 

consistent with the empirical data. The straight line relating spread of the time fields to their 

center (dashed green line in Figure 5A) is a qualitative prediction of the model; the slope of 

the line is controlled by a single parameter k (see methods for details). The distribution of 

time fields given by the model is given by the distribution N(τ) ≃ τ−1; the dashed green line 

in Figure 5B shows this distribution with two parameters controlling the smallest and largest 

possible values of the center of the time field (set to 100 ms and 1500 ms respectively). The 

agreement of the empirical data with the predictions of a scale-invariant timeline is very 

strong.

In order to further evaluate the comparison between the model and the empirical results, we 

also generated heatmaps as in Figure 8. By causing different units in the timeline to respond 

to differentially to stimuli from different categories, we were able to generate a strong 

agreement with the empirical results, as shown in Figure 11. Because these are analytic 

results, there is no noise in the time fields across trials. This qualitative fit of the 

computational model supports quantitative findings from the parameters of the descriptive 

model of time cells and the linear classifier (Fig. 12).
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Discussion

During performance of a working memory task, some neurons in lPFC fired in sequences 

while information needed to be maintained in working memory. The sequences exhibited 

coding of temporal information—the time since the sample stimulus was presented (Fig. 4)

—conjunctively with information about the identity of the category of the sample stimulus 

(Fig. 8). The temporal information decreased in accuracy as time elapsed (Fig. 5). This 

decrease in accuracy aligned well with predictions of a scale-invariant timeline taken from 

cognitive models of memory.

Temporal information throughout the brain

The present findings provide robust evidence of conjunctive coding of what and when 

information in the lPFC. Although to our knowledge this is the first report of robust 

stimulus-specific time cells, many recent papers have shown evidence for sequentially 

activated time cells in a broad range of brain regions and multiple species. Previous studies 

in rodents have found time cells with similar properties in hippocampus (MacDonald et al., 

2011; Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013; Salz et al., 2016; Terada, 

Sakurai, Nakahara, & Fujisawa, 2017), medial prefrontal cortex (Tiganj et al., 2016; Bolkan 

et al., 2017), and striatum (Akhlaghpour et al., 2016; Mello et al., 2015). A monkey study 

has previously observed sequentially-activated time cells in dlPFC and striatum (Jin et al., 

2009). In some of those previous studies showing time cell activity, the experimental 

procedure would not enable measurement of conjunctive what and when information (Jin et 

al., 2009; Tiganj et al., 2016; Mello et al., 2015; Kraus et al., 2013). In some other studies it 

would have been possible in principle to measure robust conjunctive what and when 

information (Akhlaghpour et al., 2016), but it was not observed or reported. MacDonald et 

al. (2011) observed some evidence for conjunctive what and when coding in the rodent 

hippocampus, but it was not as reliable as the present study (see also MacDonald et al. 

(2013)). Terada et al. (2017) showed reliable evidence for stimulus coding in the rodent 

hippocampus. Systematic study will be necessary to determine under what circumstances 

time cells also show evidence for stimulus identity.

The presence of sequentially-activated time cells, regardless of whether or not they also code 

for stimulus identity, in so many brain regions with such similar functional properties is 

striking. This may point to a fundamental role for a compressed timeline in many different 

forms of memory. Our conventional understanding of the cognitive neuroscience of memory 

describes memory as composed of a number of separable systems associated predominantly 

with various brain regions (Squire, 2004; Eichenbaum, 2012; Jenkins & Ranganath, 2016). 

Although there are ongoing disputes about how exactly to specify the systems, there is broad 

consensus that the hippocampus is associated with the declarative memory system, the 

striatum is associated with a non-declarative implicit memory system and the PFC is 

associated with a working memory system, etc. The fact that such similar temporal 

representations are observed in regions associated with so many distinct memory systems 

suggests that these memory systems rely on a common form of temporal representation. 

Perhaps different memory systems perform different operations on a common representation 

(Howard et al., 2015; Aronov, Nevers, & Tank, 2017).
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For many years, the default understanding of the neural basis of working memory was that 

working memory is maintained through stable persistent firing (Fuster & Alexander, 1971; 

Funahashi, Bruce, & Goldman-Rakic, 1989; Goldman-Rakic, 1995; Curtis & D’Esposito, 

2003). We did not observe large numbers of category-selective cells that exhibited sustained 

firing (see Figure 10 for the best examples). In contrast, category-selective units were 

temporally modulated, either as time cells or as ramping or decaying cells. Thus this study 

adds to a growing body of empirical work (e.g., Spaak, Watanabe, Funahashi, & Stokes, 

2017; Lundqvist et al., 2016; Stokes et al., 2013; Murray et al., 2016) that requires an 

updated view of working memory as a dynamically-changing representation.

Interestingly, even though this task did not test animals’ memory for temporal order, our 

results clearly show that the stimulus selective neurons nonetheless conveyed temporal 

information. Thus, maintaining a memory representation of what happened when over the 

recent past might be largely spontaneous.

We observed that the width of the temporal receptive fields increased soon after the stimulus 

onset, despite the fact that the stimuli remained present for 600 ms. Similarly, when LDA 

was used for decoding the stimulus identity, we observed the peak performance soon after 

the stimulus onset. This suggests that the stimulus onset is perceived as a more salient effect 

than the stimulus offset. Further research with experimental paradigms that include longer 

stimulus presentation is needed to evaluate how the stimulus duration is encoded. 

Furthermore, further research is needed to understand whether the neural timeline can 

maintain multiple stimuli simultaneously as well as multiple repetitions of the same 

stimulus. The theoretical framework described here is linear and predicts that multiple 

repetitions of the same stimulus result in additive response that allows reconstruction of the 

presentation time of each repetition.

Computational model of working memory

Computational neuroscience studies of working memory have predominantly focused on 

maintaining information about the identity of presented stimuli, either through sustained 

(Goldman-Rakic, 1995; Curtis & D’Esposito, 2003; Wang, 2001) or through time-varying 

firing dynamics (Durstewitz & Seamans, 2006; Stokes, 2015; Lundqvist et al., 2011; Murray 

et al., 2016; Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014). Even though very useful, 

such models do not readily account for the temporal aspect of memory. Other computational 

models (e.g., Goldman, 2009; Grossberg & Merrill, 1992; Itskov, Curto, Pastalkova, & 

Buzsáki, 2011) can also account for sequentially-active firing that can be used to read off 

temporal information.

The computational model used here differs from previous work in that it makes a strong 

commitment to a logarithmically-compressed timeline and is mathematically tractable, 

enabling straightforward derivation of behavioral predictions (Shankar & Howard, 2012, 

2013). The biological plausibility of the key components of the model has been studied 

closely. The major objection, that the method requires neurons with slow functional time 

constants, has been addressed by showing that a single-cell model based on known 

properties of persistently-firing neurons (Egorov et al., 2002; Fransén, Tahvildari, Egorov, 

Hasselmo, & Alonso, 2006) can be readily adapted to generate a broad range of slow 
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functional time constants (Tiganj, Hasselmo, & Howard, 2015; Tiganj, Shankar, & Howard, 

2013). The other major assumption of the model is a feedforward projection that is 

functionally equivalent to a set of on-center/off-surround receptive fields placed in series. 

The logarithmic compression of temporal receptive fields parallels the logarithmic 

compression of visual receptive fields, which has been known for decades (Hubel & Wiesel, 

1974; Van Essen et al., 1984). The observed compression is consistent with Weber-Fechner 

law, providing a potential neural substrate for this widely observed psychophysical law. 

Moreover the mathematics of this model can be readily adapted to provide a description not 

only of time cells, but a variety of findings from the place cell literature and even sustained 

firing (Howard et al., 2014).

Stimulus-specific time cells are predicted by many theories of memory

Previous studies have reported that it is possible to extract temporal or stimulus identity 

information by applying different decoding techniques on the activity of neural populations 

(Stokes et al., 2013; Kim, Ghim, Lee, & Jung, 2013; Pesaran, Pezaris, Sahani, Mitra, & 

Andersen, 2002; Baeg et al., 2003; Hung, Kreiman, Poggio, & DiCarlo, 2005). Neural 

models of timing rely on gradually changing firing rate throughout a delay period rather than 

temporal receptive fields (Kim et al., 2013; Gavornik & Shouval, 2011; Simen, Balci, de 

Souza, Cohen, & Holmes, 2011). Similarly, recurrent neural networks, including liquid state 

machines (Buonomano & Merzenich, 1995; Maass, Natschläger, & Markram, 2002; 

Buonomano & Maass, 2009; White, Lee, & Sompolinsky, 2004) can be shown to maintain 

information about preceding stimuli, but the decoder necessary to extract that information 

into a useful form can be quite complex.

Fusi, Miller, and Rigotti (2016) have argued that the brain expends significant resources 

representing features conjunctively using mixed selectivity to enable linear decoding (Rigotti 

et al., 2013). For coding of continuous dimensions, mixed selectivity manifests as receptive 

fields. To make a concrete example, the hippocampal place code might have consisted of as 

few as two neurons that fire proportionally to the x or y position of the animal. Although this 

code would require few neurons to represent position, learning an association between a 

location in the middle of an arena and reward would be a significant computational 

challenge. Instead, the hippocampal place code uses many neurons, each with a place field; 

the set of all place fields tile the enclosure. Even though this coding scheme uses many more 

neurons it is computationally straightforward to learn an association between a 

circumscribed spatial position (represented by the currently-active place cells) and some 

behaviorally relevant outcome. Despite the fact that sequentially activated stimulus-specific 

time cells seem to require a great many neurons, conjunctive coding of what and when 

information (Fig. 8) enables direct readout of the elapsed time and the stimulus identity.
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Significance Statement

Place cells in the hippocampus and other brain regions provide basis functions to support 

the dimension of physical space. Time cells, which activate sequentially provide 

analogous support for the dimension of time. We observed time cells in the macaque 

lPFC during a working memory task. The time cells we observed were stimulus specific 

meaning that they provide not only information about timing, but also conjunctively code 

what and when information. This representation thus constitutes a manifold with both 

temporal dimension and a stimulus-coding dimension that could support working 

memory. These temporal basis functions maintain a logarithmically-compressed timeline 

of the recent past, providing strong empirical support to long-standing cognitive theories 

of human memory.
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Figure 1. Constructing a scale-invariant compressed memory representation through an integral 
transform and its inverse.
A. A schematic of the network architecture. The input stimulus f(t) feeds into a layer of 

leaky integrators F(t, s) with a spectrum of time constants τ∗ constituting a discrete 

approximation of an integral transform. F(t, s) projects onto f (t, τ∗) through a set of weights 

defined with the operator denoted as Lk
−1 which implements an approximation of the inverse 

of the Laplace transform. Notice that the Lk
−1 operator projects only a local neighborhood (k 

units) from each node in F layer to each node in f  layer. B. A response of the network to a 

delta-function input. Only three nodes in F(t, s) are shown. Nodes in f (t, τ∗) activate 

sequentially following the stimulus presentation creating a memory representation. The 

width of the activation of each node scales with the peak time determined by the 

corresponding τ∗, making the memory scale-invariant. Logarithmic spacing of the τ∗ means 

that the memory representation is compressed.
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Figure 2. Behavioral Task.
A. Stimuli were divided into two category sets, ANIMALS and CARS; each category set 

consisted of two categories. The ANIMAL category set consisted of CATS and DOGS and the CAR 

category set consisted of SPORTS CARS and SEDANS. Stimuli were morphed combinations of 

prototypes within a given category set. B. Two monkeys performed a delayed match to 

category task. On each trial, the monkey was required to respond to whether a test stimulus 

matched the category of the sample stimulus. To perform the task correctly the animal had to 

maintain a memory representation of the stimulus category throughout the sample and delay 

periods. Reproduced from Cromer et al. (2010).
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Figure 3. Representative examples of units classified as time cells.
Each of the five columns shows activity of single unit. For each unit, the plot in the top row 

shows a raster of spikes across trials irrespective of the stimulus category. The bottom row 

shows the averaged trial activity (solid green line), the model fit with only a constant term 

(dotted blue line) and the model fit with a constant term and a Gaussian-shaped time field 

(dashed red line). On this and all following raster plots cyan line at 0.6 s marks the end of 

the sample and beginning of the delay period. See methods for details. The units were 

chosen such that the estimated peak time (μt) increases progressively from the first unit to 

the fifth unit.
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Figure 4. lPFC time fields show decreasing temporal accuracy for events further in the past.
A. Activity of all 240 units classified as time cells during the 1.6 s interval. Each row on the 

heatplot corresponds to a single unit and displays the firing rate (normalized to 1) averaged 

across all trials. Red corresponds to high firing rate; blue corresponds to low firing rate. On 

this and all following heatmap plots dashed black line at 0.6 s marks the end of the sample 

and beginning of the delay period. The units are sorted with respect to the peak time 

estimated for their time field. There are two features related to temporal accuracy that can be 

seen from examination of this plot. First, time fields later in the delay are more broad than 

time fields earlier in the delay. This can be seen as the widening of the central ridge as the 

peak moves to the right. In addition the peak times of the time cells were not evenly 

distributed across the delay, with later time periods represented by fewer cells than early 

time periods. This can be seen in the curvature of the central ridge; a uniform distribution of 

time fields would manifest as a straight line. B. Ensemble similarity of all 240 time cells 

given through a cosine of the angle between normalized firing rate population vectors. The 

angle is computed at all pairs of time points during the observed interval. The bins along the 

diagonal are necessarily equal to 1 (warmest color). The similarity spreads out indicating 

that the representation changes more slowly later in the observed interval than it does earlier 

in the observed interval.
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Figure 5. As the trial elapses, time cells in lPFC show broader and less frequent time fields.
A. Width of the time fields increases with the peak time. Each dot represents the best-fitting 

parameters for a single unit classified as a time cell. There is no apparent difference between 

category/category set specific time cells (red) and the non-specific time cells (blue). The 

solid black line shows the results of linear regression (only the slope is shown, without the 

intercept term). The dashed green line is the relationship between the width and the peak 

time of time cells generated with the computational model with parameter k = 15. B. Peak 

times of the time fields are non-uniformly distributed along the delay interval. The 

cumulative density function for the parameter describing the peak firing of each time cell is 

shown as the solid black line. A fit with a uniform distribution is represented with a dotted 

red line. More time cells had time fields earlier in the delay interval and fewer had time 

fields later in the delay interval. The dashed green line shows the a power-law distribution 

with exponent −1 with values chosen between 100 ms and 1500 ms. The correspondence 

between the empirical results and this scale-invariant distribution is striking.
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Figure 6. Representative time cells that were modulated by the category of the sample stimulus.
A significant proportion of units classified as time cells distinguished the categories from 

one another. The activity of three category-specific time cells is shown (rows) with rasters 

corresponding to all the trials (left) as well as to each of the four stimulus categories 

(subsequent four columns). Category 1 and 2 are trials in which the sample stimulus was 

chosen from the dog or cat category respectively; Category 3 and 4 are sports car and sedan 

trials. Averaged trial activity is shown as a solid green line, the model fit with only a 

constant term is given by the dotted blue line and the best-fitting model—with different 

coefficients for each category—as a dashed red line.
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Figure 7. Representative time cells that were modulated by the category-set of the sample 
stimulus.
As in Fig. 6, each row is a cell. The left-most column shows data for all trials; the next four 

columns show data for trials in which the sample stimulus was chosen from each of the four 

categories. Category 1 and 2 correspond to the ANIMAL category set; Category 3 and 4 

correspond to the CAR category set. The lines below each raster show averaged trial activity 

as a solid green line, the model fit with only a constant term as a dotted blue line and the 

best-fitting model—with distinct coefficients for each of the category sets—as a dashed red 

line.
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Figure 8. Sequentially activated time cells in lPFC encode time conjunctively with stimulus 
identity.
The three heatmaps each show the response of every unit classified as a time cell. The 

heatmap on the left (“Best category”) shows the response of each unit to the category that 

caused the highest response for that unit, sorted according to the units estimated time of 

peak activity. The second column (“Same category set”) shows the heatmap for the same 

units, but for the other category from the same category set as that unit’s “Best category.” 

For instance, if a unit responded the most on trials in which the sample stimulus was chosen 

from the CAT category, then that units response to CAT trials would go in the first column and 

its response to DOG trials would go in the second column. The third column shows the 

response of each unit to trials on which the sample stimulus was from the other category set. 

Continuing with our example, a unit whose best category was CAT would have its response to 

CAR trials in the third column. The scale of the colormap is the same for all three plots and it 

is normalized for each unit such that red represents the unit’s highest average firing rate and 

blue represents its lowest average firing rate across time bins.
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Figure 9. Category specific cells in lPFC exhibit temporally modulated firing more than stable 
persistent firing.
Colormap and cell ordering is analogous to the one in Figure 8. Vertical black lines denote 

start of the stimulus presentation and end of the delay interval. A. Each of the three 

heatmaps shows activity of all 73 units that were category specific and where the fit with a 

constant term was better than the fit with a Gaussian-shaped time field. Most of these units 

are showing some form of temporally modulated firing, very few units are showing activity 

that could be considered as sustained throughout the entire stimulus presentation and delay 

interval. B. Activity of all 269 units that were category specific and fitted better with a 

Gaussian-shaped time field than with a constant term. This is a superset to the category 

specific time cells show in Figure 8, since to classify cells as a time cell we imposed an 

additional set of requirements. Some of these units that were not classified as time cells (93 

of them) show ramping or decaying activity (which could mean that they would potentially 

be time cells if the delay interval was longer).
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Figure 10. Examples of cells from figure Figure 9A that visually appear most similar to category 
specific sustained firing.
Vertical red lines denote start of the stimulus presentation and end of the delay interval.
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Figure 11. Sequentially activated time cells generated with the computational model.
The three plots on the figure resemble the results shown on Figure 8. Analogous to the 

heatmaps in Figure 8, each row corresponds to a single model unit and displays its 

normalized activity across time. The cells are sorted with respect to the peak time. The two 

features observed in Figure 8 are fully captured by the model: the time fields later in the 

delay were more broad than the time fields earlier in the delay and the density of time fields 

decreased as a function of time. This illustrates that the model can indeed account for the 

firing dynamics of the sequentially activated time cells that form a compressed 

representation of time. In addition, the model predicts that the stimulus selectivity observed 

in the data. This is because every time a stimulus is presented, it activates not only its own 

memory representation, but also the memory representation of other stimuli to the degree 

they are similar to the presented stimulus. The response to stimuli from the same category 

set is on average more similar the response to stimuli from different category sets.
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Figure 12. Decoding category identity using linear discriminant analysis (LDA) reveals gradual 
change of the population code across time.
The heatmap displays the accuracy of the LDA classified applied on 50 ms time bins. Each 

bin provides classification accuracy for the classifier trained on a bin denoted on x-axis and 

tested on a bin denoted on y-axis. Each bin is computed by averaging across 10 runs in 

which training and test trials were randomly chosen (80% of trials were used for training 

with 20% of trials held out for testing). The contour encloses bins where classification 

accuracy averaged over the 10 runs exceeded the Type I error rate at the .05 level.
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