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Abstract

Background & Aims: Scoring systems are suboptimal for determining risk in patients with 

gastrointestinal bleeding (UGIB); these might be improved by a machine learning model. We used 

machine learning to develop a model to calculate risk of hospital-based intervention or death in 

patients with UGIB and compared its performance with other scoring systems.

Methods: We analyzed data collected from consecutive unselected patients with UGIB from 

medical centers in 4 countries (United States, Scotland, England, Denmark; n=1958) from March 

2014 through March 2015. We used the data to derive and internally validate a gradient-boosting 

machine learning model to identify patients who met a composite endpoint of hospital-based 

intervention (transfusion or hemostatic intervention) or death within 30 days. We compared the 

performance of the machine learning prediction model with validated pre-endoscopic clinical risk 

scoring systems (the Glasgow-Blatchford score [GBS], admission-Rockall score, and AIMS65). 

We externally validated the machine learning model using data from 2 Asia-Pacific sites 
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(Singapore and New Zealand; n=399). Performance was measured by area under receiver 

operating characteristic curve (AUC) analysis.

Results: The machine learning model identified patients who met the composite endpoint with 

an AUC of 0.91 in the in the internal validation set; the clinical scoring systems identified patients 

who met the composite endpoint with AUC values of 0.88 for GBS (P=.001), 0.73 for Rockall 

score (P<.001), and 0.78 for AIMS65 score (P<.001). In the external validation cohort, the 

machine learning model identified patients who met the composite endpoint with an AUC of 0.90, 

the GBS with an AUC of 0.87 (P=.004), the Rockall score with an AUC of 0.66 (P<.001), and the 

AIMS65 with an AUC of 0.64 (P<.001). At cutoff scores at which the machine learning model and 

GBS identified patients who met the composite endpoint with 100% sensitivity, the specificity 

values were 26% with the machine learning model vs 12% with GBS (P<.001).

Conclusions: We developed a machine learning model that identifies patients with UGIB who 

met a composite endpoint of hospital-based intervention or death within 30 days with a greater 

AUC and higher levels of specificity, at 100% sensitivity, than validated clinical risk scoring 

systems. This model could increase identification of low-risk patients who can be safely 

discharged from the emergency department for outpatient management.
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BACKGROUND

Acute upper gastrointestinal bleeding (UGIB) is a common gastrointestinal diagnosis 

requiring hospital admission, with reported annual incidences in the range of 48 to 172 per 

100,000 1–8 and mortality of ~2–10%.9–16 Multiple guidelines recommend stratification of 

patients into low and high risk groups, and some recommend using risk assessment scores.
15, 17, 18

Pre-endoscopic risk scores such as the Glasgow-Blatchford (GBS), admission-Rockall score, 

and AIMS65 synthesize clinical, hemodynamic, and initial laboratory variables to help guide 

patient triage. Recently a large prospective multicenter study comparing current clinical risk 

scores in UGIB suggested that only the GBS provided good results for a composite outcome 

of transfusion, hemostatic intervention, or death. None of the scores had excellent 
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performance (i.e. area under receiver operator characteristic curve (AUC) ≥0.90) for the 

composite outcome, and no clinical risk score performed well (AUC ≥0.80) for the outcomes 

of mortality alone or hemostatic intervention alone.19

All current clinical models use standard statistical analyses to identify predictors and most 

assign fixed weights based on the original dataset used to derive a score. Machine learning 

(ML) is a discipline that uses computational modeling to learn from data, meaning that 

performance at executing a specific task improves with experience (i.e., more data). Thus, 

ML models may improve upon the risk stratification provided by existing clinical risk 

scores. However, studies of ML models in gastrointestinal bleeding have been limited by 

small sample sizes, absence of internal and external validation, and/or absence of head-to-

head comparisons with existing clinical risk assessment scores.20

Electronic health records are increasingly becoming not only repositories of healthcare data, 

but platforms that can be used to deploy ML models as tools to help guide clinical decision-

making. Currently the models deployed on electronic health records include support vector 

machines, regression models, and decision trees (classification and regression trees (CART), 

random forest, and gradient boosting decision trees).21–28

Currently, the one use of clinical risk assessment tools for patients with UGIB generally 

agreed upon by guidelines and experts is to identify very low-risk patients who may be 

safely discharged from emergency departments with outpatient management15, 18, 29. A 

composite endpoint is typically used in assessments to identify very low-risk patients, most 

commonly a combination of hospital-based intervention (transfusion or hemostatic 

intervention (endoscopic, surgical, or interventional radiological)) and mortality.19 The aim 

of this study was to develop and validate a pre-endoscopic ML model to identify very-low 

risk patients presenting with UGIB, and compare its performance to existing pre-endoscopic 

clinical risk scores in predicting the need for hospital-based intervention or mortality in 

patients with acute UGIB.

METHODS

The data were taken from a study that involved Yale-New Haven Hospital (USA), Glasgow 

Royal Infirmary (Scotland), Royal Cornwall Hospital Truro (England), Odense University 

Hospital (Denmark), Singapore General Hospital (Singapore), and Dunedin Hospital (New 

Zealand).19

Subjects

Consecutive, unselected patients presenting with UGIB were collected between March 2014 

and March 2015. Inclusion required overt bleeding, defined as hematemesis or melena. 

Exclusion criteria were patients who were already inpatients when UGIB occurred. Initial 

assessment of patients was performed in the emergency department or acute assessment unit. 

Details of the care of these patients has been previously published.19
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Outcome and Data Collection

The endpoint selected to develop ML models was a composite endpoint of need for hospital-

based intervention or death (transfusion of red blood cells; hemostatic intervention with 

endoscopic, interventional radiology, or surgery; and 30-day all-cause mortality). This is 

generally considered the most useful outcome in identifying patients at very low risk of poor 

outcomes.

Data entry was performed by a dedicated research nurse, physician, or medical student at 

each site, and data collection included patient characteristics, clinical variables, and 

laboratory results at presentation required to calculate the admission-Rockall, Glasgow-

Blatchford, and AIMS65 scores. Data for determination of outcome measures were also 

collected.

Feature Selection and Data Transformation

Only non-endoscopic variables were included for model development (Table 1). For 

complete case analysis, continuous clinical variables (age, pulse, systolic blood pressure) 

and selected laboratory variables (albumin, international normalized ratio (INR), urea and 

creatinine) were transformed and centered to ensure that all variables were on the same 

scale. Related categorical variables with increased correlation (defined as correlation >0.55) 

were decorrelated by consolidating them into a single variable: “any malignancy” and 

“disseminated malignancy” were consolidated into “malignancy”. Liver disease variables 

were transformed into an ordinal variable as follows: 0=no liver disease, 1=liver disease, 

2=liver cirrhosis, 3=liver failure.

Study Design

The dataset was separated into two geographical regions: U.S.-Europe (United States, 

Denmark, England, Scotland) and Asia-Pacific (Singapore and New Zealand) (Table 2). The 

U.S.-Europe dataset was used to train a gradient boosting model (with the XGBoost package 

in R) and to perform internal validation using tenfold cross validation (in which the dataset 

is divided into 10 folds and each of the folds is used for internal validation with the 

remaining 90% used for training to develop the model. Use of cross-validation and 

hyperparameter tuning for internal validation is considered a robust method for model 

evaluation prior to external validation on a separate dataset and maximizes the potential 

performance of the ML model.30–34 External validation was performed using the dataset of 

Asia-Pacific patients. Because clinical risk scores were developed on data from U.S. and 

European patients, use of the geographically distinct population from Asia-Pacific should 

provide an appropriate assessment for external validation.

The primary use of risk scores in clinical practice that has been recommended by guidelines 

is identification of very low-risk patients for outpatient management.15, 18, 29 Achieving a 

high sensitivity is important for this group: false negatives need to be very rare so that 

patients who require hospital-based intervention or will die are not sent home. Therefore, to 

assess the clinical utility of the ML model, we planned to use the clinical risk tool (or tools) 

at a cutoff score that achieved a sensitivity of 100% (or closest to 100% if none reached 

100%) as a comparator and choose the low-risk cutoff for the ML model by setting 
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sensitivity at 100% in the external validation population. We then compared specificities at 

this cutoff given that the predictive tool with the higher specificity would indicate that tool 

would identify a greater proportion of patients presenting with UGIB who could be safely 

discharged.

Prior to choosing and optimizing the gradient boosting (XGBoost) model, we performed 

rigorous exploratory analyses of logistic regression (with and without regularization), 

support vector machines, decision trees, and neural networks. For regularized logistic 

regression, the lasso, ridge and elastic net penalties were studied. A linear support vector 

machine algorithm, decision-tree models, random forest, gradient boosting (XGBoost), and 

a multilayered feed-forward perceptron neural network were studied. Separate models were 

generated with hyperparameter tuning to optimize their performance for each of the 

outcomes, and all models underwent tenfold cross-validation for internal validation and 

external validation on Asia-Pacific patients. The preliminary findings suggested that 

decision tree models (gradient boosting and random forest) and regression models (elastic 

net, ridge regression) appeared to perform best. (Appendix 1)

Based on our preliminary findings, the performance was roughly the same across the 

different models for the composite endpoint but there was a trend towards improved 

performance for decision tree models (random forest and XGBoost) on internal validation 

and random forest for external validation. We tested both and found that the XGBoost 

algorithm, which utilizes gradient tree boosting, performed best and was the algorithm of 

choice for our final model. This is a regression tree-based ML algorithm that combines the 

output of other decision trees to improve classification. XGBoost is a recently developed 

gradient tree boosting algorithm that is scalable and allows for faster computation.25

Clinical Risk Scores

Only pre-endoscopic clinical risk scores (GBS, admission-Rockall, AIMS65) were 

compared with ML models, since in practice only pre-endoscopic variables would be 

available to clinicians when they decide to triage patients to outpatient or inpatient 

management—and decide on the level of inpatient care and timing of endoscopy. 

Furthermore, the use of risk stratification to inform management decisions is recommended 

and most useful well before the time endoscopy is performed, which is commonly many 

hours after admission.17

Statistical Analysis

Two-tailed t-tests and Chi-squared tests were used to compare baseline characteristics 

between the training set and external validation set. For internal validation, the Wilcoxon 

signed-rank test, a nonparametric test for matched samples, was used for pairwise 

comparisons of AUC. For external validation, the AUC was calculated and then compared 

using a two-tailed non-parametric method.35 McNemar’s matched pairs test was used to 

compare specificities. For ML models, the caret36 and glmnet37 packages were used to 

create models and tune hyperparameters in R 3.5.1. (R Foundation for Statistical Computing, 

Vienna, Austria). The ROCR38 and ggplot239 packages were used for visualizing data and 

generating AUC statistics. We predefined AUC ≥0.80 and <0.90 as good performance, and 
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AUC ≥0.90 as excellent performance. Our primary analysis was comparison of AUCs for 

ML models vs. the 3 clinical risk scores; because we performed three comparisons, we 

adjusted the p-value threshold for significance to p=0.017 with the Bonferroni correction 

and present 99% confidence intervals.

RESULTS

Patient Data

The study included 2357 patients divided into 1958 for the training and internal validation 

group and 399 for the external validation group with complete case analysis, all with 30-day 

follow-up (Table 2).

The original dataset had a total of 3012 patients, with 655 patients (22% of the total dataset) 

having one or a combination of missing variables. The variables with the greatest 

missingness (number of patients with either the variable alone or in combination with 

others) include albumin (N = 302), INR (N = 251), thienopyridine use (N = 105), 

anticoagulant use (N = 105), or aspirin use (N = 104). All of these patients were excluded 

from the final dataset, which was a complete case analysis.

Comparisons of the training and external validation groups are shown in Table 2. The mean 

age for the training group was 62.7 years, and 58% were men. For the external validation 

group, the mean age was 63.6 years and 67% were men. The mortality rate was 7% in the 

training group, and 5% in the external validation group. Hemostatic intervention was 

performed in 19% of patients in the training group, and 21% of the external validation 

group. The composite endpoint occurred in 43% of the training group, and in 58% of the 

external validation group.

Performance of the ML Model

Internal Validation—The internal validation group was the tenfold cross-validation of the 

final ML model of the training set comprised of four sites (Denmark, England, Scotland and 

U.S.A) with approximately 390 patients in each fold.

For the composite outcome, ML model (AUC=0.91, 0.90–0.93) performed better than GBS 

(AUC=0.88, 0.86–0.90; p=0.001), admission-Rockall score (AUC=0.69, 0.66–0.71; 

p<0.001), and AIMS65 (AUC=0.72, 0.69–0.74; p<0.001) (Table 3).

External Validation—For the composite endpoint, the ML model performed better than 

all clinical risk scores: AUC=0.90, 0.87–0.93 versus GBS AUC=0.87, 0.84–0.91; P=0.004; 

admission-Rockall AUC=0.65, 0.60–0.71; p<0.001; AIMS65 AUC=0.64, 0.59–0.69; 

p<0.001 (Table 3).

Identifying Very Low-Risk Patients

High Sensitivity Cutoff for External Validation—Among the clinical risk scores, only 

GBS=0 achieved a sensitivity at our pre-specified cutoff of 100%; AIMS65=0 and pre-

endoscopic Rockall=0 had maximal sensitivities of 74% and 96%, respectively. The ML 

model performed better than GBS=0 in correctly classifying patients who did not need a 
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hospital-based intervention or die (p<0.001): the ML model had a specificity of 26% at 

sensitivity 100% compared to a specificity of 12% at sensitivity of 100% with GBS=0. The 

accuracy for the ML model at this high sensitivity cutoff is 68% (0.64–0.73), whereas for 

GBS=0 accuracy is 63% (0.58–0.68). Because some have suggested a cutoff of GBS≤118, 19 

given reported sensitivity as high as ~99% with this cutoff, we also performed a post hoc 

comparison of specificities using a threshold for sensitivity of 99%. Specificities for ML 

model set at 99% sensitivity and GBS≤1 (which achieved 99% sensitivity threshold) were 

35% and 27%, respectively (p=0.02). In order to make the tool available for clinicians, we 

developed an app (U.S. version: https://dshung.shinyapps.io/UGIB_App_USA/; 

International version: https://dshung.shinyapps.io/UGIB_App_INTL/) that allows for point 

of care entry of the variables.

DISCUSSION

In acute UGIB, a gradient-boosting ML model derived from a large international multicenter 

cohort predicts the composite outcome of transfusion, hemostatic intervention, or death 

better than the current commonly used clinical risk scores, GBS, admission-Rockall, and 

AIMS65, on internal and external validation. Thus, this ML model improves upon the ability 

to identify very-low risk patients who can be safely discharged from the emergency 

department. Importantly, this ML model increases the number of very-low risk patients who 

can be identified by more than two-fold as compared to the best performing clinical risk tool 

currently available.

Risk stratification scores are used in clinical practice by choosing threshold scores to guide 

care, with the goal of choosing thresholds that maximize sensitivity (minimize false 

negatives). Guidelines suggest that patients with low GBS scores may be discharged from 

the emergency department with outpatient management arranged because very few of these 

patients die or require transfusion or hemostatic intervention. In our study, GBS of 0, which 

is recommended as a cut-off by U.S. and Asia-Pacific guidelines, had a sensitivity of 100% 

and a specificity of 12% for the composite outcome of transfusion, hemostatic intervention 

or death. A meta-analysis reported similar results for GBS=0, with sensitivity of 99% and 

specificity of 8% for a composite outcome of recurrent UGIB, intervention, or death.40 At 

the matched sensitivity of 100% our ML model had specificity of 26%. Sensitivity of 100% 

means that no patients who will die or require transfusion or hemostatic intervention have a 

score above the cutoff—and suggests these patients generally can be sent home with 

outpatient management.41 The significant increase in specificity from 12% with GBS to 

26% with the ML model, with the same 100% sensitivity in both, suggests that, as compared 

to GBS, the ML model can increase the number of patients who can be safely discharged 

from the emergency department by more than 2-fold. We provide an app (U.S. version: 

https://dshung.shinyapps.io/UGIB_App_USA/; International version: https://

dshung.shinyapps.io/UGIB_App_INTL/) that allows for point of care entry of the input 

variables and an immediate feedback if the patient meets the threshold for very low risk.

Previous studies of ML models in UGIB have been limited by sample size, homogeneous 

patient cohorts, and lack of external validation. For example, the largest study of ML in 

UGIB utilized a total of 2380 patients and found that a neural network model had improved 
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performance over the full Rockall score (which included endoscopic findings) for 30-day 

mortality on internal validation only--but had no external validation of the model and no 

assessment of more clinically relevant pre-endoscopic clinical risk scores or the clinically 

important composite outcome.42 For mortality, other ML models have a trend towards better 

performance than clinical risk scores, although only 3 studies compared ML models to 

clinical risk scores designed to assess risk in gastrointestinal bleeding and only 1 of them 

compared to a pre-endoscopic clinical risk score which is the appropriate comparator for risk 

stratification of gastrointestinal bleeding.42–44 Two studies examined prediction of mortality 

on external validation with ML models compared to liver-specific Child-Pugh and MELD 

scores (designed to predict mortality in all patients with cirrhosis rather than in those 

presenting with gastrointestinal bleeding), and only one study found improved performance.
45 All comparisons with clinical risk scores were limited by external validation datasets from 

the same region.

Strengths

First, this study examines clinically relevant outcome measures. The composite outcome 

helps to triage very low-risk patients who may be able to be managed as outpatients. Second, 

unlike prior studies our patient cohort is large, prospective and spans multiple centers 

throughout the world. Third, we initially assessed a variety of different types of ML models 

to assess their performance in modeling the same dataset to inform our choice of a final ML 

model for use in clinical practice. Fourth, this study provides direct comparison to multiple 

pre-endoscopic clinical risk scores developed for prognostication in UGIB. Finally, this 

study includes both internal and external validation, which allows a more rigorous evaluation 

of ML model performance. Most prior studies of ML models in UGIB, including the largest 

ML study published to date, did not have an external validation group.46

Limitations

We used the geographical division of U.S.-Europe and Asia-Pacific centers as the criterion 

to separate training from external validation set and use of other external validation sets 

might provide different results. Also, selection bias is present due to complete case analysis 

without integrating missingness: 22% of the dataset was excluded due to one or more 

missing variables. This may introduce bias into the models, since there may be non-random 

differences between those who have data elements missing and complete cases. However, all 

previous studies examining ML and gastrointestinal bleeding have been conducted with 

complete case analysis, and this approach provides a necessary baseline prior to exploring 

missingness and the impact of integrating missingness into ML models.

Despite the improvement in performance at the high sensitivity cutoff, the specificity of 26% 

is less than optimal. The low specificity means that most patients who will not require 

hospital-based intervention or die are not identified as very low risk and are still admitted. 

However, the improvement in specificity with the ML model compared to GBS potentially 

should translate into a substantial reduction in healthcare utilization. For example, based on 

this increase in specificity, among the 800 patients seen at our emergency department with 

hematemesis or melena in 1 year, a GBS of 0 would identify 55 very low-risk patients while 

the ML model would identify 119 such patients.
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Finally, the data used was prospectively collected and entered into a registry, which is 

different from electronic health record data, which is usually more heterogenous with a 

higher rate of missingness.

Future Directions

In summary, our findings suggest that an ML model trained on predictors derived from 

existing clinical risk scores provides excellent performance that is better than existing pre-

endoscopic clinical risk scores for a composite outcome commonly considered most 

clinically appropriate in identification of very low-risk patients presenting with UGIB: 

transfusion, hemostatic intervention, and mortality. For very low-risk patients, there is an 

improvement in the specificity, meaning that more patients may be safely discharged from 

the emergency department with outpatient management with the ML model than with use of 

GBS.

ML models have two key advantages over clinical risk scores: inclusion of a larger number 

of variables and the potential to improve over time. Electronic health records are becoming 

platforms for deploying prognostic ML models, which have already been used in clinical 

care for sepsis, acute kidney injury, and delirium.47–49 The next steps would be an electronic 

health record based study that would reliably identify patients presenting with acute UGIB, 

use structured datafields as predictive variables to develop models based on local patterns of 

disease and outcomes, and then prospectively validate the models in patients presenting in 

the emergency department with acute UGIB.

Implementation of the ML model would automatically identify patients with UGIB and 

generate risk profiles for decision support. For example, the results of the ML model could 

provide recommendations for outpatient management in patients who are at thresholds 

accepted as very low risk for mortality, needing transfusion, and requiring hemostatic 

intervention. Finally, a randomized controlled trial should be conducted to evaluate the effect 

of ML models as clinical decision support on clinician behavior, healthcare utilization and 

patient outcomes.

Grant support:

National Institutes of Health T32 DK007017 (D.S.)

Appendix 1:: Exploratory Methodological Study

METHODS

Machine Learning (ML) Models

Figure 1 shows the different categories of ML models. We chose to study the following 

models in our initial exploratory analyses: logistic regression (with and without 

regularization), support vector machines, decision trees, and neural networks. For 

regularized logistic regression, the lasso, ridge and elastic net penalties were studied. A 

linear support vector machine algorithm, decision-tree models, random forest, gradient 
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boosting (XGBoost), and a multilayered feed-forward perceptron neural network were 

studied. Separate models were generated for each of the three outcomes

Study Design: Model Development, Internal and External Validation

The dataset was separated into two geographical regions: U.S.-Europe (United States, 

Denmark, England, Scotland) and Asia-Pacific (Singapore and New Zealand) (Table 2). For 

internal validation, the models were trained on U.S.-Europe patients with a randomized site-

stratified training group (80% of patients randomly sampled from each site) that underwent 

tenfold cross-validation and hyperparameter tuning. These models were then tested on U.S.-

Europe patients with a randomized site-stratified test set (i.e., the remaining 20% of 

patients). The performance of clinical risk scores recorded from the test set were then used 

as a comparison to the performance of the ML models. This process was performed for ten 

iterations to generate a dataset of internal validation test AUCs for ML models and the 

clinical risk scores. For external validation, ML models were trained on the entire U.S.-

Europe patient dataset, underwent tenfold cross-validation and hyperparameter tuning, and 

then were tested on Asia-Pacific patients.

RESULTS

Internal Validation

The internal validation group was a random stratified sample of 20% of patients from each 

of the four sites (Denmark, England, Scotland and U.S.A) with 390 patients in each iteration 

for ten iterations. In Table 3, the characteristics of the first iteration are provided.

For the composite outcome, the random forest and XGBoost models performed best, with 

AUCs that were not significantly higher than GBS AUC (0.91 versus 0.88, p=0.02) (Table 

3). All ML models had higher AUCs than the admission-Rockall score (AUC=0.69, 

p<0.001) and AIMS65 (AUC=0.72, p<0.001).

For 30-day mortality, the random forest model performed best (AUC=0.85), and all ML 

models except support vector performed better (p<0.001) than all three clinical risk scores 

(GBS AUC=0.69, admission-Rockall AUC=0.73, AIMS65 AUC=0.78) (Table 3).

For hemostatic intervention, the elastic net and XGBoost models performed best, although 

AUCs (0.78) were relatively similar to GBS (AUC=0.76, p=0.03) though better than 

admission-Rockall (AUC=0.60, p<0.002) and AIMS65 (AUC=0.63, p<0.001).

External Validation

For the composite endpoint, the random forest model performed best (AUC=0.90) on 

external validation. All ML models (AUC range 0.87–0.90) performed better than the 

admission-Rockall (AUC=0.65, p<0.001) and AIMS65 (AUC=0.64, p<0.001), but similar to 

GBS (AUC=0.87).

For 30-day mortality, the random forest and elastic net models performed better than GBS 

(AUC=0.86–0.87 versus 0.67, p<0.002), although not significantly different from the best 

performing clinical risk score (AIMS65 AUC=0.81; p=0.10 vs. random forest).
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For hemostatic intervention, the support vector model performed best (AUC=0.75) on 

external validation. The support vector model performed better than admission-Rockall 

(AUC=0.75 versus 0.61, p<0.002) and AIMS65 (AUC=0.75 versus 0.52, p<0.001) but 

similar to GBS (AUC=0.69). All other ML models performed better than AIMS65 (AUC 

range 0.68–0.72 versus 0.52 p<0.001) and had similar results to GBS (AUC range 0.68–0.75 

versus 0.69).

Specificities at High Sensitivity Cutoffs on External Validation

For the composite outcome, GBS 0 had a sensitivity of 100% and specificity of 12%. The 

random forest model was the ML model with the highest AUC, and performed with a similar 

specificity (15%) at sensitivity 100%. Among the other ML models, the ridge regression 

model had the highest specificity (32%) at sensitivity 100%.

For mortality, the best performing clinical score was AIMS65 and at the cutoff of 0 had 

sensitivity 95% and specificity 36%. The random forest model had the highest AUC and 

performed with a higher specificity 51% at sensitivity 95%. Among the other ML models, 

the lasso, ridge regression, and neural network models had the highest specificity (63%) at 

sensitivity 95%.

For hemostatic intervention, the best performing clinical score was GBS, and at a cutoff of 

≤3 had sensitivity 97% and specificity 27%. The support vector model had the highest AUC 

and performed with similar sensitivity and specificity to GBS at 97% and 28% respectively.
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Figure 1: 
Overview of Machine Learning and Models Studied
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Figure 2. 
Distribution of patients used for development and internal or external validation of machine 

learning models
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Figure 3: 
ROC curves for Composite, Mortality, and Intervention
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Table 1.

Performance of Machine Learning Models (Internal and External Validation) and Clinical 

Risk Assessment Scores

Outcome Composite Endpoint
a

Mortality Hemostatic Intervention

Internal validation dataset (AUC with 99.8% CIs)

 Logistic Regression 0.90
R,A

 (0.87 – 0.92) 0.85
G,R,A

 (0.79 – 0.90) 0.78
R,A

 (0.76–0.81)

 Lasso 0.89
R,A

 (0.87 – 0.92) 0.85
G,R,A

 (0.80 – 0.90) 0.78
R,A

 (0.75 – 0.80)

 Elastic Net 0.90
R,A

 (0.87 – 0.92) 0.85
G,R,A

 (0.80 – 0.90) 0.78
R,A

 (0.76–0.81)

 Ridge Regression 0.89
R,A

 (0.87 – 0.92) 0.85
G,R,A

 (0.80 – 0.90) 0.78
R,A

 (0.74–0.81)

 Support Vector Machines 0.90
R,A

 (0.87–0.92) 0.77
G

 (0.72 – 0.83) 0.75
R,A

 (0.72 – 0.78)

 Random Forest 0.91
R,A

 (0.88 – 0.93) 0.85
G,R,A

 (0.80–0.89) 0.77
R,A

 (0.75 – 0.79)

 XG Boost 0.91
R,A

 (0.88 – 0.93) 0.84
G,R,A

 (0.80–0.89) 0.78
R,A

 (0.76 – 0.80)

 Feed-Forward Neural Network 0.88
R,A

 (0.85 – 0.92) 0.83
G,R

 (0.78 – 0.87) 0.73
R,A

 (0.69 – 0.76)

 Glasgow-Blatchford score 0.88 (0.85–0.91) 0.69 (0.64 – 0.74) 0.76 (0.72 – 0.79)

 Admission-Rockall score 0.69 (0.65 – 0.72) 0.73 (0.68 – 0.77) 0.60 (0.57 – 0.64)

 AIMS65 0.72 (0.69 – 0.75) 0.78 (0.72 – 0.83) 0.63 (0.59 – 0.68)

External validation dataset (AUC)

 Logistic Regression 0.88
R,A

 (0.83 – 0.94) 0.85 (0.70 – 1.0) 0.72
R

 (0.63 – 0.80)

 Lasso 0.89
R,A

 (0.83 – 0.94) 0.85 (0.70 – 1.0) 0.71
R

 (0.63 – 0.80)

 Elastic Net 0.89
R,A

 (0.84 – 0.94) 0.86
G

 (0.71 – 1.0) 0.71
R

 (0.62 – 0.79)

 Ridge Regression 0.88
R,A

 (0.83 – 0.94) 0.85 (0.70 – 1.0) 0.70
R

 (0.62 – 0.80)

 Support Vector Machine 0.89
R,A

 (0.83 – 0.94) 0.80 (0.62 – 0.98) 0.75
R,A

 (0.67 – 0.84)

 Random Forest 0.90
R,A

 (0.85 – 0.95) 0.87
G

 (0.69 – 1.0) 0.72
R

 (0.63–0.81)

 XGBoost 0.88
R,A

 (0.83 – 0.94) 0.85 (0.68 – 1.0) 0.70
R

 (0.61 – 0.80)

 Feed-forward Neural Network 0.87
R,A

 (0.81 – 0.93) 0.86 (0.71 – 1.0) 0.68
R

 (0.58 – 0.77)

 Glasgow-Blatchford score 0.87 (0.82 – 0.93) 0.67 (0.48 – 0.86) 0.69 (0.60 – 0.78)

 Admission-Rockall score 0.66 (0.56 – 0.72) 0.79 (0.63 – 0.96) 0.61 (0.51 – 0.71)

 AIMS65 0.64 (0.57 – 0.74) 0.81 (0.66 – 0.95) 0.52 (0.42 – 0.62)

a
Blood transfusion, hemostatic intervention, or 30-day mortality

G
p < 0.002 compared to GBS

R
p < 0.002 compared to admission-Rockall

A
p < 0.001 compared to AIMS65

Table 2:

Performance Characteristics for Clinical Risk Scores and ML Models Matched to Highest 

Clinical Risk Score Sensitivity on External Validation

Composite Outcome Model Cutoff Sensitivity Specificity PPV NPV Prevalence

Clinical Risk Scores
GBS 0 1.00 0.12 0.61 1.00 0.58

AIMS65 0 0.74 0.48 0.67 0.57

Rockall 0 0.96 0.23 0.63 0.81
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Composite Outcome Model Cutoff Sensitivity Specificity PPV NPV Prevalence

Logistic

Regression Models Regression 1.00 0.29 0.66 1.00

Lasso 1.00 0.30 0.66 1.00

Elastic Net 1.00 0.29 0.66 1.00

Ridge Regression 1.00 0.32 0.67 1.00

Linear Support Vector 
Machines

Support Vector 
Machines 1.00 0.26 0.65 1.00

Decision Tree Models Random Forest 1.00 0.15 0.62 1.00

XG Boost 1.00 0.15 0.62 1.00

Neural Network Neural Network 1.00 0.16 0.62 1.00

Mortality Model Cutoff Sensitivity Specificity PPV NPV Prevalence

Clinical Risk Scores
AIMS65 0 0.95 0.36 0.07 0.99 0.05

GBS 1 0.95 0.12 0.05 0.98

Rockall 0 0.95 0.12 0.05 0.98

Logistic

Regression Models Regression 0.95 0.62 0.12 1.00

Lasso 0.95 0.63 0.12 1.00

Elastic Net 0.95 0.61 0.11 1.00

Ridge Regression 0.95 0.63 0.12 1.00

Linear Support Vector 
Machines

Support Vector 
Machines 0.95 0.12 0.05 0.98

Decision Tree Models Random Forest 0.95 0.51 0.09 1.00

XG Boost Neural 0.95 0.51 0.09 1.00

Neural Network Network 0.95 0.63 0.12 1.00

Hemostatic Intervention Model Cutoff Sensitivity Specificity PPV NPV Prevalence

Clinical Risk Scores
GBS 3 0.97 0.27 0.27 0.97 0.21

AIMS65 0 0.68 0.36 0.22 0.80

Rockall 0 0.97 0.14 0.24 0.94

Logistic

Regression Models Regression 0.97 0.20 0.25 0.94

Lasso 0.97 0.24 0.26 0.95

Elastic Net 0.97 0.27 0.27 0.96

Ridge Regression 0.97 0.22 0.26 0.95

Linear Support Vector 
Machines

Support Vector 
Machines 0.97 0.28 0.29 0.97

Decision Tree Models Random Forest 0.97 0.22 0.26 0.95

XG Boost 0.97 0.21 0.25 0.95

Neural Network Neural Network 0.97 0.18 0.24 0.94

Abbreviations:

UGIB (Upper Gastrointestinal Bleeding)
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ML (Machine Learning)

GBS (Glasgow Blatchford Score)

CART (Classification and Regression Trees)

INR (International Normalized Ratio)

XGBoost (Extreme Gradient Boosting)

MELD (Model for End-Stage Liver Disease)
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What you need to know:

BACKGROUND AND CONTEXT:

We used machine learning to develop a model to calculate risk hospital-based 

intervention or death in patients with upper gastrointestinal bleeding (UGIB) and 

compared its accuracy with current scoring systems.

NEW FINDINGS:

We developed a machine learning model that identifies patients with UGIB who met a 

composite endpoint of hospital-based intervention or death within 30 days with a greater 

AUC and higher levels of specificity (at 100% sensitivity) than validated clinical risk 

scoring systems. This model could increase identification of low-risk patients who can be 

safely discharged from the emergency department for outpatient management.

LIMITATIONS:

This model requires validation in other populations.

IMPACT:

This model could increase identification of low-risk patients who can be safely 

discharged from the emergency department for outpatient management.

Lay Summary:

We used machine learning to analyze data from patients with upper gastrointestinal 

bleeding and identify those at risk for hospital-based intervention or death within 30 

days.
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Table 1:

Clinical Variables Used to Build Machine Learning Models

Demographic (2)

Age

Sex

Comorbidity (6)

American Society of Anesthesiologists (ASA) Score

Ischemic Heart Disease

Cardiac Failure

Renal Failure

Liver Disease

Any Malignancy

Medications (4)

Aspirin

Thienopyridines

Anticoagulation

Non-steroidal anti-inflammatory drugs

Clinical Features at Presentation (7)

Pulse

Systolic Blood Pressure

Syncope

Altered Mental Status

Hematemesis

Melena

Hematochezia

Initial laboratory values (5)

Hemoglobin

Urea

Creatinine

Albumin

International Normalized Ratio (INR)
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Table 2:

Comparison of the Training, Internal Validation, and External Validation Groups

Training Set External Validation 
Set

Variables Difference* (95% Confidence 
Interval)

P-value

N = 1958 N = 399

Demographic

Age 62.7 (20.1) 63.6 (17.7) −0.87 (−2.8 to 1.1) 0.38

Men 1141 (58%) 266 (67%) −0.08 (−0.14 to(−0.03) 0.002

Comorbidity

ASA Score

1 235 (12%) 103(26%) −0.14 (−0.18 to −0.09) <0.001

2 587 (30%) 142(36%) −0.06 (−0.11 to −0.003) 0.03

3 926 (47%) 149(37%) 0.10 (0.04 to 0.15) <0.001

4 194(9.9%) 5(1%) 0.08 (0.07 to 0.10) <0.001

5 16(0.8%) 0 (0%) 0.01 (0.00 to 0.01) 0.14

Ischemic Heart Disease 384 (20%) 78 (20%) 0.00 (-0.04 to 0.04) 1

Cardiac Failure 195(10%) 16(4%) 0.06 (0.03 to 0.08) <0.001

Renal Failure 166(8%) 51 (13%) −0.05 (−0.08 to −0.01) 0.01

Liver

None 1581 (81%) 339 (85%) −0.04 (−0.08 to −0.001) 0.06

Liver Disease 94 (5%) 13(3%) 0.01 (-0.006 to 0.04) 0.22

Liver Cirrhosis 113(6%) 44(11%) −0.06 (−0.09 to −0.02) <0.001

Liver Failure 170(9%) 3(1%) 0.07 (0.06 to 0.09) <0.001

Any Malignancy 301 (15%) 50(13%) 0.03 (−0.01 to 0.07) 0.168

Medications

Aspirin 516(26%) 79 (20%) 0.07 (0.02 to 0.11) 0.007

Adenosine diphosphate 
(ADP) Inhibitors

148(7%) 28 (7%) 0.005 (−0.02 to 0.03) 0.78

Anticoagulation 257(13%) 38(10%) 0.04 (0.005 to 0.07) 0.04

Non-steroidal anti-
inflammatory drugs 
(NSAIDs)

275(14%) 30 (8%)
0.07 (0.03 to 0.09) <0.001

Clinical Features at Presentation

Pulse 91.5(20.3) 91.9(19.6) −0.4 (−2.5 to 1.7) 0.72

Systolic Blood Pressure 127.2 (24.1) 121.9(25.5) 6.8 (2.5 to 8.0) <0.001

Syncope 190(10%) 34 (9%) 0.01 (−0.02 to 0.04) 0.52

Altered Mental Status 213(11%) 25 (6%) 0.04 (0.02 to 0.07) 0.007

Hematemesis 839 (43%) 135(34%) 0.11 (0.04 to 0.14) 0.001

Melena 1001 (51%) 277 (69%) −0.18 (−0.23 to −0.13) <0.001

Hematochezia 113(6%) 23 (6%) 0.0 (−0.02 to 0.02) 1
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Training Set External Validation 
Set

Initial Laboratory Values

Hemoglobin 112.8 (32.2) 102.7(30.9) 10.1 (6.8 to 13.5) <0.001

Urea 11.0(9.2) 12.0(10.1) −1.0 (−2.1 to 0.04) 0.06

Creatinine 102.5 (93.1) 116.2(121.4) −13.8 (−26.4 to −1.1) 0.03

Albumin 35.8 (7.2) 35.4 (6.5) 0.04 0.19

INR 1.4(1.30) 1.40(1.23) 0.0 (−0.13 to 0.13) 1.0

Transfusion Requirement (number of RBC 
units) Outcomes

1.31 (2.61) 1.54 (2.49) −0.2 (−0.5 to 0.04) 0.09

Mortality (30-day) 154(8%) 20 (5%) 0.02 (0.002 to 0.05) 0.059

Hemostatic Intervention 
(endoscopic, surgical, or 
interventional radiology)

396 (20%) 90 (23%)
−0.02 (−0.07 to 0.02) 0.33

Composite outcome (30-day 
mortality, hemostatic 
intervention, or transfusion

875 (45%) 234 (59%)
−0.14 (−0.19 to −0.08) <0.001

Clinical 
Risk Scores

Glasgow-Blatchford 6.53 (4.56) 7.81 (4.50) −1.3 (−1.8 to −0.79) <0.001

Admission-Rockall 2.82(1.74) 2.7(1.8) 0.1 (−0.07 to 0.31) 0.22

AIMS65 1.0 (0.94) 0.96 (0.92) 0.04 (−0.05 to 0.14) 0.37

*
Includes mean difference and difference in proportions
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Table 3:

Performance of XGBoost Machine Learning Model and Clinical Risk Assessment Scores

Composite Endpointa Internal Validation AUC with 99% 
Confidence Interval

p-value External Validation AUC with 99% 
Confidence Interval

p-value

XGBoost Machine Learning 
Model 0.91 (0.90–0.93) 0.90 (0.87–0.93)

Glasgow-Blatchford score 0.88 (0.86–0.90) 0.001 0.87 (0.84–0.91) 0.004

Admission-Rockall score 0.69 (0.66–0.71) <0.001 0.65 (0.60–0.71) <0.001

AIMS65 0.72 (0.69–0.74) <0.001 0.64 (0.59–0.69) <0.001
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