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Abstract

Purpose—Post-transplantation infections are common. It is anticipated that infection will be no 

less common in xenotransplantation recipients. Prolonged xenograft survivals have resulted from 

advances in immunosuppressive strategies and development of swine that decrease host immune 

responses via genetic manipulation, notably CRISPR/cas9 manipulation. As prospects for clinical 

trials improve, consideration of the unique infectious risks posed by xenotransplantation reemerge.

Recent Findings—Organisms likely to cause infection in human recipients of porcine 

xenografts are unknown in advance of clinical trials. Microbiological screening of swine intended 

as xenograft donors can be more intensive than is currently feasible for human allograft donors. 

Monitoring infection in recipients will also be more intensive. Key opportunities in infectious 

diseases of xenotransplantation include major technological advances in evaluation of the 

microbiome by unbiased metagenomic sequencing, assessments of some risks posed by porcine 

endogenous retroviruses (PERVs) including antiretroviral susceptibilities, availability of swine 

with deletion of genomic PERVs, and recognition of the rapidly changing epidemiology of 

infection in swine worldwide.

Summary—Unknown infectious risks in xenotransplantation requires application of advanced 

microbiological techniques to discern and prevent infection in graft recipients. Clinical trials will 

provide an opportunity to advance the safety of all of organ transplantation.
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Introduction

Immunosuppression for xenotransplantation of porcine organs in primates and clinical trials 

carries a risk for opportunistic infection proportional to the intensity of immune deficits and 

epidemiological exposures of recipients. The unique challenges posed by transplantation of 

organs between species are the limited data on the microbiology of swine – specifically 

which organisms are likely pathogens for humans. Experience with pig-to-nonhuman 

primate transplantation provides insights into potential microbes that may cause infection in 
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recipients. This allows development of programs for screening of source animals and organs 

for potential human pathogens, studies of the biology of these organisms, and technology to 

monitor recipients for infection. As for any immunocompromised individual with infection, 

microbiologic identification of specific organisms causing infection allows targeted therapy 

while avoiding side effects of unnecessary antimicrobials. Advances in microbiology 

including quantitative molecular assays for viruses and unbiased metagenomic sequencing 

techniques, allow recipients and donors to be screened and monitored for infections even 

when asymptomatic. Pig-specific pathogens such as porcine endogenous retroviruses 

(PERVs) or circoviruses may be excluded from swine colonies and monitored in recipients. 

The application of newer techniques will supplement pathogen-specific assays including 

broad-range molecular probes, microarrays and high throughput pyrosequencing. Unique 

challenges are presented by the array of pig-specific organisms for which diagnostic tools 

are needed and changing worldwide epidemiology of infection in swine. 

Xenotransplantation allows development of approaches that will increase microbiological 

safety in transplantation while improving the supply of transplantable organs.

Introduction

Infectious Challenges in Xenotransplantation

Following organ transplantation, infection and cancer are the main complications of long-

term immunosuppression. Infection comes from the environment, from the recipients 

themselves (i.e., prior colonization or latent and active infection), and by microbes traveling 

with the transplanted organ1–3. The overall risk for infection is determined by host factors 

(technical skill, immunogenetics, preventative strategies) coupled with the impact of the 

immunosuppression applied -- the “net state of immunosuppression”. The net state of 

immunosuppression includes all the factors contributing to infectious risk in an individual – 

a summation of the immunosuppression, metabolic derangements, viral coinfections 

infection, and technical complications. If infectious risk can be reduced, more intensive 

immunosuppression can be applied safely.

The unique challenge of xenotransplantation is the relative paucity of data regarding the 

microbiology of normal and genetically modified swine, despite the commercial importance 

of the species. The microbiological behavior of zoonoses in the immunosuppressed human 

host cannot be predicted. In the absence of clinical trials, the “infectious risks” of 

xenotransplantation are guesses based on extensive experience with immunosuppressed 

human allograft recipients and in studies of immunosuppressed swine and primate xenograft 

recipients. Based on these data, organisms thought likely to cause infection in human 

recipients can be minimized via screening and exclusion of potential pathogens during 

animal rearing (Table 1)4. The mechanisms applied for such exclusion (vaccination, 

antimicrobial treatments, animal isolation) can vary. Xenograft recipients will undergo 

prospective assessments for known organisms and, in with infectious syndromes (which are 

inevitable), by intensive investigation, empiric therapies, and creative application of newer 

technologies for microbial detection (discussed below).

The term “xenosis” (also “direct zoonosis” or “xenozoonosis”) reflects the unique 

epidemiology of infection due to organisms from a nonhuman source species transmitted 
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with xenogeneic grafts4–6. Intensive investigation revealed some previously uncharacterized 

species including the porcine endogenous retroviruses or PERVs7–9. PERVs are 

nonpathogenic in swine; human cells carry PERV receptors. Experience with retroviral 

transmission between species suggest such genomic elements, if expressed, have the 

potential to cause disease in another species (“xenotropic organisms”) or acquire new 

characteristics via genetic recombination or mutation including increased virulence10–15. 

Infection may persist within grafts due to the incompatibility of histocompatibility antigens 

between species which reduces the efficacy of immune responses. Based on clinical 

experience, some newer organisms recently described in swine might be considered 

including porcine polyomaviruses, coronaviruses, and Borrelia species – which have never 

been detected in humans16–19. In addition, epidemics of African Swine Fever virus have 

spread throughout Asia recently but are of unlikely clinical importance other than inhibiting 

the exchange of pigs between affected and unaffected regions20.

Epidemiology

Identification of new organisms in swine may provoke anxiety in investigators and 

regulatory authorities for clinical trials (as for PERVs). However, development of sensitive 
and specific microbiological assays for use in breeding, donor and organ screening, 
monitoring or diagnosis becomes feasible only when such potential pathogens are 
discovered. In addition to (e.g.,) quantitative molecular assays for each organism, serological 

tests or measures of T-lymphocyte immunity (e.g., pathogen-specific interferon-gamma 

release assays) are useful in screening populations to identify prior exposures and latent 

infections (Table 1). These require validation both in swine and human xenograft recipients 

as assays perform differently in human and porcine sera. It is notable that most assays for 

animal-derived organisms in humans are unavailable with exceptions being common 

pathogens such as toxoplasmosis or influenza. Such assays may be limited to commercial or 

veterinary laboratories. Serologic tests are often falsely negative in the immunocompromised 

host.

Metagenomic sequencing

Rather than microbiology driven by each “organism du jour,” new types of assays merit 
consideration. Agnostic metagenomic “next generation sequencing” (mNGS) are universal 

pathogen detection methods for microbiology 21. These methods provide genomic 

characterization of all types of organisms without bias based on clinical syndrome (often 

absent) or limitation to pathogen-specific assays22. This might be considered “hypothesis-

free testing”22. Current techniques are limited by requirements for comparator organism 

sequence data from both swine and humans, method standardization, the challenge of 

differentiating colonization from invasive infection, risks for specimen contamination by 

host and environmental nucleic acids, and data interpretation21,23. Metagenomic approaches 

to the determination of transmission of zoonotic microorganisms is feasible using blood and 

tissue samples or cell free nucleic acids released during the course of infection (Table 1) 24. 

These techniques are particularly useful in asymptomatic individuals (e.g., 

immunocompromised hosts or for monitoring) or for detection of previously unrecognized 

pathogens 23. It is possible that microbiome analysis of donor species could identify 

potential pathogens in advance of clinical trials25. Microbiome studies determine the 
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composition and function of a community of microorganisms in an anatomic site; the 

pathophysiological importance of such determinations in transplantation are under 

investigation25,26.

Source Animal Development

“Exclusion lists” of organisms thought to pose unacceptable risks to xenograft recipients 

were developed as a basis for testing in breeding colonies (“Designated Pathogen Free 

Colonies”, Table 2)4. As was noted, it should not matter how such exclusion is achieved if 

the designated organisms are demonstrably absent from the source herd, animal, or organ. 

Such lists must be dynamic based on changing epidemiology and data from experimental 

and clinical experience4,27,28. Microbiological assessments can be made for sentinel animals 

and specific animals selected for organ procurement. Pig health is governed by standard 

veterinary practice including vaccinations, microbially-restricted diets, filtered water, 

avoidance of unnecessary antibiotics, and “biosecure facilities” to prevent introduction of 

microbes from rodents, insects, and birds. A “Designated Pathogen-Free Exclusion List” 

was developed for organisms like those associated with human allotransplantation (Table 2). 

Of these, only hepatitis E virus (HEV) has been identified in immunosuppressed humans. 

Regulatory guidance documents exist for clinical trials29–33. These provide an outline of 

essential considerations for clinical trials including infectious disease management31. Such 

trials must be performed in transplantation centers with laboratory expertise to identify 

potential donor-derived pathogens. Guidance notes that there needs to be the capacity to test 

for latent viruses or pathogens, which may require development and validation of new 

assays31. As was noted, the availability of multiple overlapping diagnostic tests and agnostic 

assays such a mNGS would be advantageous.

The Impact of Viral Infection after Xenotransplantation

Viral infections are common after organ transplantation given the efficient transmission of 

viruses with living cells coupled with intensive immunosuppression. Diagnosis of porcine 

viral infections has been addressed, in part, by development of sensitive, quantitative 

molecular assays for PERVs, porcine lymphotropic herpesvirus (PLHV), porcine 

cytomegalovirus (PCMV), circoviruses, and adenoviruses4. Infection by these viruses in 

humans has not been reported; each is associated with a specific clinical syndrome in swine 

and in nonhuman primate xenograft recipients. PCMV infection is restricted to porcine 

tissues causing endothelial activation, consumptive coagulopathy and early graft loss 34–37. 

PCMV can be excluded from pig colonies by early weaning and isolation but is easily 

reintroduced into herds. PLHV is associated with a form of post-transplantation 

lymphoproliferative disorder (PTLD) in immunosuppressed swine undergoing stem cell 

transplantation but causes no known disease in primates 38,39. Porcine circovirus type 2 

(PCV2) causes pneumonia and wasting syndrome and immune dysfunction but no known 

infection in primates 40,41.

Pig genomes contain diverse endogenous beta- and gamma-retroviruses, most of which 

appear to be replication defective. As noted by Robin Weiss, these endogenous elements, 

even if incomplete, might contribute via recombination or reinsertion events to the 

development of novel genomic PERV strains15. The successful removal of barriers to 
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hyperacute graft rejection (knockout of alpha-1,3-galactosyltransferase genes and the 

insertion of genes for human complement regulatory proteins) may also remove barriers to 

infection by enveloped viruses15. In swine, our isolation and sequencing of PERV was based 

on early studies of a retrovirus associated with swine lymphoma (reviewed in 4)7,42–50. 

Three related C-type porcine endogenous retroviruses (PERV A, B, C) have been identified 

in swine that possess infectious potential. Human cellular receptors for PERV-A, HuPAR-1 

and HuPAR-2, have been identified51. PERV-A and -B, can infect human and pig cells in 
vitro, while PERV-C infects only pig cells7,46,48,51–57. Exogenous recombinant viruses 

containing the receptor-binding site of PERV-A and segments of PERV-C (PERV AC) have 

high replication efficiency in vitro; we showed that these may cause autoinfection with 

reintegration as genomic AC recombinants55,58–60.

While PERV mRNAs are expressed in all pig tissues and in all breeds of swine tested to 

date; genomic PERV types and the level of expression vary and some swine lack PERV-C or 

a recombination locus 7,61–66. Lung, spleen, and lymph node consistently show high levels 

of PERV expression, possibly reflecting leukocyte content. While PERV expression is lower 

in whole pancreas, PERV expression is equally high in isolated pancreatic islets67. Relative 

to detection strategies, in vitro culture of islets did not reveal reverse transcriptase or PERV 

virus, suggesting limitations to current detection strategies67. Induction of porcine 

pluripotent stem cells (piPSCs) produces 10-fold to 100-fold higher transcription of the viral 

PERV-A and PERV-B envelope genes (env), viral protease/polymerase, and L1 elements 

without detection of functional retrovirus68. While enhancement of viral gene expression by 

viral and cellular factors acting in trans has been demonstrated between human 

herpesviruses and endogenous (HERV) and exogenous (HIV) retroviruses, PCMV 

coininfection does not alter the replication of PERV in life-supporting renal 

xenotransplantation in vivo in baboons69.

Despite the presence of functional receptors on human cells, preclinical and clinical 

xenotransplantation studies using pig cells, tissues, and organs have failed to demonstrate 

transmission of PERV to humans in vivo and to most normal human cells in vitro. This 

suggests either inadequate exposure to human-tropic, replication competent virus, or 

protection by intrinsic cellular antiviral mechanisms. PERV does not replicate well in non-

human primate cells making studies in primates less informative 70,71. Should infection 

occur, PERV is susceptible in vitro to clinically available nucleoside and non-nucleoside 

reverse transcriptase inhibitors 56,72–77. In in vitro studies, adefovir demonstrated moderate 

inhibition of PERV replication while nevirapine has more limited PERV inhibitory activity; 

integrase inhibitors including raltegravir, dolutegravir and inhibited PERV replication at the 

nanomolar levels78. Interestingly, riboflavin, the natural ligand for PERV-A receptors on 

human cells (SCL52A, a riboflavin transporter) produced no inhibition of PERV infection 

suggesting that alternative entry mechanisms may exist78.

Theoretical strategies to prevent PERV transmission include the use of PERV-C-negative or 

low virus producing pigs, vaccination, antiretroviral therapy, RNA interference therapies and 

creation of PERV knockout animals using CRISPR-Cas9 or other gene editing 

techniques79–81. Using CRISPR-Cas9 to target the polymerase gene of PERV elements, 

inactivation was achieved of all 62 copies of PERV in the immortalized porcine kidney 
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epithelial cell line PK15 which normally releases high levels of infectious PERV in vitro82. 

All PERV elements were mutated; viral replication and reverse transcriptase activity were 

not detected. Transmission to human cells in coculture studies was no longer 

demonstrable82. PERV C-negative pig fibroblasts were similarly treated for use in somatic 

cell nuclear transfer to generate PERV-inactivated embryos, carried by PERV-C negative 

surrogate sows81. While the infectivity status of these fibroblasts at baseline was not 

presented, PERV inactivation (~25 copies) was confirmed at the DNA and RNA levels; 

further studies are underway. Xenografts from these animals have not yet been reported. 

Concerns regarding off-site genomic modifications by CRISPR technology are under 

investigation 83. Pigs with PERV deletions require investigation for unanticipated genetic 

and physiologic changes.

Towards Clinical Trials of Xenotransplantation

Early clinical trials will inform appropriate monitoring and prophylaxis strategies for 

xenotransplantation. Infections should be anticipated in any group of immunosuppressed 

organ recipients – some early when immunosuppression is most intense and technical 

complications are most common and lifelong as graft function may vary4. Routine 

pretransplant screening of recipients will recognize some latent infections that merit 

surveillance or prophylactic therapies; these include tuberculosis, CMV, EBV, and hepatitis 

B or C viruses. Donor-derived infections can be limited by the screening of source animals 

to the extent of available assays for latent as well as active infections. This suggest a utility 

for serologic testing and development of T-cell assays to detect immune memory for relevant 

(e.g., viral) organisms. Routine monitoring for known and unknown organisms, as per FDA 

and other guidance documents, will apply microbe-specific assays (cultures, quantitative 

molecular assays as outlined in Table 3) and can also begin to apply some advanced 

metagenomic sequencing methods to surveillance31. These are not yet validated or approved 

for clinical use, are both costly and not optimized for use in the combined human-porcine 

nucleic acid environment21–24. Samples from recipients, and possibly from close social or 

sexual contacts, may be archived at standard timepoints against future epidemiologic studies 

or improvements in unbiased metagenomic sequencing. These could include blood samples 

to assess (e.g.,) peripheral blood chimerism for pig cells. Blood and tissue (biopsy) samples 

will be aliquoted and stored at multiple sites in appropriate storage media for RNA, DNA, 

cell and serum proteins. Routine nucleic acid testing can be performed for PERV (A, B, C, 

AC), PLHV and PCMV (if present in donor), and for common human viruses (human CMV, 

adenovirus, EBV). If PERV is present in donor swine, cocultivation of peripheral blood 

leukocytes with virus-permissive human and porcine cell lines may be informative.

Organ transplant recipients frequently develop signs of infection such as fever, 

gastrointestinal, urinary tract or respiratory symptoms, unexplained leukocytosis, 

hypotension, graft dysfunction, or abnormal metabolic testing. At such times, surveillance 

studies can be repeated. Clinical evaluations will be largely syndrome-driven including 

blood, urine and/or sputum cultures and appropriate radiographic testing and invasive 

diagnostic procedures for microbiology and histopathology. Empiric antimicrobial therapy 

can then be initiated.
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Initial xenograft recipients should be screened for latent infections and surveillance and 

prophylactic strategies developed. These need not be different than those for allograft 

recipients. Ideally, early recipients should not be colonized with antimicrobial-resistant 

organisms. Protocols including induction of immunological tolerance (e.g., stem cell plus 

organ grafts from the same donor) will generate some period of chimerism with the potential 

for systemic infections or graft-vs-host disease.

The risk for infections in xenotransplantation is unknown without human 
studies—Clinical data will drive improvements in the production of source animals 

including genetic modifications and improve surveillance strategies for subsequent 

recipients. New microbiological assays will be developed to identify or exclude potential 

human pathogens from breeding herds and for the diagnosis of such organisms in humans. 

Next generation sequencing from samples from xenograft recipients may identify 

unsuspected microbes – their clinical significance is unknown in the absence of clinical data. 

However, significant progress has been made in understanding of approaches to and 

management of potential infections in xenotransplantation.
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Table 1:

Deployment of Microbiological Assays in Xenotransplantation

Assay Type Screening 
Source Animals

Xenograft 
Recipients 
Monitoring

Xenograft Recipients – 
Symptomatic Infection or 

Increased Risk*

Healthy Contacts 
of Recipient

Cultures (Active Infection) X X

Serology (Past Exposures) X X +/− X

Molecular Assay or Antigen Detection 
(Active Infection) X X +/−

Agnostic, metagenomic Sequencing 
(Active Infection) X X

*
Increased risk may be associated with treatment of graft rejection or intercurrent viral infection.
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Table 2:

Exclusion List: Porcine Organisms to Consider (adapted from 4)

Viruses

Porcine Endogenous Retrovirus (PERV) A, B, C, AC Porcine lymphotropic herpesvirus (PLHV)

Porcine Adenovirus Porcine Teschovirus

Encephalomyocarditis Virus Rabies virus

Hepatitis E Virus Swine influenza virus

Porcine Cytomegalovirus West Nile Virus

Porcine Hemmagglutinating encephalomyelitis

Bacteria:

Mycobacteria spp. Shigella

Pathogenic E. coli Yersinia

Campylobacter Leptospira spp.

Salmonella (cholerasuis, typhimurium) Listeria spp.

Parasites:

Toxoplasma gondii Echinococcus spp.

Cryptosporidium parvum Trichinella spiralis

Strongyloides Microsporidium

Trypanosoma species
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Table 3:

Recipient Monitoring for Viral Infection Post-Xenotransplantation (adapted from 4)

Virus Name – non-commercial testing Testing Method

Porcine Endogenous Retrovirus (PERV) A, B, C, AC Qualitative and Quantitative (QNAT) Nucleic Acid Testing (NAT); Antibody-based 
tests (serology, ELISA, Western Blot)

Porcine Lymphotropic Herpesvirus Type 2 (PLHV-2) QNAT

Porcine Cytomegalovirus (PCMV) NAT; Antibody-based tests

Human Cytomegalovirus (HCMV) – per protocol QNAT

Human Epstein-Barr virus (EBV) – per protocol QNAT
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