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Abstract

Rationale: Genome-wide association studies (GWAS) have identified hundreds of genetic loci 

associated with atrial fibrillation (AF). However, these loci explain only a small proportion of AF 

heritability.

Objective: To develop an approach to identify additional AF-related genes by integrating 

multiple omics data.

Methods and Results: Three types of omics data were integrated: 1) summary statistics from 

the AFGen 2017 GWAS; 2) a whole blood epigenome-wide association study (EWAS) of AF; and 

3) a whole blood transcriptome-wide association study (TWAS) of AF. The variant-level GWAS 

results were collapsed into gene-level associations using fast set-based association analysis 

(fastBAT). The CpG-level EWAS results were also collapsed into gene-level associations by an 

adapted SNP-set Kernel Association Test (SKAT) approach. Both GWAS and EWAS gene-based 
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associations were then meta-analyzed with TWAS using a fixed-effects model weighted by the 

sample size of each data set. A tissue-specific network was subsequently constructed using the 

Network-wide association study (NetWAS). The identified genes were then compared with the 

AFGen 2018 GWAS that contained twice the number of AF cases compared to AFGen 2017 

GWAS.

We observed that the multi-omics approach identified many more relevant AF-related genes than 

using AFGen 2018 GWAS alone (1931 vs. 206 genes). Many of these genes are involved in the 

development and regulation of heart and muscle related biological processes. Moreover, the gene 

set identified by multi-omics approach explained much more AF variance than those identified by 

GWAS alone (10.4% vs 3.5%).

Conclusions: We developed a strategy to integrate multiple omics data to identify AF-related 

genes. Our integrative approach may be useful to improve the power of traditional GWAS, which 

might be particularly useful for rare traits and diseases with limited sample size.
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INTRODUCTION

Atrial fibrillation (AF) is the most common heart arrhythmia. In the US, the prevalence of 

AF was 2.7 to 6.1 million in 2010, and this number is expected to increase to 9.3 to 12.1 

million in 2030.1 AF is heritable with an estimated heritability of 22%.2 Large-scale 

genome-wide association studies (GWAS) have identified more than one hundred loci 

associated with AF.3–5 However, these loci explain only 6.4% of heritability,2 suggesting 

that more AF-related genetic loci remain to be identified.
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The most straightforward approach to identify additional AF-related loci is to increase the 

sample size and thus the statistical power. In the past few years, we and others have 

published a series of papers with increasing sample size and number of identified loci: 6 

novel AF loci from 6,707 AF cases and 52,426 referents in 2012,6 12 additional AF loci 

from 17,931 cases and 115,142 referents in 2017,7 and 67 new loci from more than 65,000 

AF cases and over 522,000 referents in 2018.3 When additional samples are not available, 

alternative methods, such as simultaneous analysis of multiple related traits (for example, 

with MTAG8) can also increase the statistical power. Another solution is to integrate 

information from multi-omics data.9 The underlying assumption is that multi-omics data 

could provide complementary information, which is helpful to reveal the underlying biology 

of the associations.

Beyond GWAS, we have previously performed a whole blood transcriptome-wide 

association study (TWAS)10 and a whole blood epigenome-wide association study 

(EWAS)11 with AF. Integrating the information from these single-omics studies provides an 

opportunity to improve our understanding of AF. The objective of our current study is to 

develop a strategy to identify AF-related genes by integrating these multi-omics data. We 

validate our strategy using the latest AF GWAS, and investigate potential biological 

mechanisms underlying the associations.

METHODS

The data, analytic methods, and study materials will be made available to other researchers 

for purposes of reproducing the results. The summary results are available at the Broad 

Cardiovascular Disease Knowledge Portal (www.broadcvdi.org) and the Online Materials.

Multi-omics studies of AF.

Three types of omics data were integrated in the current study, including GWAS, EWAS and 

TWAS.

The GWAS data consisted of the summary statistics from the Atrial Fibrillation Genetics 

(AFGen) Consortium GWAS published in 2017 (referred as AFGen 2017 GWAS),7 which 

included 17,931 AF cases and 115,142 referents from 31 studies. The majority of 

participants were of European descent (89.1% for AF cases and 89.3% for referents). The 

remaining participants were African Americans, Japanese, Hispanic, or Brazilians.

The EWAS result consisted of the whole blood epigenome-wide association study with AF, 

which included 183 AF cases and 2,236 referents from the Framingham Heart Study (FHS).
11 FHS is a community-based cohort consisting of three generations of participants.12–14 

The EWAS samples were collected from the Offspring participants who attended the eighth 

examination. The DNA methylation profiling was performed using Illumina Infinium 

Human Methylation 450K BeadChip as described previously.11 The association between AF 

and the methylation level of each CpG site was tested by linear mixed effects regression 

models to account for the familial relatedness inferred from the FHS pedigree structure.
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The TWAS result consisted of the whole blood gene transcriptome-wide association study 

with AF, which included 177 AF cases and 2,126 referents also from the FHS Offspring 

cohort who attended the eighth examination. Whole blood gene expression was measured by 

the Affymetrix Human Exon 1.0st Array. The association of 17,873 transcripts (representing 

17,562 unique genes) with AF was also tested by linear mixed effects regression models 

similar to EWAS.10

Gene-based association analysis for GWAS, EWAS, and TWAS.

Prior to integrating three types of omics data, we converted all summary statistics to gene-

level association statistics. For GWAS, we used the fast set-based association analysis 

(FastBAT) implemented in the GCTA 1.26.0 software package15 to combine the SNP-based 

association summary statistics into a single gene-based statistic. Gene regions were defined 

as 50 kb away from the gene boundary. Variants located within the gene region were jointly 

tested by an approximated estimation of sum of chi-squares statistics. Under the null 

hypothesis of no association, the z-scores follow a multivariate normal distribution with zero 

mean. The covariance matrix between variants within the gene region was estimated from 

1,724 unrelated FHS individuals. For EWAS, we used an adapted SNP-set Kernel 

Association Test (SKAT) approach16 to collapse CpG-level associations into gene-level 

associations, which was implemented as a modified version of R seqMeta package.19 We 

previously demonstrated that the method could provide increased power to jointly test the 

association of multiple CpG sites with phenotypes of interest.17,18 Individual CpG sites were 

first mapped to genes based on their chromosomal locations. The SKAT analysis was then 

performed for all CpG sites within each gene region, and the models were adjusted for age, 

sex, assay sites, and accounted for familial relatedness. For TWAS, transcripts were mapped 

to genes based on the transcript annotation. For genes with multiple transcripts, an adjusted 

minimum P value was used, which was defined as min Padjusted = 1 – (1 – min P)n, in which 

n is the number of transcripts within a gene.20 The models for TWAS were adjusted for age, 

sex, batch effects, and accounted for family relatedness.

Meta-analysis of multi-omics data.

After creating gene-based summary statistics for each data type, we performed a P value 

based meta-analysis with a fixed-effect model irrespective of the directions of the 

associations. We also assigned weights to each type of omics data to reflect their different 

sample sizes. Details of implementation are provided in Online Methods. The pairwise 

correlations of the gene-based tests between omics data sets were all less than 0.1 (Online 

Table I) and therefore ignored.21

Tissue-specific gene prioritization.

We further examined the effect of tissue-specific expression by the Network-wide 

association study (NetWAS).22 NetWAS is a machine learning-based method that combines 

gene-level associations with the tissue-specific interaction network. The network was built 

using over 14,000 publications and low-throughput tissue-specific expression data,22 which 

could describe gene-gene functional interactions within a specific tissue (Online Methods). 

Genes showing association with AF with a pre-specified cutoff (default P <0.01) were 

treated as “pre-positive” genes, in a network built from general heart tissues which might 
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include all heart tissue types (e.g., atrium, appendage, or ventricle).22 A heart-specific score 

was then assigned to each gene. The score was calculated by support vector machine to 

represent how far the gene was away from the hyperplane that maximally distinguished pre-

positive and pre-negative genes.22 If a “pre-positive” gene was predicted positive (referred as 

“post-positive”), the gene was considered as an AF-related genes.

For sensitivity analyses, we also explored different significance thresholds (P <0.1, 

P<0.0001, or P<0.05/N, where N is the number of shared genes), and we examined another 

network built from the whole blood to assess the robustness of tissue-specific gene 

prioritization.

Method validation.

To validate our findings, we used the latest AFGen GWAS published in 2018 (referred as 

2018 GWAS) as the reference gene set.3 Most samples from AFGen 2017 GWAS were also 

included in 2018 GWAS. The summary statistics of 2018 GWAS were also collapsed into 

gene-based associations by FastBAT. We then compared the overlapping genes with those 

identified by single-omics or multi-omics integration methods measured by the C-statistics 

as implemented in the pROC R package.23

The number of AF cases of GWAS (n=17,931) overwhelmed that of EWAS (n=183) and 

TWAS (n=177). In order to understand the effects of sample size imbalance, we examined if 

a decrease in GWAS sample size would significantly affect our results. We used the AFGen 

2012 GWAS (6,707 cases and 52,426 referents)6 and the AF GWAS from FHS participants 

only (1,104 cases and 7,268 referents)3 for comparison.

Strategy application to the integration of AFGen 2018 GWAS, EWAS, and TWAS.

We applied our strategy with the optimal weights to integrate 2018 GWAS, EWAS, and 

TWAS, which would generate a list of candidate genes that might be related to AF. We 

further examined their functions using the enrichment analysis, tissue-specific expression 

analysis, and heritability estimations as follows.

Gene ontology and pathway enrichment analysis.

The enrichment of AF-related genes in biological processes and pathways was assessed by 

WebGestalt.24 Fisher’s exact test was used to calculate enrichment P values. False discovery 

rate (FDR) was calculated by Benjamini and Hochberg method to account for multiple 

testing.25 Significant pathways were defined as those with FDR<0.05.

Gene expression across multiple heart tissues.

We also examined the expression of AF-related genes across two heart tissues, left atria and 

right atrial appendage (Online Methods). Gene expression across tissues were obtained from 

the Genotype-Tissue Expression (GTEx) project26 and the Myocardial Applied Genomics 

Network repository.3 Two-sample Kolmogorov-Smirnov test was used to compare the 

percentiles between independent AF-related genes and non-AF-related genes (pairwise 

Spearman’s r2 < 0.25).27
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Tissue-specific expression analysis.

We calculated a pSI score for each gene to represent its enrichment in a specific tissue as 

implemented in the pSI R package.29 Details of pSI calculation are described in Online 

Methods. For each tissue, genes with pSI <0.05 were considered as significantly enriched in 

the tissue. The overlap between AF-related genes and the genes enriched in each tissue was 

estimated by Fisher’s exact test. We used the Bonferroni correction to adjust for multiple 

testing, and the significance cutoff was set as P<0.05/25=0.002, because 25 tissue groups 

were tested (Online Table II). We assessed significance using 1,000 random gene sets, each 

with the same number of genes as the AF-related gene set.28

Estimation of AF heritability.

We also estimated AF heritability explained by regions containing AF-related genes using 

HESS.30 The genome was first divided into linkage disequilibrium (LD)-independent 

regions,31 and the summary statistics of individual variants within each region were used to 

estimate the local heritability taking into account LD between variants. The 1000 Genomes 

Phase 3 European samples were used as the LD reference panel. Variants with minor allele 

frequency less than 0.01 were excluded. We also estimated the heritability from participants 

of European ancestry in the UK Biobank, which included more than 300,000 independent 

participants (3,818 cases and 333,381 referents).32 Details about the HESS method were 

provided in Online Methods.

RESULTS

Gene-based association results based on GWAS, EWAS, and TWAS.

Figure 1 shows the overall flowchart of our approach. The summary statistics from GWAS, 

EWAS, and TWAS were first converted into gene-based associations. The analysis was 

restricted to 14,364 genes shared by three omics platforms. Bonferroni correction was used 

to adjust for multiple testing, and the significance cutoff was set as 0.05/14,364=3.5×10−6. 

As shown in Figure 2, we found 44 genes by GWAS, 41 genes by EWAS, and 1 gene by 

TWAS that were significantly associated with AF after adjusting for multiple testing. 

However, none of AF-related genes were shared between any two types of omics data.

We then performed meta-analysis to integrate omics data with different weighting schemes. 

A variety of weights between two most extreme weights were taken into consideration, one 

with GWAS only, and the other one with equal weights for all omics data. As shown in 

Online Table III, the number of significant genes first increased and then decreased with 

reducing weights of GWAS. The resulting gene sets were further mapped to tissue-specific 

network and classified by machine learning models as implemented by NetWAS.22 Genes 

remained significant after machine learning classification were defined as AF-related genes.

Validations for AF-related genes by AFGen 2018 GWAS.

In order to validate the utility of our multi-omics approach, we compared the predicted AF-

related genes with the latest AFGen GWAS results (referred as 2018 GWAS).3 The summary 

statistics of 2018 GWAS were also collapsed into gene-level associations (referred as 

reference gene set). With the relative weights of 0.599, 0.201, and 0.200 for GWAS, EWAS, 
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and TWAS, we achieved the best C-statistics of 0.813 (95% CI: 0.781~0.845) with the 

sensitivity 0.784 and specificity 0.941. In comparison, the C-statistics for GWAS alone was 

only 0.740 (Online Figure I and Online Table III).

We then performed a simulation with 1,000 replicates for each omics data set (see Online 

Method) to estimate type 1 error. As shown in Online Figure II, less than 10% inflation of 

type I error was observed with α=0.05 across all weights (relative type 1 error ranging from 

1.00 to 1.10). With more conservative Bonferroni significance cutoff 

α=0.05/14,364=3.5×10−6, the relative type 1 error was higher (relative type 1 error ranging 

from 1.18 to 1.74), which might be partly due to the loss of directionality information during 

meta-analysis.

We also examined the effect of choosing different significance cutoffs from NetWAS to 

define “pre-positive” genes, ranging from 3.5×10−6 to 0.1. As shown in Figure 3, the C-

statistics first increased and then decreased with increasing weights for EWAS and TWAS 

across all significance cutoffs. The optimal C-statistics were reached when P=0.01 and 

w_g=0.599. Online Table IV shows the number of significant genes for each cutoff. The 

findings suggested that not only lenient gene thresholds, but also the additional information 

from EWAS and TWAS helped to identify AF-related genes. We also performed the multi-

omics integration analysis on the network built from whole blood, and observed a similar 

pattern but with relatively lower C-statistics.

Effect of sample sizes for GWAS, EWAS, and TWAS.

Given that the sample size of GWAS was much larger than that of EWAS or TWAS, the 

integrative results could be dominated by the GWAS results. To understand potential effect 

of different GWAS sample sizes, we explored an earlier published AF GWAS that only 

included 6,707 AF cases (referred as 2012 GWAS).6 After integrating with EWAS and 

TWAS, the results were largely similar although with a lower C-statistics (0.738 from 2012 

GWAS vs. 0.813 from 2017 GWAS, Online Figure I and Online Figure III). However, if we 

further reduced GWAS sample size to include only samples from FHS (1,104 AF cases), the 

performance of our integrative omics analysis deteriorated significantly (Online Figure IV).

Identification of additional AF-related genes by integrating AFGen 2018 GWAS, EWAS, and 
TWAS.

In order to identify additional AF-related genes, we integrated AFGen 2018 GWAS together 

with EWAS and TWAS using the optimal weight derived from the validation analysis. Our 

analysis found that 1,931 genes were predicted “positive” and passed the lenient significance 

cutoff, and therefore referred as AF-related genes, of which 288 were previously reported in 

three external disease-related databases: GWAS catalog (https://www.ebi.ac.uk/gwas/), Open 

Targets Platform (https://www.targetvalidation.org/), and OMIM (https://www.omim.org/) 

(Online Table V).

We then assessed potential biological functions of AF-related genes by pathway enrichment 

analysis. The top 10 Gene ontology (GO) biological processes33,34 and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways35 are shown in Tables 1 and 2, respectively. 
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Many AF-related genes were involved in cardiac muscle tissue development or adrenergic 

signaling in cardiomyocytes.

We then examined the expression of AF-related genes in human left atrial and right atrial 

appendage tissues, which are the most relevant tissues for AF. As shown in Figure 4, these 

genes tended to have higher expression than other genes (both with P<2.2×10−16), 

suggesting their potential functions in left atrial and right atrial appendage tissues.

We also examined the expression of these genes across 53 tissue types available from GTEx. 

As shown in Online Figure V, these genes showed the highest expression in heart (left 

ventricle and atrial appendage) and skeletal muscle. A relatively high co-expression was also 

observed between heart tissues and skeletal muscle for AF-related genes (Online Figure VI). 

We also compared AF-related genes with 1,000 randomly selected gene sets with the equal 

number of genes. As shown in Figure 5, the AF-related genes were significantly 

overexpressed in muscle (P=4.0×10−9), heart (P=1.5×10−5), and blood vessel (P=9.9×10−4).

A few potential drug targets were identified, including ADORA1, ATP1A3, ATP1B2, 

CACNA1D, KCNQ4, NR3C2, and THRA. For example, NR3C2 encodes a receptor for both 

mineralocorticoids (MC) and glucocorticoids (GC).36 An observational study reported that 

patients with insufficient mineralocorticoid receptor blockade had a higher risk of AF 

incidence (OR 1.14, 95% CI: 1.07~1.22),37 which suggested the inhibition of NR3C2 was a 

potential therapy for AF. We further validated the candidate genes in 79 genes that were 

previously reported as AF pathogenesis genes.38,39 Many of these genes were either ion 

channels or involved in cardiac developments (Online Table VI). Among them, 39 genes 

were also our candidate genes (enrichment significance P= 4.9×10−15).

We next estimated the heritability explained by AF-related genes using HESS.30 The 

genome was divided into 1,703 LD-independent regions. Using the AFGen 2018 GWAS 

summary statistics,3 the AF heritability explained by all genetic variants was 19.4% (95% 

CI: 19.0%~19.8%). The 1,931 AF-related genes could be mapped to 675 regions, which 

explained 10.4% (95% CI: 10.2%~10.7%) of AF variance, more than half of the total AF 

heritability explained by all genetic variants. In comparison, the top 1,931 genes from 2018 

GWAS could explain only 8.2% (95% CI: 8.0%~8.5%) of AF variance. We further validated 

the heritability estimation by another dataset from the United Kingdom Biobank (UKBB).32 

Similarly the total AF heritability was estimated 18.9% (95% CI 18.2%~19.5%) after 

considering all genetic variants (Online Table VII). The 1,931 AF-related genes explained 

8.0% (95% CI 7.6%~8.4%) of AF variance, whereas the top 1,931 genes from 2018 GWAS 

could explain only 5.5% (95% CI 5.2%~5.8%).

DISCUSSION

We developed a strategy to integrate association results from multi-omics data to study 

complex diseases. As more omics data become available, the integration of multi-omics data 

is expected to identify additional disease-related genes beyond GWAS. We applied the 

strategy to study AF and identified 1,931 potential AF-related genes, which explained more 

than half of AF heritability, much higher than genes identified by GWAS alone. Many of the 
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identified genes were involved in the development of cardiac muscle structure, which might 

be one mechanism in AF pathogenesis. One example is PLN, which encodes a major 

substrate for the cAMP-dependent protein kinase in cardiac muscle. The gene was 

previously suggested to be involved in the AF pathogenesis40 and was identified as an AF-

related gene by the multi-omics integration analysis, but it was not among the top genes 

identified by GWAS, EWAS, or TWAS individually.

We observed that the combination of tissue-specific gene interaction networks with multi-

omics data significantly improved the power to identify AF-related genes. The most relevant 

tissue for AF is the left atrium. However, it is impractical to collect heart tissue in 

community-based observational cohorts. We thus used gene expression and DNA 

methylation measured from whole blood for both the EWAS and TWAS. The multi-omics 

integration results were then combined with gene interaction networks built from different 

tissues to understand their tissue-specific interactions. On the other hand, it is crucial to 

choose the relevant tissue type to build gene interaction networks. Otherwise limited or even 

no improvement of statistical power could be achieved.

For multi-omics data with a reference gene set, we recommend searching the optimum 

weights based on the maximum C-statistics with the reference gene set, as we did in the 

current study. However, if such a reference gene set is unavailable, we recommend using the 

square root of the sample size for each omics data set as the weights. Whereas it might not 

be the optimum weights for the data integration, it would still reach a reasonable accuracy 

from our experience (C-statistics 0.800 vs. the best C-statistics 0.813).

Our current EWAS results were derived only from samples collected in FHS. With a 

reference covariance matrix between CpG sites, our method potentially could be extended to 

use summary statistics from multiple cohorts by jointly testing CpG sites in each gene 

region. As data sharing is becoming a standard practice required by peer-reviewed journals 

and funding agencies,41,42 we anticipate more summary statistics of methylation data will be 

available in the future. One caveat is that whereas genetic variations largely remain 

unchanged over the lifetime, methylation levels could change over time with different 

environmental factors. Therefore, multiple representative covariance matrices might be 

needed to incorporate methylation data from diverse ethnicities or health conditions.

In collapsing CpG-level associations into gene-level associations, we included all CpG sites 

within the gene regions. CpG sites in promoter regions have traditionally been considered to 

be more important, but recent studies also showed that CpG sites within gene bodies other 

than promoter regions could be also functional.11, 43 Moderate correlation between two 

approaches was observed (r = 0.65, Online Figure VII). The inclusion of irrelevant CpG sites 

for the association analysis could dilute the true signals, which, however, might be rescued 

after integrating other omics data.

We have previously performed GWAS meta-analysis of AF in multiple stages, each stage 

adding additional cohorts. Therefore, almost all the samples in the 2017 GWAS were 

included in 2018 GWAS.
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This way, we were able to demonstrate how the increase in sample size would enhance the 

identification of new AF-related genes. We found that 141 genes identified by the multi-

omics approach with 2017 GWAS were also identified by the 2018 GWAS (Online Table 

III). On the other hand, our current study also indicated that the integration of multi-omics 

data would help identify additional AF-related genes (Online Table V). The underlying 

assumption is that multiple biological pathways are involved in AF’s pathogenesis, which 

could be interrogated by different omics technologies. However, further statistical 

simulations would be needed to thoroughly investigate the increased statistical power with 

multi-omics data under different scenarios. In addition, we used the summary statistics of 

association results instead of individual-level genetic data. Therefore, proper adjustments for 

relatedness could be done before the integration analysis. As demonstrated by previous 

studies,9,45,46 the integration of multi-omics data is expected to capture additional 

information that cannot be captured by GWAS of smaller sample size. Both ways (increasing 

sample size and multi-omics integration) increase statistical power and lead to new findings 

for GWAS.

Our method has several advantages. Our method does not rely on permutation for 

collapsing44 and thus is time efficient especially for genes with many variants. Second, we 

did not filter genetic variants, which would keep all potentially important genetic variants for 

the analysis. Moreover, we included tissue-specific network interactions that are important to 

understand potential biological mechanisms within the most relevant tissues.

We acknowledge several limitations of this study. We did not consider the complex 

interactions between omics data. For example, DNA methylation is one of most common 

epigenetic mechanisms that regulate gene expression. Similarly, genetic variations could 

affect both gene expression and DNA methylation. Therefore, gene-based tests of GWAS, 

EWAS and TWAS could be correlated and varied across different genes. Ignoring such 

correlations may introduce biased variance estimation for the meta-analysis. Second, the 

effects of multiple genetic variants and CpG sites were collapsed into gene-level associations 

solely based on their proximity to genes, which limited our capability to study the 

heterogeneity effects. Some regulatory variants could exert their effects far from their 

genomic locations that cannot be captured by our method. Another limitation is the TWAS 

and EWAS data were limited to a single cohort and without replication, which might result 

in both false positive and false negative findings. It is worth noting that TWAS and EWAS 

had overlapping samples from the Offspring cohort of the Framingham Heart Study. 

However, only weak correlation was observed between TWAS and EWAS (Online Table I), 

suggesting that two datasets interrogate different stages of biological pathways with 

marginal effect caused by overlapping samples. In addition, the TWAS and EWAS data were 

both based on microarray platforms, which have limited transcriptome/epigenome coverage 

and dynamic ranges. With more samples profiled by RNA-sequencing or bisulfite 

sequencing with AF status information, we could potentially identify additional new AF-

related genes than the microarray data. Most of multi-tissue studies (such as GTEx) do not 

have AF information in their samples. We therefore used whole blood as a proxy of heart to 

investigate the association of gene expression and DNA methylation with AF. Similar 

strategies were previously taken to study the association of gene expression and DNA 

methylation with heart failure,47 myocardial infarction,48 or coronary artery disease.49,50 
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Most of our study samples were from participants of European ancestry. Therefore our 

findings may not be generalizable to samples from other ethnicity groups. It is essential to 

note that the current approach is hypothesis-generating; computational approaches alone 

cannot establish causal relations. There is still a long way to translate AF-related genes into 

clinical practice. Whereas nearly ~2,000 genes were identified as potential AF-related genes, 

further experimental validation is necessary to understand how these genes interact with 

each other and affect AF susceptibility.

In conclusion, we developed an analysis strategy to integrate multi-omics data to study AF 

and identified additional AF-related genes. Our integrative approach could be further 

extended to the study of other complex diseases with multi-omics data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GWAS Genome-wide association analysis
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MTAG multi-trait analysis of GWAS

TWAS Transcriptome-wide association study
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EWAS Epigenome-wide association study

FHS Framingham Heart Study

FastBAT Fast set-based association analysis

SKAT SNP-set Kernel Association Test

NetWAS Network-wide association study

FDR False discovery rate

LD Linkage disequilibrium

UKBB United Kingdom Biobank
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Genome-wide association studies (GWAS) have identified more than one 

hundred genetic loci associated with atrial fibrillation (AF). However, those 

loci could explain a small proportion of AF heritability.

• Epigenome-wide association studies (EWAS) and transcriptome-wide 

association studies (TWAS) have identified multiple additional genes 

associated with AF.

What New Information Does This Article Contribute?

• We developed a computational strategy to integrate summary statistics from 

GWAS, EWAS, and TWAS of AF.

• The integrative omics strategy showed improved power of identifying AF-

related genes than using GWAS alone.

• A much larger proportion of AF heritability could be explained by AF-related 

genes identified by the integrative omics analysis

We developed an approach to integrate summary statistics from GWAS, EWAS and 

TWAS of AF. The results were incorporated with tissue-specific gene interaction 

networks to further prioritize AF-related genes. A much larger proportion of AF 

heritability could be explained by AF-related genes identified by the integrative omics 

analysis. Many of AF-related genes might be involved in the development of cardiac 

muscle structure. Our integrative approach might be applicable to the study of other 

complex diseases using multi-omics data.
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Figure 1. 
Analysis flowchart of multi-omics data integration. “n” is the number of AF cases/referents. 

“AFGen” is the Atrial Fibrillation Genetics Consortium.
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Figure 2. 
Gene-based association results of GWAS (A), EWAS (B), and TWAS (C) of AF. “n” is the 

number of AF cases/referents. Y-axis is the -log10 (P) of gene-based association analysis. 

The shared gene set was included in the analysis and grey lines represent the Bonferroni 

significance cutoff after adjusting for multiple testing.
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Figure 3. 
C-statistics for multi-omics integration approach across different weighting schemes. The 

stacked bar chart at the bottom represents different weight compositions for 2017 GWAS, 

EWAS, and TWAS. w_g is the relative weight of GWAS in the multi-omics integration, 

where w_g=1.00 represents that only GWAS was included in the multi-omics integration, 

whereas w_g=0.333 represents all three omics have the same weight. The lines above 

indicate the C-statistics with 95% confidence intervals, corresponding to different NetWAS 

significance thresholds and tissues.
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Figure 4. 
Expression of AF-related genes and non-AF-related genes in left atria (left) and right atrial 

appendage (right). Each grey dot represents the expression level for each gene. Kolmogorov-

Smirnov test on independent genes in each set (Spearman’s r2< 0.25) showed that AF-

related genes tended to have higher expression than non-AF-related genes in both tissues 

(P<2.2×10−16).
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Figure 5. 
Tissue specific expression enrichment of AF-related genes. The 53 tissues in GTEx were 

grouped into 25 broad tissue types. Red dots represent the enrichment significance of 1,931 

multi-omics AF-related genes in each tissue, whereas grey dots represent the enrichment 

significance of 1,000 randomly selected gene sets with the equal number of genes as AF-

related genes. The blue line indicates the top 5% enrichment significant gene sets among 

1,000 random gene sets. The yellow dashed line indicates the nominal significance level of 

0.05. The red dashed line indicates the significance level after Bonferroni correction, 

P=0.05/25=0.002.
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Table 1.

Top 10 Gene Ontology biological processes enriched with AF-related genes identified by the multi-omics 

integration analysis.

Gene set Description Total genes Observed genes P value FDR

GO:0060537 Muscle tissue development 371 94 3.0×10−17 5.7×10−14

GO:0014706 Striated muscle tissue development 357 92 3.7×10−17 7.1×10−14

GO:0048738 Cardiac muscle tissue development 200 63 9.0×10−17 1.7×10−13

GO:0010628 Positive regulation of gene expression 1911 302 2.2×10−16 5.0×10−13

GO:0071495 Cellular response to endogenous stimulus 1347 226 4.9×10−15 8.9×10−12

GO:0009719 Response to endogenous stimulus 1595 257 7.1×10−15 1.1×10−11

GO:0045893 Positive regulation of transcription, DNA-templated 1499 244 1.2×10−14 1.6×10−11

GO:0051240 Positive regulation of multicellular organismal process 1661 261 8.6×10−14 9.8×10−11

GO:0061061 Muscle structure development 610 122 1.2×10−13 1.3×10−10

GO:1903508 Positive regulation of nucleic acid-templated transcription 1583 250 1.8×10−13 1.5×10−10
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Table 2.

Top 10 KEGG biological pathways enriched with AF-related genes identified by the multi-omics integration 

analysis.

Gene set Description Total genes Observed genes P value FDR

hsa04261 Adrenergic signaling in cardiomyocytes 144 38 4.3×10−7 1.4×10−4

hsa04022 cGMP-PKG signaling pathway 163 37 2.7×10−5 3.0×10−3

hsa04933 AGE-RAGE signaling pathway in diabetic complications 99 26 3.1×10−5 3.0×10−3

hsa04010 MAPK signaling pathway 295 57 3.7×10−5 3.0×10−3

hsa04934 Cushing syndrome 154 34 1.0×10−4 6.6×10−3

hsa04152 AMPK signaling pathway 120 28 1.5×10−4 8.3×10−3

hsa01522 Endocrine resistance 98 24 2.0×10−4 9.1×10−3

hsa04917 Prolactin signaling pathway 70 19 2.2×10−4 9.1×10−3

hsa04728 Dopaminergic synapse 131 29 3.1×10−4 1.0×10−2

hsa05206 MicroRNAs in cancer 150 32 3.1×10−4 1.0×10−2

Abbreviation: KEGG: Kyoto Encyclopedia of Genes and Genomes
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