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Abstract

Cerebral Blood Flow Velocity waveforms acquired via Transcranial Doppler (TCD) can pro-

vide evidence for cerebrovascular occlusion and stenosis. Thrombolysis in Brain Ischemia

(TIBI) flow grades are widely used for this purpose, but require subjective assessment by

expert evaluators to be reliable. In this work we seek to determine whether TCD morphology

can be objectively assessed using an unsupervised machine learning approach to waveform

categorization. TCD beat waveforms were recorded at multiple depths from the Middle Cere-

bral Arteries of 106 subjects; 33 with Large Vessel Occlusion (LVO). From each waveform,

three morphological features were extracted, quantifying onset of maximal velocity, systolic

canopy length, and the number/prominence of peaks/troughs. Spectral clustering identified

groups implicit in the resultant three-dimensional feature space, with gap statistic criteria

establishing the optimal cluster number. We found that gap statistic disparity was maximized

at four clusters, referred to as flow types I, II, III, and IV. Types I and II were primarily com-

posed of control subject waveforms, whereas types III and IV derived mainly from LVO

patients. Cluster morphologies for types I and IV aligned clearly with Normal and Blunted TIBI

flows, respectively. Types II and III represented commonly observed flow-types not delineated

by TIBI, which nonetheless deviate from normal and blunted flows. We conclude that impor-

tant morphological variability exists beyond that currently quantified by TIBI in populations

experiencing or at-risk for acute ischemic stroke, and posit that the observed flow-types pro-

vide the foundation for objective methods of real-time automated flow type classification.

2. Introduction

Transcranial Doppler ultrasound (TCD) is a noninvasive methodology for measuring Cerebral

Blood Flow Velocity (CBFV) through the large arteries of the brain [1–4]. The pulsatile CBFV

waveform can provide information concerning numerous cerebrovascular pathologies [5–8],

including stroke [9–13], intracranial hypertension [14–17], sickle cell disease [18–20], and

mild Traumatic Brain Injury [21–23]. In the context of acute ischemic stroke, the leading
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cause of long-term disability in the United States [24], TCD is commonly used to detect

occluded and stenosed cerebral arteries [25–30]. When blood flow in these arteries is occluded,

impaired oxygen supply can cause rapid brain tissue death, and permanent neurological

dysfunction [31–33]. In particular, Large Vessel Occlusions (LVO) involving partial or total

blockage of the Middle Cerebral and/or Internal Carotid Arteries (MCA/ICA) have dispropor-

tionately high morbidity and mortality due to the large volume of brain tissue which these ves-

sels supply [34–36]. Because TCD provides specific information about the status of flow

through the cerebral vasculature, TCD examinations are routinely conducted as standard of

care at many comprehensive stroke centers [37,38].

Numerous methodologies for evaluating stroke with TCD have been published. Occlusion

can often be determined by straightforward comparison of mean blood flow velocities across

multiple vessels in both cerebral hemispheres [12,39–41]. However, as discussed further in

subsequent paragraphs, it can also be determined by evaluating specific aspects of waveform

morphology [25–30]. The morphology of the TCD signal is that of a pulsatile waveform with

dominant period dictated by heart rate. Typically, each cycle consists of an initial systolic

upstroke, followed by three consecutive peaks (referred to as P1, P2, and P3, respectively)

which correspond to specific events in the cardiac cycle, and subsequent return to diastolic

minimum [42–44]. Absence or distortion of these features may indicate flow irregularities

associated with various cerebral hemodynamic pathologies such as LVO. Indeed, a growing

number of studies have demonstrated changes in the timing and amplitude of waveform peaks

associated with medical conditions ranging from intracranial hypertension [43,45,46] to vari-

ous age-related changes and pharmacological interventions [47,48].

The most widely-cited method for assessing stroke with TCD is the evaluation of waveform

morphology using Thrombolysis in Brain Ischemia (TIBI) flow grades [25,27]. In this frame-

work, waveform features such as the presence of identifiable pulses/peaks and the onset of

maximum velocity are used to determine grade assignment [26,28–30]. The TIBI categories

range from grades 0–5, with 5 indicating normal flow, and grades 0 and 1 designating absent

(0) or minimal (1) flow associated with complete or partial vascular occlusion. The grades

between are associated with characteristic morphologies which are used to determine blunting

(grade 2), dampening (grade 3), or stenotic (grade 4) flows. Several foundational studies have

shown TIBI assessment to be a valuable tool for LVO diagnosis, possessing sensitivity and

specificity often exceeding 90% [5,25,30] relative to gold standard Computed Tomography

Angiography (CTA). However, reliable determination of TIBI grades requires subjective

assessment by expert evaluators, severely limiting their utility for prehospital stroke assessment

by less specialized personnel.

The complexity and subjectivity inherent in the assignment of TIBI categories, along with

their demonstrable utility for stroke assessment, make them a natural candidate problem for

automation via machine learning. That is, the clinical relevance of the morphological informa-

tion captured by subjective TIBI grading heuristics has now been clearly established, but an

objective and computationally tractable framework for extracting this information does not

currently exist. Though the traditional TCD Pulsatility Index constitutes an objective metric

which describes waveform morphology to some degree, the information it contains is too

coarse to effectively detect the presence of occluded or stenosed vessels [28,49]. Moreover,

machine learning approaches to extracting information from TCD waveforms have already

proven fruitful for multiple clinical applications [50–56], including the diagnosis of cerebro-

vascular stenosis [57]. In particular, recent work by our group has shown that a TCD-derived

morphological biomarker termed Velocity Curvature Index (VCI) may provide a robust,

objectively computable metric for detecting Large Vessel Occlusion (LVO) [54,58]. Though

VCI readily identifies waveforms with pathologically deviant curvature, it does not
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differentiate between pathological morphologies such as those delineated by the TIBI scale. An

objective means of waveform categorization could thus provide additional information con-

cerning stroke etiology to better inform stroke triage and transfer decisions.

Before approaching waveform categorization explicitly as a classification problem, a more

foundational issue must first be addressed, in that it is currently unclear to what degree the

TIBI categories actually capture the natural variance inherent in empirical data. That is, we

know these categories are useful, but we do not know that they are comprehensive. Additional

waveforms may be present which are also informative, and perhaps a different subset may bet-

ter explain variability across subjects. In this work we take a data-driven approach to waveform

categorization, retrospectively applying an unsupervised learning algorithm to a dataset com-

prised of multiple subject groups, including patients experiencing acute LVO, as well as con-

trol subjects collected both in and out of hospital. For these purposes we employ spectral

clustering, which does not make strong assumptions about inherent cluster density, and thus

performs well when clusters are connected but potentially non-convex [59–61]. Combined

with gap statistic criterion for choosing the optimal cluster number [62], this approach yields a

natural partitioning of waveforms into groups with distinct morphological characteristics.

For clustering, we sought to include information of clinical relevance to the presence of

LVO, thus we chose morphological features which quantify important aspects of TIBI evalua-

tion criteria (see section 3.3 for details). The onset feature encodes information concerning

where in the cardiac cycle the maximal velocity is attained, which can be important in distin-

guishing blunted waveforms (TIBI grade 2) from healthy (TIBI grade 5) [25]. This feature is a

time-normalized version of the “latency to P1” variable used in previous studies of TCD mor-

phology [45,46]. Likewise, the canopy feature provides information about the size of the sys-

tolic complex, which is helpful for distinguishing both blunted and stenotic waveforms from

healthy. This feature is similar to the “fractional time in systole” used to evaluate waveform

morphology in [43]. Finally, the number and prominence of observed peaks/troughs (quanti-

fied by our peaks feature) are also critical in distinguishing blunted and stenotic waveforms

from healthy. We hypothesize that LVO subject waveforms will fall into clusters which are

mostly distinct from non-LVO controls, for which we can subsequently compare alignment

with established TIBI categories.

3. Materials and methods

3.1. Subjects

We compared TCD waveform morphology across three subject groups: one with CTA-con-

firmed LVO, a second non-LVO control group collected in-hospital, and a third group of con-

trol subjects collected out of hospital. LVO and in-hospital controls (IHC) were enrolled at

Erlanger Southeast Regional Stroke Center in Chattanooga, TN, between October 2016 and

October 2017. As detailed in [54,58], subjects who arrived at the hospital presenting with

stroke symptoms received TCD examinations along with standard care, pharmaceuticals and

CT imaging. CTA was performed using a GE Lightspeed VCT 64-section multidetector scan-

ner (GE Healthcare, Milwaukee, WI) with a slice thickness of 0.625 mm, and bolus injection of

70–150 mL of Omnipaque 350 (GE Healthcare, Milwaukee, WI) contrast material (4.0 mL/s).

CTA images were reformatted in the coronal and sagittal plane, and 10-mm maximum inten-

sity projection reconstructions were rendered for review. Occlusion location was determined

by the radiologist on call, and reviewed/confirmed independently by the authors. TCD exami-

nations were performed during available time between patient testing/treatment, and in no

way impacted patient care. Subjects for whom an acceptable exam was obtained within 4

hours of imaging, and to whom no Table 1 (left column) exclusion criteria applied, were
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eligible for enrollment in either the LVO group (if CTA confirmed occlusion of the proximal

extracranial or terminal intracranial ICA segments, or M1/M2 branches of the MCA), or the

IHC group (if no LVO were detected). Out of hospital controls (OHC) were scanned at multi-

ple locations in Los Angeles, CA, and did not undergo CTA examination. Volunteers were eli-

gible for enrollment if between 40–85 years of age, and all Table 1 (right column) exclusion

criteria were absent. Experiment protocols for LVO and IHC subjects were approved by the

University of Tennessee College of Medicine Institutional Review Board (ID: 16–097), and for

OHC subjects by Western Institutional Review Board (ID: 20151682). The study was carried

out in accordance with the recommendations of the Declaration of Helsinki, with written

informed consent from all subjects.

3.2. TCD waveform recording & processing

CBFV signals were acquired by trained technicians using 2 MHz handheld probes in conjunc-

tion with either DWL Doppler Box-X (DWL Inc., USA), or Lucid M1 TCD System (Neural

Analytics Inc., USA), to transtemporally insonate the left/right MCA. The technician was

instructed to obtain recordings for as many depths as possible between 45–60 mm in both the

left/right cerebral hemispheres, with the depth range enforced to help ensure errant recordings

of other vessels (e.g. ACA/PCA or M2) were not included in the analysis. Once signal was

identified and optimized at a specific depth, waveform recordings were made in 30-second

intervals. The choice of 30 seconds was intended to guarantee the acquisition of a sufficiently

large ensemble of at least 15 individual beat waveforms from which to compute an average

beat waveform for analysis. The choice of 15 individual beats is a free parameter chosen to

optimize the trade off between the size of the acquired ensemble and the technician’s available

time and ability to maintain continuous steady contact between the probe and the subject’s

head.

To construct the average waveform for each recorded depth, individual beat waveforms

from each recording were extracted offline (post-recording) using an automated beat identifi-

cation algorithm [63] to identify the samples marking the onset of each beat (and thus the end

Table 1. Subject exclusion criteria.

Exclusion Criteria

LVO, IHC subjects OHC subjects

1. Head CT findings consistent with acute primary

intracranial hemorrhage (SAH, ICH, etc.).

1. Individuals taking any psychoactive medication.

2. Hemodynamically unstable patients requiring

pharmacological support for hypotension.

2. Systolic arterial blood pressure greater than 140 mmHg

(Hypertensive).

3. Subjects who underwent partial or full craniotomy. 3. Individuals presenting with an external wound in head.

4. Additional intracranial pathologies present

(tumor, hydrocephalus, etc.).

4. Pregnant women.

5. Anticipated insufficient time to acquire a complete

set of scan as described by the protocol.

5. Individuals who have a known history of: severe TBI,

moderate TBI (within previous 3 years), vascular disease,

stroke, sickle cell anemia, brain tumor, epidural or subdural

hematoma, abnormal MRI or CT scan of the brain,

cardiovascular disease.

6. Significant hemodynamic pharmacological agent

(cocaine, amphetamine, etc.).

7. Subjects who are under arrest for a felony.

Subject exclusion criteria. Note the following abbreviations: SAH–Subarachnoid Hemorrhage, ICH–Intracranial

Hemorrhage, TBI–Traumatic Brain Injury, MRI–Magnetic Resonance Imaging, CT–Computerized Tomography.

https://doi.org/10.1371/journal.pone.0228642.t001
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of the previous beat). Outlier beats with excessive artifact and/or poor signal quality were auto-

matically identified and rejected via Iterated Interquartile Range exclusion with cross-correla-

tion and beat length as primary comparators [64]. To be included in this analysis, exams were

required to contain at least one bilateral pair of left/right MCA scans at depths between 45–60

mm, each containing at least 15 accepted beats. To obtain a rectangular ensemble array for

averaging, the accepted beats were aligned at the onset of systolic upstroke and individually

padded with each beat’s final value to the length of the longest beat. The resulting ensemble

array was averaged across beats, resulting in a single representative average beat waveform for

each recorded 30 second interval. It is very important to note that waveforms were only aver-

aged over beats obtained from individual depth recordings (i.e. consecutive beats recorded in

a single contiguous 30 second interval), and were not averaged across different recordings or

across the left/right hemispheres. OHC waveforms, digitally sampled at 400 Hz, were resam-

pled to 125 Hz to match the native sampling rate of LVO and IHC waveforms. To reduce the

potential effects of artifactual noise in the individual beats of higher frequency than the rele-

vant hemodynamics (roughly 10 Hz), all waveforms were smoothed via convolution with a 90

ms Hanning window. Since this analysis sought to evaluate morphological commonality

regardless of underlying heart rate or velocity scale, each waveform was normalized with

respect to both time and velocity. These normalizations help ensure that waveforms with gen-

erally similar shapes, but potentially different heart rates or velocity ranges will still likely be

clustered together. The velocity normalization was accomplished for each waveform by first

subtracting the minimum, then subsequently dividing by the resultant maximum, thus rescal-

ing to the interval [0, 1] along the velocity axis. The temporal normalization was accomplished

by resampling each waveform to 100 total samples (via cubic spline), effectively enforcing a

common heart rate across waveforms.

3.3. Cluster feature extraction

For clustering, we sought to construct a feature space of minimal dimension which would

nonetheless capture enough stroke related morphological variance to produce a meaningful

clustering partition for comparison to TIBI. Clearly, there are a vast number of morphological

variables which might be used for this purpose. For example, the Morphological Clustering

Analysis of Intracranial Pressure Pulses (MOCAIP) algorithm [65] defines 128 morphological

features which can be extracted from TCD and pressure wave pulses [45]. However, most of

these assume that the standard peaks/troughs associated with healthy waveforms are present

and identifiable. For pathological waveforms such as those associated with LVO, this assump-

tion is rarely met. As noted in Section 1, our strategy was to start with the features we deemed

most relevant to flow grade assignment using the TIBI criterion. These features must also be

readily computable for all pulsatile TCD waveforms, regardless of the presence of stroke

pathology. The three features decided upon for this analysis meet these criteria, but admittedly

represent a first approach to the problem which could be expanded or refined in future work.

From each waveform, denoted x(t) in Eqs 1–3, we extracted each of the three morphological

features (depicted in Fig 1). The first, termed onset (Eq 1), marked the temporal onset of maxi-

mal velocity. The second feature, termed canopy (Eq 2), was defined as the number of samples

comprising the systolic complex, i.e. the “beat canopy”, given by the cardinality of the set of

samples with velocity greater than 25% of the diastolic-systolic range (see [58] for details). The

final feature, termed peaks (Eq 3), quantified the number and “weight” of waveform peaks/

troughs. First we identified the set of true-peaks/troughs (TP, approximate zeros of the first

derivative) as points in the canopy corresponding to a sign-change in the difference between

successive samples. True peaks were each assigned a weight of one. Next we identified the set
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of “pseudo-peaks/troughs” (PP, points where the derivative is small but non-vanishing) where

the difference magnitude between successive samples dropped below a chosen critical thresh-

old of 0.01 (choosing the point with smallest difference magnitude in any group of adjacent

sub-threshold samples). For pseudo-peaks we assigned weights corresponding to one minus

the ratio of the associated difference magnitude to the threshold (0.01), such that those with

the smallest derivative were weighted most heavily. The peaks feature was then computed as

the sum over all corresponding weights. The onset, canopy, and peaks features for each wave-

form are defined explicitly by Eqs 1–3, respectively. Note that the “card” expression in Eqs 2

and 3 refers to the cardinality of a set, and the colons in Eqs 1 and 2 denote the set- theoretic

notion of “having the property such that”. In Eq 2, tsystolic and tdiastolic refer to the time samples

at which the waveform attains its systolic maximum and diastolic minimum, respectively.

onset ¼ n : xðtnÞ ¼ max
i2f1;2;:::100g

fxðtiÞg ð1Þ

canopy ¼ cardðfi : xðtiÞ > xðt0Þ þ 0:25ðxðtsystolicÞ � xðtdiastolicÞÞgÞ ð2Þ

peaks ¼ card TPð Þ þ
P

k2PP1 �
jxðtkÞ � xðtk� 1Þj

0:01
ð3Þ

With regard to specification of the threshold 0.01 in Eq 3, the idea is to allow for adequate

consideration of “pseudo peaks/troughs” for which the derivative gets very small, but doesn’t

quite vanish, and weight them towards the total peaks count. Our experience with the data has

shown that there are indeed numerous cases for which this threshold adds meaningful vari-

ance to the peaks feature distribution. For example, each waveform depicted in Fig 1 possesses

Fig 1. Cluster features. Cluster features are depicted for three example waveforms taken from each of the subject groups; OHC (A), IHC (B), and LVO (C). All

waveforms were normalized in both time and velocity, so as to span 100 total samples ranging from zero to one on the y-axis. The onset variable (vertical line)

marks the time sample where maximum velocity is attained. The canopy variable (horizontal line) marks the length (in samples) of the systolic canopy. The

peaks variable is a weighted sum of waveform peaks, both true (indicated by circles) and pseudo (triangles).

https://doi.org/10.1371/journal.pone.0228642.g001
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a pseudo-peak, occurring at roughly the location expected for either the P2 (Fig 1A), or P3 (Fig

1B and 1C); we refer the reader to the introduction for background on the peak structures (P1,

P2, and P3) typically observed sequentially in standard TCD beat morphology. If these were

idealized waveforms with true peaks and corresponding true troughs at these locations, the

combined structures would count two units toward the peaks value. Without consideration of

pseudo-peaks, these structures would contribute zero units towards the total, which we believe

to be less descriptive and ultimately less meaningful, whereas the specification we have made

allows them an intermediate contribution of 0.9, 0.9, and 0.8 for 1A, B, C, respectively. The

smaller this threshold is chosen, the closer the peaks feature comes to approximating the dis-

crete count of the true peaks, TP, for which the derivative does vanish.

3.4. Spectral clustering and gap analysis

In order to standardize the ranges of the resultant feature distributions for clustering, z-score

normalization (not to be confused with the z-transform used in signal processing) was applied

across observations [66,67]. That is, the feature distributions were rescaled by subtracting from

each feature value the mean taken across all observations, and subsequently dividing by the

standard deviation across observations. The resultant three-dimensional feature space was

then partitioned via spectral clustering implemented in scikit-learn, an open-source machine

learning library for Python [68], specifically the SpectralClustering module with default param-

eters and radial basis kernel. To determine the optimal number of clusters, we employed the

gap statistic methodology of Tibshirani et al. [62], which is widely used for cluster number

selection [69,70]. Conceptually, the gap statistic was designed to formalize the statistical notion

of finding the “elbow” in the graph of cluster dissimilarity as a function of cluster number

within a widely applicable nonparametric framework; the critical underlying idea being that

consideration of additional clusters beyond the optimal number should yield diminishing

returns in terms of minimizing cluster dispersion (i.e. the sum across clusters of pair-wise dis-

tances between members of each cluster). For our analysis, we compared gap statistics (Gk) for

total clusters (k) ranging from two to seven. In this procedure, gap statistics are computed as

the difference between observed log intra-cluster dispersion pooled across k clusters (denoted

Wk), and the analogous expected dispersion bootstrapped from a null distribution incorporat-

ing the covariance structure of the observed data. As detailed in method b (section 4) of [62],

each of the 1000 bootstrap iterations was generated by sampling uniformly over the range of

the columns of the observed data transformed by its right-singular vectors, and back-trans-

forming the resultant sample to feature space via the right-singular transpose. The optimal

number of clusters were selected as the smallest k such that Gk> Gk+1 –Sk+1, where Sk is the

standard deviation of the k-cluster bootstrap distribution corrected to account for simulation

error.

3.5. Cluster archetypes

To visualize the characteristic morphology of the resultant clusters, we first computed for each

cluster the matrix of squared Euclidean distances between all cluster member waveforms (i.e.

the entities denoted as dii in [62]), and ranked each by average distance to other members. For

each cluster, the individual waveform with the smallest mean intra-cluster distance was desig-

nated as the most representative exemplar. To further visualize commonalities in cluster mor-

phology independent of an individual exemplar, the five waveforms with smallest mean intra-

cluster distance were averaged together to obtain the waveform archetype for each cluster.
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4. Results

4.1. Subject demographics

The current analyses included 33 LVO subjects (16 female), 33 IHC subjects (13 female), and

40 OHC subjects (25 female), with average ages of 66.9 (SD = 15.7), 56.4 (SD = 16.3), and 58.4

(SD = 10.9) years, respectively. A total of 996 average beat waveforms were included in this

analysis, with 354, 445, and 196 contributed by LVO, IHC, and OHC subjects, respectively,

resulting in a clustering feature space of dimension 996 x 3.

4.2. Gap analysis & cluster archetypes

Fig 2A shows expected and observed log intra-cluster dispersion as a function of total clusters,

with the gap statistic determined by their difference. The elbow in observed dispersion at four

clusters corresponds to both the maximum gap statistic (Fig 2B) and optimal number of clus-

ters determined by the Tibshirani et al. criteria [19]. The associated feature space (Fig 3A) is

shown partitioned into the four resultant clusters, with membership indicated by color, and

associated cluster archetypes shown in Fig 3B–3E. The largest cluster (type I), containing 400

waveforms, was characterized by early max velocity onset with wide canopy and strong peaks

(Fig 3B). Of waveforms in this cluster, 18% came from LVO subjects, with 82% from controls

(52% IHC, 30% OHC). The second largest cluster (type II), containing 257 waveforms, was

characterized by later max velocity onset, with wide canopy and strong peaks (Fig 3C). Of

waveforms in this cluster, 20% came from LVO subjects versus 80% from controls (68% IHC,

12% OHC). The smallest cluster (type III), containing 83 waveforms, was characterized by

early max velocity onset, with narrow canopy and weak peaks (Fig 3D). Of waveforms in this

Fig 2. Cluster dispersion and gap statistic. Pooled Intra-cluster dispersion (A), and associated Gap Statistics (B) as a function of cluster number. Gap-statistic disparity

was maximized at four clusters which also corresponded to the optimal number given by the selection criteria in Tibshirani et al. [19].

https://doi.org/10.1371/journal.pone.0228642.g002
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Fig 3. Cluster feature space. Three-dimensional feature space is shown in Z-scored coordinates with the optimal four clusters indicated by color. Associated cluster

morphologies are shown for each beat type (B-E), with each cluster archetype shown in color, and the range of the next 50 most representative exemplars depicted in

gray. Associated histograms in the upper right (B-E) demonstrate that Type I and II clusters were primarily composed of waveforms from control patient populations,

whereas Type III and IV clusters were primarily composed of LVO patient waveforms.

https://doi.org/10.1371/journal.pone.0228642.g003
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cluster, 95% came from LVO subjects versus 5% from controls (1% IHC, 4% OHC). The final

cluster (type IV), containing 256 waveforms, was characterized by late max velocity onset, with

wide canopy but weak peaks (Fig 3E). Of waveforms in this cluster, 60% came from LVO sub-

jects versus 40% from controls (28% IHC, 12% OHC).

5. Discussion

5.1. Comparison to TIBI flow grades

Of the clusters we observed, two have definitive analogues on the TIBI scale. Specifically, our

type I cluster showed the early systolic maximum and recognizable peak structure associated

with TIBI grade 5 normal flow. Similarly, our type IV cluster exhibited the delayed flow accel-

eration with no discernible early peak, and maximum velocity in mid-to-late systole, charac-

teristic of TIBI grade 2 blunted flow; features which can also be clearly observed in the most

representative cluster waveforms, shown unnormalized in Fig 4. Accordingly, we observed

type I flows more often in control subjects, whereas type IV flows were more commonly asso-

ciated with LVO. The remaining clusters did not have unambiguous TIBI analogues, though

their contrasting subject group compositions suggest type II is more commonly observed in

controls, and type III nearly always associated with LVO. The type II cluster, characterized by

late onset maximal velocity but otherwise normal peaks, may reflect differences in peripheral

vascular resistance relative to type I, which could conceivably impact either or both the initial

systolic upstroke and/or the timing of reflected waves affecting the amplitude of the mid-sys-

tolic peak.

Interpretation of the pathological type III morphology represents the most speculative

aspect of this work. We infer from its strong association with LVO subjects that it likely results

from occlusion or stenosis of the cerebral vessels, though in a manner distinct from typically

blunted waveforms, leaving the initial systolic acceleration unaffected while suppressing all

subsequent morphological structure. These features can be seen clearly in both the associated

cluster archetype (Fig 3D), as well as the most representative cluster exemplar (Fig 4C). This

pattern is intriguingly similar to previously observed waveforms associated with vascular ste-

nosis (see, for example, Fig 4 in [71]), suggesting this flow type may rightly be thought of as the

Fig 4. Example waveforms. The individual example waveforms most representative of each cluster are shown in standard units

(unnormalized), with variability across individual beats depicted in light gray. The Types I and II examples (A and B) originated from the

OHC and IHC groups, respectively, whereas the Types III and IV examples (C and D) originated from LVO, and IHC subjects,

respectively.

https://doi.org/10.1371/journal.pone.0228642.g004
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analog of the TIBI stenotic grade 4. However, multiple reasons compel us to be cautious with

this claim. First, this flow type was by far the smallest cluster, which was manifest in only a

small number of subjects. CTA case reports for most of these subjects did indicate significant,

but non flow-limiting stenoses. However, such moderate stenoses are not uncommon in the

LVO subject population in general. Moreover, the TIBI grade 4 categorical definition given by

Demchuk et al. [27] refers both to elevated velocity relative to the adjacent (unaffected) hemi-

sphere, as well as evidence for flow turbulence, which were not quantified as part of this analy-

sis and thus require further work to assess. Finally, previous studies have shown that

qualitatively similar TCD morphologies can be associated with intracranial hypertension and/

or elevated cerebral perfusion pressure [43], which were not controlled for in this study. For

the time being we reserve judgment as to whether future studies incorporating richer spectral

data might confirm this flow type to have stenotic etiology.

5.2. Limitations and future work

Considering the remaining TIBI flow grades, the lowest are not associated with sufficiently

pulsatile CBFV waveforms, and thus could not be represented in our data set. Specifically, grade

zero is defined as the absence of flow, whereas grade 1 (minimal flow) is so weakly pulsatile as to

give rise to nearly flat waveforms when averaged over successive beats. In this study we required

subjects to exhibit bilateral pulsatile data to be included in analysis. This was done to ensure that

absence of temporal acoustic windows would not be mistaken for absence of MCA flow. How-

ever, future experimental protocols could be modified to require TCD examination of all cerebral

vessels in the anterior circulation. Evidence of flow in any of these vessels in a given hemisphere

without corresponding evidence of adjacent MCA flow would allow for confident assessment of

absent or minimal flow grades, likely bringing our current results further into alignment with the

TIBI scale. The remaining TIBI grade 3 flow (Dampened), is not solely morphologically defined,

requiring comparison of velocity magnitude relative to a control waveform for assignment, and

thus cannot clearly align with our clusters. Future work could explore whether our clustering

framework might be extended for application to sets of waveforms, including relative velocities as

features, which might help reconstruct these other TIBI categories.

From the 3-dimensional cluster space (Fig 3A) it is clear that adjacent cluster types II and

IV share a fuzzy boundary primarily determined by the peaks variable, suggesting the two can

be difficult to differentiate when systolic peaks are not clear. Indeed, the type IV cluster had

the least homogeneous group composition, with 40% of waveforms originating from control

subjects; a fact which would negatively impact specificity were we to use these clusters alone to

classify LVO. Underlining this point is the fact that the most representative exemplar for both

the type II and type IV waveforms originated from the IHC group. Clearly, further work is

needed to determine whether additional or refined clustering features, perhaps derived from

waveform spectrograms and associated M-mode, might help disambiguate these groups.

5.3. Conclusions

To our knowledge, this study presents the first unsupervised learning analysis of LVO pathol-

ogy evident in the TCD signal. We have shown that spectral clustering can readily recover

meaningful TCD flow types bearing clear relation to known morphological categories. More-

over, the resultant cluster archetypes provide definitive morphological templates, enabling

automated categorization of novel waveforms via numerous potential comparative methods,

the refinement of which should provide fruitful avenues for future work. Ultimately, we will

explore whether such automated labels can be combined with other established metrics, such

as VCI and velocity asymmetry, to improve LVO classification efficacy.
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