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Abstract

Purpose of Review—In utero influences, including nutrition and environmental chemicals, may 

induce long-term metabolic changes and increase diabetes risk in adulthood. This review evaluates 

the experimental and epidemiological evidence on the association of early-life arsenic exposure on 

diabetes and diabetes-related outcomes, as well as the influence of maternal nutritional status on 

arsenic-related metabolic effects.

Recent Findings—Five studies in rodents have evaluated the role of in utero arsenic exposure 

with diabetes in the offspring. In four of the studies, elevated post-natal fasting glucose was 

observed when comparing in utero arsenic exposure with no exposure. Rodent offspring exposed 

to arsenic in utero also showed elevated insulin resistance in the 4 studies evaluating it as well as 

microRNA changes related to glycemic control in 2 studies. Birth cohorts of arsenic-exposed 

pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that increased prenatal 

arsenic exposure is related to altered cord blood gene expression, microRNA, and DNA 

methylation profiles in diabetes-related pathways. Thus far, no epidemiologic studies have 

evaluated early-life arsenic exposure with diabetes risk. Supplementation trials have shown B 

vitamins can reduce blood arsenic levels in highly exposed, undernourished populations. Animal 

evidence supports that adequate B vitamin status can rescue early-life arsenic-induced diabetes 

risk, although human data is lacking.

Summary—Experimental animal studies and human evidence on the association of in utero 
arsenic exposure with alterations in gene expression pathways related to diabetes in newborns, 

support the potential role of early-life arsenic exposure in diabetes development, possibly through 

increased insulin resistance. Given pervasive arsenic exposure and the challenges to eliminate 

arsenic from the environment, research is needed to evaluate prevention interventions, including 

the possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related 

disease risk.
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Introduction

In utero exposures may induce long-term metabolic changes and increase diabetes risk in 

adulthood, as supported by the concept of Developmental Origins of Health and Disease.1-3 

Arsenic, a non-essential chemical element, found ubiquitously in the environment through 

both naturally occurring and commercial or industrial processes, is a major contaminant in 

water and food worldwide. Exposure to arsenic has been associated with the development of 

certain cancers, including lung, skin and bladder cancer, cardiovascular disease, skin lesions, 

diabetes and neurodevelopmental deficits.4-11 Prenatal arsenic exposure has been related to 

altered gene expression in diabetes pathways in newborns.12-16 In rodent models, prenatal 

arsenic induces diabetes in adult offspring.17-21 It is also known that maternal nutrition 

during pregnancy influences programming for adiposity and diabetes risk in adult life. For 

instance, an imbalance in B vitamins during pregnancy has been related to increased central 

adiposity and diabetes risk in several populations.22-25 In randomized clinical trials, folic 

acid supplementation increases arsenic methylation which facilitates its excretion through 

the urine and reduces blood arsenic levels26-28. Furthermore, folate sufficiency has been 

related to reduced arsenic-related toxicity26-28 The objective of this review is to evaluate the 

experimental and epidemiological evidence available on the association of early-life arsenic 

exposure with diabetes and diabetes-related outcomes, as well as the influence of maternal 

nutritional status on arsenic-related metabolic effects. An additional objective is to identify 

research gaps with a particular focus on informing the development of interventions to 

prevent and mitigate the long-term effects of early-life arsenic exposure.

Methods

This review summarizes epidemiologic and experimental evidence on the role of arsenic and 

diabetes with a focus on the evidence available for early-life exposure, and the potential 

modifying role of B vitamin nutritional status. We first review experimental studies on early-

life arsenic exposure and diabetes in the offspring. Second, we review evidence on arsenic 

and epigenetic programming in utero focusing on pathways that are particularly relevant for 

metabolic development and diabetes. Third, we summarize the evidence and discuss the 

potential role of B vitamin nutritional status in modifying the diabetogenic effects of arsenic. 

Finally, we discuss the research needs for general populations. The manuscripts identified 

for this review have been compiled over many years by the study investigators through 

systematic reviews and ongoing systematic searches of the literature using both free text and 

indexed terms including arsenic, arsenite, arsenate, methylated arsenic species, arsenic 

poisoning, diabetes, metabolic syndrome, B vitamins, one-carbon metabolism, and folate.

Experimental Studies of Early-Life Arsenic Exposure and Diabetes

Five studies (three in mice, two in rats) have evaluated the role of in utero arsenic exposure 

with diabetes in the offspring (Table 1).17-21 Two studies included a pre-mating exposure 
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period and three studies included a post-birth exposure period (one of them splitting the 

litter to compare in utero only vs. both in utero and post-birth). All studies included a 

comparison group with no in utero exposure. Comparing in utero arsenic exposure with no 

exposure, elevated post-natal fasting glucose was observed in four of the five studies, 

although some studies found this association in males or females only, with no consistent 

pattern by sex. In the four studies evaluating the homeostatic model assessment (HOMA), a 

measurement of insulin resistance, the offspring exposed to arsenic in utero showed elevated 

HOMA levels compared with unexposed offspring.17-20 In utero arsenic exposure also 

resulted in positive histological scores for non-alcoholic fatty liver disease (NAFLD), which 

is tightly linked to insulin resistance, in the two studies evaluating this outcome.21 Overall, 

these experimental studies support that in utero arsenic exposure influences the early 

programming of diabetes and related complications later in life. Although these animal 

experiments are compelling and support that early-life arsenic exposure might contribute to 

the development of diabetes in adulthood, there are substantial limitations to generalizing 

from animal models to humans.29,30 Epidemiologic evidence is thus critical to address 

translation of these findings to human populations.

Epigenetic Reprogramming In Utero

It is now well established that both malnutrition and exposure to numerous environmental 

chemicals during pregnancy can induce persistent alterations of gene expression resulting in 

metabolic disorders in adulthood,31-36 potentially through epigenetic reprograming.36-38 

Specifically for arsenic, in utero exposure has been shown to induce microRNA (miRNA) 

changes related to glycemic control in mice and rat models.39,40 Several birth cohorts of 

arsenic-exposed pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that 

increased prenatal arsenic exposure is related to altered cord blood gene expression, miRNA, 

and DNA methylation profiles in diabetes-related pathways (Akt signaling pathway, 

miRNAs miR-107, and miR-20b).12-16 In a Mexican birth cohort, arsenic exposure in utero 
was related to differential methylation of KCNQ1, an imprinted gene that is related to 

diabetes.14 In a mouse model, the combination of high chow folate (11 mg/kg) with water 

inorganic arsenic exposure (85 mg/L) from gestational days 8 to 15 resulted in lower birth 

weight and epigenetic changes in numerous genes including those known to be imprinted, 

when compared with standard chow folate (2.2 mg/kg) and no arsenic exposure.41 While 

these findings could indicate an adverse response of combined folate and inorganic arsenic 

exposure, in the absence of health endpoints, whether this epigenetic response is positive or 

negative is unknown. Also, the high folate and high inorganic arsenic exposure limit the 

extrapolation of these findings to human populations. Overall, these findings on arsenic-

related epigenetic changes in utero provide potential mechanisms whereby early-life arsenic 

exposure can induce adult metabolic outcomes.

Limited Epidemiologic Evidence for Early-Life Arsenic Exposure and 

Diabetes

A number of recent reviews have summarized ecological studies, from Chile and Japan, on 

the association of high (>100 μg/L), early-life arsenic exposure with cancer, cardiovascular 
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disease (CVD), and respiratory disease incidence and mortality.29,36,38,42-45 However, 

assessment of diabetes in these ecological studies is lacking. Longitudinal assessment of 

early-life arsenic exposure and latent disease risk, including cardiometabolic outcomes, is 

limited. Prospective studies from Bangladesh43 and Taiwan46 have shown associations 

between moderate to high early-life arsenic exposure with blood pressure and lipid 

metabolism, respectively, in childhood and adolescence. In a case-control study on the 

prevalence of diabetes in US children and adolescents, arsenic metabolism, but not arsenic 

exposure (measured in plasma), was associated with type II diabetes.47 However, there are 

currently no epidemiologic studies evaluating the association of early-life arsenic exposure 

with diabetes development. Investigating the link between early-life arsenic exposure and 

incident diabetes in populations exposed to a wide range of arsenic exposure levels is thus an 

important research need.

Early-life One-Carbon Metabolism Nutritional Status, Arsenic Exposure, 

and Diabetes Risk

One-carbon metabolism (OCM) is a biochemical pathway (Fig. 1) that is essential for the 

synthesis of the universal methyl donor, S-adenosylmethionine (SAM).48 This pathway is 

dependent on B vitamins, including vitamins B12, B6, riboflavin, and folate; in turn, 

deficiencies in these nutrients may result in impaired OCM.48 Dietary folate, in the form of 

5-methyltetrahydrofolate (5mTHF), can donate a methyl group for the remethylation of 

homocysteine (Hcys) to form methionine which can subsequently be activated to form SAM.
49 Elevated plasma Hcys is a sensitive indicator of impaired OCM and related nutrient 

deficiencies. SAM is needed in cellular signaling; protein, lipid, and carbohydrate 

metabolism; and methylation of arsenic, DNA, and numerous other substrates.50 In 

Bangladesh, supplementation with folic acid, an oxidized form of folate which is reduced to 

5mTHF, increased arsenic methylation and lowered blood arsenic.26-28 Observational 

epidemiological studies from Mexico,51 the USA,52-54 and Bangladesh55 have also reported 

associations between dietary intake of other OCM-related B vitamins and arsenic 

methylation efficiency. SAM-dependent methylation reactions generate S-

adenosylhomocysteine (SAH) which is hydrolyzed to Hcys. Homocysteine can either be 

remethylated or directed to the transsulfuration pathway; the latter is critical for the 

synthesis of glutathione (GSH), the most abundant endogenous antioxidant. GSH redox state 

influences the regulation of SAM-synthetase as well as of arsenic metabolism.56,57

The importance of OCM-related micronutrients for mitigating arsenic toxicity in adults and 

in early-life have recently been reviewed.26,58 and has been demonstrated in experimental 

studies for diabetes-related outcomes. In mice, hyperglycemia in the offspring, induced by in 
utero exposure to water arsenic, was rescued by maternal supplementation with folate+B12 

(Fig. 2).20 In 3-week old mice exposed to 100 μg/L water arsenic, insulin resistance was 

only observed in the presence of both low folate and a high fat diet.59 This scenario of 

arsenic exposure in the presence of low folate replicates dietary patterns in many human 

populations. For example, in the Strong Heart Family Study, a prospective cohort study in 

American Indian communities, a diet high in fat content (e.g., high red meat intake) but low 

in B vitamin intake, in particular low folate (e.g., lack of vegetables), is common.53,60,61 
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Also, while most of the current arsenic levels in drinking water in this study are below 10 

μg/L (the US EPA safety standard), this population’s arsenic exposure in utero was markedly 

higher. This is because historically, prior to the year 2000, when the cohort was recruited, 

water arsenic levels persistently exceeded 10 μg/L for decades.62 Still even with the current 

moderate arsenic exposure in this population, an increased risk of diabetes with higher 

arsenic exposure has been observed (hazard ratio of 1.57 [95% CI 1.18, 2.08] per 

interquartile range of urinary arsenic [7.2 versus 2.9 μg/g creatinine] among 1,376 

participants free of diabetes and pre-diabetes at baseline).10

Birth cohort studies have shown that an imbalance in OCM-related micronutrients during 

pregnancy may predispose offspring to adiposity and diabetes risk. Much of this work is 

based on South Asian populations, where low maternal vitamin B12 and high folate have 

been related to offspring visceral fat and insulin resistance.22-25 In the Strong Heart Study, 

because of a diet comprised of relatively high meat products and low vegetable intake, the 

imbalance in OCM-related micronutrients is characterized by low folate and high vitamin 

B12 (Fig. 3). Whether this imbalance is also related to increased offspring visceral fat and 

insulin resistance is currently unknown. This is a relevant hypothesis to test, as the 

imbalance in OCM status can be easily modified through dietary interventions.

Associations between OCM, arsenic, and diabetes have also been studied in the context of 

arsenic metabolism. After absorption, inorganic arsenic is metabolized, with substantial 

inter-individual variation, to mono- and di-methylated arsenicals (MMA, DMA) in a process 

that facilitates arsenic excretion in urine.56,63-70 Higher urine MMA% and lower DMA% are 

associated with higher risk of cancers of the lung, bladder, breast, and skin and with CVD.
71-78 For diabetes outcomes, however, the patterns of association appear to be strikingly 

different.79 For example, in the Strong Heart Study, participants having lower MMA%, and 

higher DMA% at baseline had a higher rate of incident diabetes and MetS, and higher 

insulin resistance over a 10-year period.80 Cross-sectional studies from Bangladesh81 and 

Mexico82 also reported a positive association between DMA% and diabetes. This surprising 

association between DMA% and diabetes may be influenced by OCM status. In a US-based 

pilot targeted metabolomics study (n=59), eight metabolites (all OCM-related) were 

associated with both arsenic methylation and diabetes outcomes, and the association 

between arsenic metabolism and diabetes markers were markedly attenuated after 

accounting for these OCM metabolites.83 However, this was a small cross-sectional study 

that could not formally test for mediation, confounding or reverse causality. Research is 

needed to understand the role of OCM status in both arsenic exposure and arsenic 

metabolism, preferably in longitudinal studies that can also account for the role of early-life 

nutritional and arsenic exposure status.

Research Needs and Conclusions

Compelling experimental and epidemiologic evidence on the association of in utero arsenic 

exposure with alterations in gene expression pathways related to diabetes in newborns 

support the possible role of early-life arsenic exposure in diabetes development, maybe 

through increased levels of visceral adiposity and insulin resistance. A major limitation of 

the evidence is the lack of epidemiologic studies linking early-life arsenic exposure with 
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adult-onset diabetes in the offspring. Also, while there is evidence on the possible role of an 

imbalance of OCM-related B vitamins in adiposity and insulin resistance, as well as on the 

role of these micronutrients in arsenic methylation and toxicity, whether OCM-related B 

vitamin status during early-life plays a role in arsenic-related diabetes is unknown. 

Understanding the role of early-life versus adult arsenic exposure on diabetes risk is needed 

to inform risk assessment and for planning prevention interventions. Current risk assessment 

for inorganic arsenic has not considered whether exposure to arsenic during pregnancy and 

the first years of life has a different impact on health outcomes compared with exposure 

during adulthood. Given pervasive arsenic exposure and the challenges to eliminate arsenic 

from the environment, there is a need to evaluate prevention interventions, including the 

possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related 

disease risk.
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Fig 1. One-carbon metabolism.
Folic acid is reduced to dihydrofolate and tetrahydrofolate (THF). A one-carbon unit is 

transferred from serine to THF to form 5,10-methylene-THF which is used for thymidylate 

synthesis or reduced to 5-methyl-THF. Dietary folate can enter one-carbon metabolism as 5-

mTHF. The one-carbon unit is transferred to homocysteine by methionine synthase using the 

cofactor vitamin B12, forming methionine and THF. Homocysteine can also be remethylated 

using betaine as the methyl donor. Methionine is activated to S-adenosylmethionine (SAM), 

which serves as the methyl donor for reactions including arsenic methylation. Methylation 

reactions generate the methylated product and S-adenosylhomocysteine (SAH), an inhibitor 

of methyltransferase enzymes. SAH is hydrolyzed to homocysteine, and can be remethylated 

or be used in the transsulfuration pathway.
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Fig 2. Folate/B12 supplementation.
Diets supplemented with higher folate + vitamin B12 supplementation rescued elevated 

fasting glucose levels induced by arsenic in utero as compared with an adequate (normal) 

diet. (Adapted from Huang et al.)20.
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Fig 3. Major dietary sources of one-carbon metabolism (OCM) related nutrients.
Foods listed under OCM nutrients are considered to be high dietary sources of that nutrient 

(provide 20% or more of the daily value). (Modified from Spratlen MJ et al.)53.
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