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Abstract

Humans and other animals adapt motor commands to predictable disturbances within tens of trials in laboratory
conditions. A central question is how does the nervous system adapt to disturbances in natural conditions when
exactly the same movements cannot be practiced several times. Because motor commands and sensory
feedback together carry continuous information about limb dynamics, we hypothesized that the nervous system
could adapt to unexpected disturbances online. We tested this hypothesis in two reaching experiments during
which velocity-dependent force fields (FFs) were randomly applied. We found that within-movement feedback
corrections gradually improved, despite the fact that the perturbations were unexpected. Moreover, when
participants were instructed to stop at a via-point, the application of a FF prior to the via-point induced
mirror-image after-effects after the via-point, consistent with within-trial adaptation to the unexpected dynamics.
These findings suggest a fast time-scale of motor learning, which complements feedback control and supports
adaptation of an ongoing movement.
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An important function of the nervous system is to adapt motor commands in anticipation of predictable
disturbances, which supports motor learning when we move in novel environments such as force fields
(FFs). Here, we show that movement control when exposed to unpredictable disturbances exhibit similar
traits: motor corrections become tuned to the FF, and they evoke after effects within an ongoing sequence
of movements. We propose and discuss the framework of adaptive control to explain these results: a
real-time learning algorithm, which complements feedback control in the presence of model errors. This
\candidate model potentially links movement control and trial-by-trial adaptation of motor commands. j

ignificance Statement

Introduction

Neural plasticity in the sensorimotor system enables
adaptive internal representations of movement dynamics
and acquisition of motor skills with practice. In the context
of reaching movements, studies have documented that
healthy humans and animals can learn to anticipate the
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impact of a force field (FF) applied to the limb, and recover
straight reach paths within tens to hundreds of trials
(Lackner and DiZio, 1994; Shadmehr and Mussa-Ivaldi,
1994; Krakauer et al., 1999; Thoroughman and Shadmehr,
2000; Singh and Scott, 2003; Wagner and Smith, 2008).
Importantly, studies on motor learning have consistently
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highlighted the presence of an after-effect, which mirrors
the initial movement deviation and indicates that adapta-
tion was supported by a novel internal model of move-
ment dynamics (Lackner and DiZio, 2005; Shadmehr
et al., 2010; Wolpert et al., 2011).

To date, motor learning and adaptation have been ex-
clusively studied on a trial-by-trial basis, highlighting
context-dependent learning rates and memory dynamics
across movements (Smith et al., 2006; Kording et al.,
2007; Diedrichsen et al., 2010; Wei and Koérding, 2010;
Gonzalez Castro et al., 2014). It is clear that there exist
medium to long time scale in the acquisition of motor
skills and in the adaptation of motor commands to
changes in the environment which impact motor perfor-
mances across movements (Krakauer and Shadmehr,
2006; Dayan and Cohen, 2011). However, although this
approach has revealed fundamental properties of senso-
rimotor systems, it has left unexplored the problem of
online control during early exposure to the altered envi-
ronment. More precisely, it remains unknown how the
nervous system controls reaching movements in the pres-
ence of unexpected dynamics, or errors in the internal
models, as in the early stage of motor adaptation.

It is often assumed that unexpected disturbances dur-
ing movements are automatically countered by the limb’s
mechanical impedance and by reflexes (Shadmehr and
Mussa-lvaldi, 1994; Burdet et al., 2000; Milner and Frank-
lin, 2005; Franklin and Wolpert, 2011). However, recent
work suggests that muscles viscoelastic properties, as
well as the gain of the spinal reflex (latency ~20 ms for
upper limb muscles) are low at spontaneous levels of
muscle activation (Crevecoeur and Scott, 2014). Further-
more, long-latency reflexes (latency =50 ms) are also
based on internal models of the limb and environmental
dynamics (Kurtzer et al., 2008; Cluff and Scott, 2013;
Crevecoeur and Scott, 2013), even when disturbances are
very small (Crevecoeur et al., 2012). Thus, the presence of
model errors is equally challenging for rapid feedback
control as it is for movement planning, and yet healthy
humans can handle unexpected disturbances relatively
well.

Thus, the outstanding question is whether and how the
nervous system controls movements online when ex-
posed to unexpected dynamics. In theory, an approxi-
mate internal model can be deduced during movement
because motor commands and sensory feedback to-
gether carry information about the underlying dynamics.
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This problem was studied in the framework of adaptive
control (Bitmead et al.,, 1990; loannou and Sun, 1996;
Fortney and Tweed, 2012). The idea is to adapt the model
continuously based on sensory feedback about the unex-
pected movement error. It is important to underline that
adaptive control aims at correcting for the presence of
model errors or fixed biases in the system model. When
there is no such error, and when disturbances follow a
known distribution, this framework reduces to standard
(extended) stochastic optimal control (Todorov and Jor-
dan, 2002; Todorov, 2005; Izawa et al., 2008).

In light of the theory of adaptive control and considering
the very rich repertoire of rapid sensorimotor loops (Scott,
2016), we explored the possibility that mechanical distur-
bances to the limb update the internal representations of
the ongoing movement. An online estimation of task-
related parameters was previously reported in the context
of virtual visuomotor rotations (Braun et al., 2009), where
participants had to estimate the mapping between hand
and cursor motion. Here, we address this problem in the
context of reaching in a FF to probe specifically the
internal representations of limb dynamics. To investigate
this question, we used a random adaptation paradigm
and addressed whether participants’ responses to unpre-
dictable disturbances reflected the presence of adapta-
tion. We show that participants learned to produce
feedback responses tuned to the FF, and illustrate how
their behavior could be explained in the framework of
adaptive control. We highlight the limitations of this and
alternative candidate models, and underline the associ-
ated computational challenges for the nervous system
that have yet to be fully characterized.

Materials and Methods

Experimental procedures

A total of 36 healthy volunteers (15 females, between 23
and 36 years) provided written informed consent following
procedures approved by the ethics committee at the host
institution (University of Louvain). Participants were di-
vided into two groups of 14 for the two main experiments,
and one group of eight for the control experiment. The
three experiments are variants of the same task. Partici-
pants grasped the handle of a robotic device (KINARM,
BKIN Technologies) and were instructed to perform
reaching movements toward a visual target. The move-
ment onset was cued by filling in the target (Fig. 1A4), and
feedback was provided about movement timing: good
trials were between 600 and 800 ms between the go
signal and the moment when they entered the target.
Direct vision of the hand was blocked, but the hand-
aligned cursor was always visible.

Experiment 1

The goal of this experiment was to characterize online
control in the presence of unexpected changes in reach
dynamics. Participants (n = 14) performed baseline trials
randomly interleaved with orthogonal FF trials mapping
the forward hand velocity onto a lateral force (f, = = Ly,
L = 13Nsm~"). Movements consisted of 15 cm reaches in
the forward direction. To make the task less predictable,
other trial types were also randomly interleaved including
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Figure 1. Experiment 1, behavior. A, lllustration of a successful trial in experiment 1 (n = 14). Participants were instructed to wait for
the go signal and then to reach for the goal within 0.6 to 0.8 s of the go signal. Feedback about movement timing was provided to
encourage participants to adjust their movement speed, but all trials were included in the dataset. B, Hand paths from all participants
for the first FF trial (top) and the FF trial number 20 (bottom), were selected to illustrate the change in online control. CCW and CW
FF trials are depicted in blue and red, respectively. The black traces (baseline) are randomly selected trials from each participant.
Maximum deviation in the direction of the FF (Max.) and the maximum target overshoot (Osh.) are illustrated. C, Maximum hand path
deviation for CCW and CW FFs across trials. The dashed traces illustrate the non-significant exponential fits. D, Maximum target
overshoot across FF trials. Solid traces indicate significant exponential decay. Shaded blue and red areas around the means indicate
the SEM across participants. E, lllustration of the after effect. Baseline trials were categorized dependent on whether they were
preceded by CCW or CW FFs, or by at least three baseline trials. F, Continuous traces of x-coordinate as a function of time and
extraction at the moment of peak lateral hand force (dots). Error bars at 300 ms illustrate the SEM across participants. G, individual
averages of lateral hand coordinate (gray), and group averages (mean = SEM), after subtracting each individual’s grand mean for
illustration). One (two) star(s) indicate significant difference at the level p < 0.05 (p < 0.01) based on paired t test, adjusted for multiple
comparison with Bonferroni correction. NS, not significant.

trials with via-points, and trials with a constant back-
ground load applied to the hand. The via-point trials of

direction, and a via-point (radius: 1 cm) was located at
10cm on the straight line joining the start and goal targets.

experiment 1 were located on the either side of the reach
path (coordinates in centimeters: [+4, 12]), and partici-
pants were simply instructed to go through them. For the
trials with background force, there was a 500-ms build up
before the onset cue, and the switch off was after trial end
(f, = = 4N). These trials occurred with the same fre-
quency as the FF trials. Participants performed six blocks
of 80 trials including 56 baseline trials and four FF trials
per direction of the FF and per block, summing to a total
of 24 FF trials per direction [clockwise (CW) and counter-
clockwise (CCW)] and participant. For this experiment,
feedback was provided about success to encourage a
consistent velocity across trials but all FF trials were
included in the analyses.

Experiment 2

This experiment was designed to address whether the
improvement in online correction observed in the first
experiment could evoke a near instantaneous after effect.
Movements consisted of 16 cm reaches in the forward
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Participants (n = 14) performed six blocks of 80 trials
composed of 45 baseline trials, five FF trials, five baseline
trials with a via-point, five FF trials with a via-point, and
five FF trials with a via-point and with a switching off of the
FF after the via-point. All trials and FF directions were
randomly interleaved. Participants were given scores for
good trials (one point), i.e., when they reached the goal
within the prescribed time window (maximum 1.2 s for
trials with a via-point), and bonuses when they stopped
successfully at the via-point (3 points). The bonus was
awarded if the hand speed inside the via-point dropped
below 3 cm/s. The experimental setup monitored the
hand speed in real time allowing to turn off the FF if (1) the
hand cursor was in the via-point and (2) the hand speed
dropped below 3 cm/s while in the via-point (determined
based on pilot testing). Feedback about a successful
stopping at the via-point was given online. In this exper-
iment, we included in the analyses all FF trials without
via-point similar to experiment 1. For the via-point trials
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with unexpected switch-off of the FF, we had to include
only the trials for which participants successfully stopped
according to the speed threshold of 3 cm/s, since these
were the only trials for which the FF was effectively turned
off. This condition made the via-point trials quite difficult
and we recorded an average of 21, 25, and 17 successful
trials for CCW, baseline, and CW via-point trials, respec-
tively (range across subjects: [5, 30], [18, 29], [2, 30)).

Control experiment

This control experiment was designed to characterize
participants’ behavior in a standard trial-by-trial learning
paradigm. Participants (n = 8) performed a series of 180
FF trials (CW or CCW), followed by a series of 20 baseline
trials to wash out learning, and finally they performed
another series of 180 FF trials in the opposite direction as
the first series. The trial protocol with target location,
random wait time and prescribed time window to reach
for the goal target was identical as that of experiment 1.
The order in which the series of CW or CCW trials were
performed was counterbalanced across participants.

Analysis and statistical design

Position and force signals were sampled at 1 kHz.
Velocity signals were derived from numerical differentia-
tion (2nd order centered finite difference algorithm). The
presence of significant main effects was assessed with
repeated-measures ANOVAs performed on individuals’
mean value of the variable of interest (rmANOVA). Post
hoc tests were performed based on paired t-test with
Bonferroni correction for multiple comparisons. In exper-
iment 1, one participant missed a force-field trial such that
the analyses were performed on 23 trials for the corre-
sponding FF direction. We assessed the evolution of sev-
eral parameters such as maximum displacement in the
lateral direction, maximum lateral target overshoot, and
peak end forces, and path length by means of exponential
fits. The exponential models were fitted in the least-
square sense and the significance of the fit was deter-
mined based on whether the 99.5% confidence interval of
the exponent responsible for the curvature of the fit in-
cluded or not the value of zero (p < 0.005). The non-
significant fits were associated with p > 0.05. An R?
statistics was derived as follows:

VRES

RR=1- —,
Vior

1)

where Vg5 denotes the variance of the residuals and Vo
is the total variance of the data. We adopted Cohen’s d to
quantify the effect size for paired comparison as the mean
difference between two populations divided by the SD of
the paired difference between the populations (Lakens,
2013).

Adaptation to the FF disturbances was assessed based
on the correlation between the commanded force and the
measured force. Indeed we can decompose the forces
acting on the handle as follows: the force induced by the
robot dynamics (such as inertial FF and friction) called fj,
the commanded force of the FF environment called fgy,,
and the force at the interface between the hand and the
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robotic handle called f,, which is measured with the force
transducer. At this stage there is no distinction of passive
or active components of the force applied by the hand to
the handle. The handle acceleration is equal to the sum of
the forces acting on it:

Mg = fo + fouy + Fo . @)

Then, the use of the correlation between f, and fz, as
an index of adaptation (with appropriated sign) can be
justified by the observation that the differences between
these two forces was well correlated with the lateral ac-
celeration. Indeed, the commanded force in the environ-
ment was calculated offline as the forward velocity
multiplied by the scaling factor that defines the FF (L =

+ 13 Ns/m). Then, we calculated the difference between
the measured and commanded forces, and observed cor-
relations with the lateral acceleration characterized by a
mean R? of 0.92 (range: [0.81, 0.95]), and a mean slope of
0.93 = 0.03 (mean = SD, averaged across directions).
Note that this error is also in part induced by real-time
sampling of velocity in the system. Thus the error made by
ignoring the unmodelled forces induced by the KINARM
(fz in Eqg. 2) and sampling inaccuracies represented <10%
of unexplained variance on average, and the 90% of
explained variance was accounted for by the lateral ac-
celeration. Since f; and fg,, must be the same for move-
ments with similar kinematics, any change the correlation
between the measured and commanded forces reflect
changes in control (f,). We also used the data from the
control experiment to validate this approach empirically.

The data of experiment 2 were also analyzed in more
detail based on individual trials. The analyses of individual
trials within each participant were based on Wilcoxon
rank-sum test. We used mixed linear models of lateral
hand velocity as a function of the lateral hand velocity
before the via-point, and also as a function of the trial
number based on standard techniques (Laird and Ware,
1982). The possibility that changes in internal representa-
tions impacted the very first trials was assessed by re-
gressing velocity against the trial index. For this analysis,
we changed the sign of the lateral velocity for CW FF trials
such that for all trials, a positive modulation reflected the
presence of an after effect. The dependent variable was
the lateral hand velocity measured at the moment of the
second velocity peak, the fixed effect was the trial index,
and the model contained a random offset per to account
for idiosyncrasy.

Model

The model describes the translation of a point-mass
similar to the mass of an arm (m = 2.5 kg) in the horizontal
plane. The coordinates corresponded to the workspace
depicted in Figure 1, such that the reaching direction was
along the y dimension. Dot(s) correspond to time deriva-
tive. The variables f, and 7, are the forces applied by the
controlled actuator to the mass, and these forces are a
first order response to the control vector denoted by the
variables u, and u,. The state-space representation was
thus as follows:
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mX = —kx + f, + fou, )
my = —ky +f,, 4)

e = U, — £, ©)

i, =u, — f, (©6)

where k is a dissipative constant (0.1 Nsm™"), Equations
5, 6 capture the first order muscle dynamics with time
constant set to 0.1 s, and fg,, represents the unknown
environmental perturbation: fgy, = 0 for the null field, or
feny = = Ly for FF trials.

Defining the state vector as z = [x, y, X, ¥, f,, fy]T, and
the control vector u = [u,, u,]’, we have z = Az + By,
with:

0 0 1 0 0 0 T
00 0 1 0 0
00 —k/m 6/m 1/m O
A-|00 0 —k/m 0 1/m
0 1
00 0 0 -— 0
T
00 0 0 0 - =
L T
, and
-0 0"
00
00
B, = ?0
- 0
-
o 1
- T -

The parameter 6 is either O for baseline (unperturbed)
trials, or = L for FF trials, in agreement with the definition
of fgyy- The system was transformed into a discrete time
representation by using a first order Taylor expansion over
one time step of 8t: A = | + 6tA,, and B = &tB, (I is the
identity matrix). We used a discretization step of 6t =
0.01s. The value of 0 is unknown at the beginning of each
trial. Thus we assume that it is unknown for the controller
and the model error, AA, comes from a possible mismatch
between expected and true values of 6.

The state vector and state space representation matri-
ces were augmented with the coordinates of the goal
(denoted by x* and y*), and the system was then re-written
as follows:

z,,, = (A, + AA)z, + Bu, + &, @)

The subscript t is the time step, where A, is the current
(time varying) expected dynamics, AA is the unknown
model error containing the unmodeled environmental dis-
turbance (fz,), and g, is a Gaussian disturbance with
zero-mean and covariance ,: = BB'. Recall that the true
dynamics is the expected dynamics plus the model error,

in other words we have A: = A, + AA. As a consequence,
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the model error also evolves across time as the adaptive
controller changes the values of A..

We assumed for simplicity that the controller has per-
fect state measurement, meaning that z, is known (fully
observable case). The problem is that the controller does
not know AA and must control the trajectory of the system
in the presence of a model error. This problem was con-
sidered by Izawa and colleagues in the context of motor
adaptation to random FFs (Izawa et al., 2008). These
authors expressed that AA followed a known (Gaussian)
distribution, which induced state-dependent noise and
could be handled in the framework of extended stochastic
optimal control (Todorov, 2005). Observe that this as-
sumption implies that the FF intensity varied randomly
across time, which was not consistent with our experi-
ment for which the FF varied randomly across trials, but
remained fixed within trials. In other words, stochastic
optimal control is not consistent with our random adap-
tation design because AA depends on f,,, which is not a
stochastic variable but instead a fixed bias or error in the
model within each FF trial. Thus, for the present study, we
expressed in the model the fact that the initial controller
was derived assuming that the system dynamics corre-
sponds to /Z\, but that there was a potential error in the
model. To further simplify the problem, we assume that
the controller knows which parameter is unknown (L). Let
A, denote the expected dynamics at time t dependent on
the current estimate of the FF intensity noted L, a linear-
quadratic-Gaussian (LQG) controller can be derived, giv-
ing control signals based A:

u = —C{A)z, ®
where — C,(A,) is the time series of feedback gains that,
when applied to the state vector, defines the optimal
control policy (Todorov, 2005). Our choice to simulate
reaching movements in the context of optimal feedback
control was motivated by previous work showing that this
model accounted for a broad range of features expressed
in human reaching movements such as time varying con-
trol gains, selective corrections, and flexibility (Diedrich-
sen, 2007; Liu and Todorov, 2007; Nashed et al., 2012).

Now, under this assumption, we may predict the next
state vector, which we designate by Z,. When the true
dynamics is distinct from the expected dynamics (AA =
A — A, # 0), there is a prediction error, e;: = z, — 2,, which
can be used to correct the estimate of the model. We
follow standard least square identification techniques
(LS), and use the following rule to update the estimate of
L based on error feedback (Bitmead et al., 1990):

r 0244

L.y =L + ‘ya_Let+1 ) ©)
where v is the online learning rate. This new estimation of
the FF is then used to update A,.,, and a new series of
feedback gains is applied to the next state as control law:
u., = — C.A,.,)z.4. In all, the closed loop controller
consists in iteratively deriving optimal control gains based
on an adaptive representation of the unknown parameters
estimated online using Equation 9. It can be shown in
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theory that under reasonable assumptions, this adaptive
optimal control scheme robustly stabilizes the closed loop
system (Bitmead et al., 1990). For the simulations pre-
sented in this paper we verified that the time series of L,
evolved in the direction of the true value during each
movement.

The free parameters of the model are the cost-function
used to derive the LQG controller and the online learning
rate y. We fixed the cost-function to generate smooth
movements with bell-shape velocity profiles, qualitatively
comparable with human movements, and allowed vy to
vary to capture the greater online adjustments observed
across trials in experiment 1.

We use the following cost function to simulate reaching
movements without via-point:

N
Jw = X (NEwk — XF + 0 - YF]
=1

N-1
w2100, (10)
t=1

with N = 61, consistent with the average movement
duration from experiment 1 (~600 ms). The parameters w,
and w, were set to 1000 and 20 to reproduce smooth
movements with bell-shape velocity profiles. The first
term produces a polynomial buildup of the terminal cost
with value very close to 0 until ~80% of the terminal step,
followed by a smooth buildup of the terminal cost for the
last ~20% of the reach time. For the via-point experiment,
the cost function was identical except that we used N =
100 to account for larger duration of reaching with a
via-point, and we added the penalty that the system had
to be close to the via-point at t = 60 with the same cost
as the terminal cost in Equation 9. There was no quanti-
tative fitting of parameter values to the data.

The simulation of standard learning curves was per-
formed by letting A, evolve during movements and storing
the value obtained at the end of the trial for the beginning
of the next trial (y = 0.05). The reduction in peak end-force
observed in experiment 1 was simulated by using a range
of values of y to show that the range observed experi-
mentally could be explained by this model (y = 0.1, vy =
0.25, and y = 0.5). Importantly, the measured force at the
handle and the force produced by the controller were
compared based on the observation that ignoring the
robot dynamics only induced small errors. Finally, exper-
iment 2 was simulated as a series of null field trials
interleaved with force-field trials with switching-off at the
via-point. Two values of y were chosen to illustrate that
the modulation of lateral velocity after the via-point in-
creased with this parameter (y = 0.2 and y = 0.5). The
simulated baseline trials in the simulation of experiment 2
were preceded by three baseline trials to induce washout
in the model. We extracted the local minimum of lateral
velocity and the lateral velocity at the moment of the
second peak velocity to illustrate the after effect in the
simulations.

We tested an alternative model that did not involve any
learning, but in which control was adapted following a
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time-evolving cost-function. The parameter y was set to
zero (i.e., A, was fixed), and the cost parameters were
increased or decreased at each time step before re-
computing the control gains. More precisely, the state
related cost parameters (w,; and w,; Eq. 10) were multi-
plied by 0.95 or 1.05 at each time step, and the feedback
gains were recomputed at each step to take the time-
evolving cost-function into account. Working code was
made publicly available here: http://modeldb.yale.edu/
261466.

Results

Experiment 1

Participants grasped the handle of a robotic device and
performed forward reaching movements toward a visual
target (Fig. 1A). In the first experiment, CW and CCW
orthogonal FFs were randomly applied as catch trials,
such that neither the occurrence nor the direction of the
FF could be anticipated. Reach paths were of course
strongly impacted by the presence of the FF; however, the
online corrections became smoother with practice (Fig.
1B, compare trials #1, #20). To quantify this, we extracted
the maximum hand deviation along the direction of the FF
in the lateral direction, and the target overshoot also
measured in the same direction near the end of the move-
ment (Fig. 1B, Max. and Osh., respectively). We found that
the maximum deviations as well as their timing did not
evolve significantly across FF trials (Fig. 1C, p > 0.05),
whereas the overshoot displayed a significant exponential
decay (Fig. 1D, p < 0.001, R? = 0.17 and R? = 0.56 for
CW and CCW FFs, respectively). The absence of a clear
change in the maximum deviation suggests that there was
no clear anticipation of the disturbances, and that mea-
surable changes in control became apparent later. Only
small adjustments impacting the maximum lateral dis-
placement could be observed, in particular for CCW trials
that exhibited a reduction of ~1 cm on average. However,
the evolution of this variable across trials did not follow
the same exponential decay as the target overshoot.

We also observed that exposure to FF trials induced
standard after-effects on the next trial, as previously re-
ported in both standard and random adaptation experi-
ments (Lackner and DiZio, 1994; Shadmehr and Mussa-
Ivaldi, 1994; Scheidt et al., 2001). To observe this, we
separated trials performed in the null field dependent on
whether they were preceded by FF trials or by at least
three null field trials (Fig. 1E), and extracted the
x-coordinate of the hand path at the moment of lateral
peak hand force (Fig. 1F; this moment was well defined as
it was induced by the inertial anisotropy of the KINARM
handle). The lateral coordinate was clearly impacted by
the occurrence of a FF trial, and the effect was opposite to
the perturbation encountered in the preceding trial con-
sistent with standard after effects (Fig. 1G, rmANOVA:
Fio2e = 18.3, p < 107%). It can be also observed that the
evolution of maximum target overshoot was not symmet-
rical (Fig. 1D), and the unperturbed trials were slightly
curved (Fig. 1F). The origin of this asymmetry is unclear.
On the one hand the perturbations did not engage the
same muscles and differences in biomechanics might
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Figure 2. Improvement in online corrections. A, Lateral perturbation force (dashed/light) and measured force (solid/dark) as a function
of time for the first FF trial in each direction. B, Same as panel a for the last perturbation trial. Shaded areas represent 1 SEM across
participants (n = 14) with the same color code as in Figure 1. Note that each FF induced a reaction force with opposite sign, thus the
perturbation force was multiplied by —1 for illustration. The reduction in peak end force is highlighted with the black arrows. C, Peak
end force across FF trials (mean = SEM). The solid traces show the significant exponential decay (p < 0.005). D, Correlation between
the commanded force and the measured force during the time interval corresponding to the gray rectangle in panel A (100-700 ms).
The correlations were averaged across participants; the shaded area represents 1 SEM. The significant linear regression of the

correlations across blocks is illustrated.

induce directional biases. On the other hand, the KINARM
has anisotropic mass distribution, which induces an iner-
tial FF. Despite these differences, all effects reported were
qualitatively similar across perturbation directions.

Several control strategies could produce a reduction in
target overshoot, including an increase in control gains.
However, the analyses of the measured force at the han-
dle indicated a different strategy. We observed a reduc-
tion in the interaction force at the handle near the end of
the movement, which suggested a decrease in lateral
force used to counter the FF. Indeed, there was no sig-
nificant change in the peak forward hand velocity across
trials for both CW (rmANOQVA, F 53 299) = 0.56, p = 0.9) and
CCW FFs (Fa2,286) = 0.87, p = 0.62). Thus, the perturba-
tion applied to the limb remained statistically similar.
However, the absolute peak hand force near the end of
the movement decreased significantly. This is illustrated
in Figure 2, which displays the average perturbation and
measured forces as a function of time for the first and last
FF trials (Fig. 2A,B). There was a significant exponential
decay of the terminal peak hand force (Fig. 2C, R = 0.17
and R? = 0.11 for CW and CCW perturbations). As a
consequence, the correlation between the measured lat-
eral force and the commanded FF perturbation signifi-
cantly increased across trials (Fig. 2D). We show below
with the control experiment that these observations also
characterize motor adaptation in a standard context of
trial-by-trial learning, and that the increase in correlation
shown in Figure 2D can be used as an index of adapta-
tion.

The results of experiment 1 suggested that the control-
ler changed during movement. Indeed, the absence of an
effect on the maximum lateral deviation indicated that
participants started the movement with a controller that
would produce a straight reach path in the absence of any
FF [“baseline” controller, C(B)], and then corrected their

January/February 2020, 7(1) ENEURO.0149-19.2019

movements by using a controller that was partially
adapted to the FF [C(F)) for thei"" FF trial]. It is important to
realize that if the nervous system always switched to the
same controller during FF trials, it would have been im-
possible to identify a change in representation reflecting
rapid adaptation, from a standard feedback response.
The evidence for rapid adaptation is not based on the
feedback response observed during each perturbation
trial per se, but on the change in feedback responses
across these trials. In other words, the controller C(F;))
changed across FF trials [C(F) # C(F), i # j]. The fact that
the perturbations were not anticipated suggests that the
adaptive change from C(B) to C(F) during the i FF trial
was based on sensory information collected during the
ongoing trial. Interestingly the presence of an after-effect
indicated that these within-trial changes in control are
likely linked to the fast time scales of trial-by-trial learning
(Smith et al., 2006).

Control experiment

The control experiment was designed to characterize
participants’ behavior in a standard trial-by-trial learning
and verify that the correlation between the commanded
force and the measured force reflected adaptation. The
results are shown in Figure 3. Figure 3A highlights that the
first trials in each FF was strongly perturbed, while the last
trials were relatively straight (one trace per participant).
Clearly the measured forces presented similarities the
ones observed in Figure 2. For the first trial, the measured
force responded late to the FF (Fig. 3B, left, black trace
lagging the red trace), which was followed by feedback
correction and overcompensation (see black arrow, peak
end force). With practice participants learned to anticipate
the FF, and the overcompensation disappeared (Fig. 3B,
right).
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Figure 3. Control experiment. A, Hand paths of the first and last trials for each perturbation direction. Displays are individual
movements corresponding to one trace for each participant. B, Commanded and measured forces for the first and last trials. Shaded
areas are 1 SEM across participants (n = 8). C, Black: correlations between commanded and measured forces across trials. Purple:

path length across trials (mean = SEM across participants).

It should be observed that at the end of the 180 trials,
the commanded and measured forces are not exactly the
same. This could be due to several factors: first the forces
linked to the KINARM intrinsic dynamics (f; in Eq. 2). As
well, participants may not have learned to fully compen-
sate for the FF, as the last movements still exhibited some
curvature. Nevertheless, the correlations between com-
manded and measured forces clearly presented an in-
crease across trials typical of a learning curve (Fig. 3C,
black). This learning curve paralleled another measure of
adaptation based on the path length, which is 15 cm for
perfectly straight movements (Fig. 3C, purple). We calcu-
lated significant exponential fits for both learning curves
(p < 0.005, R? = 0.44 for the correlations and R® = 0.32
for the path length), and observed a slightly faster rate for
the path length (Cl: [-0.059, —0.043]) in comparison to the
correlations (Cl: [-0.036, —0.025]), meaning that the path
length and correlations approached their asymptotes af-
ter 60 and 100 trials, respectively (three time constants).

These force profiles were broadly similar to those of
experiment 1, with the clear difference that there was no
anticipation in the random context of experiment 1. The
decrease in peak terminal force was clearly present in
both cases. The correlations at the end are close to 85%
on average. The remaining 15% can be ascribed to un-
modelled KINARM dynamics (recall that we evaluated an
impact of =10%; see Materials and Methods) and to the
fact that adaptation was likely not 100%.

Experiment 2

The results of experiment 1 are consistent with adaptive
control. However, it is possible that participants learned to
produce smooth corrective movements by altering move-
ment kinematics without learning about the FF specifi-
cally, or by altering the mechanical impedance of the limb
without changing their internal model (Burdet et al., 2001).
To address this, we sought a more direct link between the
online correction and the FF by using a via-point located
at two thirds of the reach path (see Materials and Meth-
ods). We reasoned that if the feedback correction during
FF trials reflected an online update of the internal models,
then these corrections should evoke almost instanta-
neous after-effects for the remainder of the movement
(from the via point to the goal).
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Our results confirmed this prediction. First, we repro-
duced the observations made in the first experiment for
the trials without via-point: we found non-significant ex-
ponential decay for the maximum lateral deviation,
whereas the target overshoot displayed a significant ex-
ponential decay across trials (Fig. 4A-C). The gradual
increase in correlation between the commanded force
and the applied force was also reproduced in this dataset
for the trials without via-point (Fig. 4D). Second, for the
via-point trials, we found a systematic after-effect be-
tween the via-point and the goal that mirrored the impact
of the FF before the via-point (Fig. 4E for average hand
paths and Fig. 4F). We observed that the via-point trials
were challenging and many did not reach the goal target
on time. We measured a significant increase in success
rate across blocks for all types of trials with via-point
(rmANOVA, p < 0.005 for CW and CCW trials, and p =
0.006 for baseline trials), and observed a tendency to
reduce overshoot at the via-point similar to the trials
without via-point. In the following analyses, we included
all trials that stopped at the via-point even if they did not
manage to reach the second target.

Stopping at the via-point was necessary for two rea-
sons: first it allowed us to turn off the FF unnoticeably
because the speed was close to zero. Second, it also
ensured that the after-effects were not due to momentum
following the online correction before the via-point, be-
cause the speed was very close to zero at the via-point.
To further verify that it was not an effect of momentum, we
extracted the minimum lateral hand velocity in the via-
point and the lateral hand velocity at the second peak (Fig.
4G, squares and open discs on exemplar traces). As
expected, there was no difference across CW, baseline,
and CCW trials for the minimum velocity (Fig. 4H,
rmANOVA, F 39 = 1.13, p = 0.33), which confirmed that
there was no difference in momentum across trials at the
via-point. The same analysis with the norm of hand ve-
locity in place of lateral velocity gave identical results. In
contrast, the lateral hand velocity measured at the second
peak hand speed displayed a very strong modulation
consistent with an after-effect (Fig. 4H, F, 39y = 50.59, p <
1079). In addition, we observed that 12 out of the 14
participants showed the same modulation when compar-
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Figure 4. Experiment 2. Behavior. A-C, lllustration of the FF trials and behavior as reported in Figure 1B-D. D, correlations between
the commanded force and the measured force across FF trials similar to Figure 2D. E, Average hand traces from experiment 2 for trials
with a via-point with the same color code as in experiment 1 (black: null-field, red: CW, blue: CCW). For all trials, the second portion
of the reach, from the via-point to the goal, was performed without FF (FF Off). F, Average x-coordinate as a function of time across
participants (n = 14). Shaded areas represent 1 SEM across participants. The gray rectangle illustrates the approximate amount of
time spent within the via-point. Observe the displacement following the via-point in the opposite direction as the perturbation-related
movement. G, lllustration of the trial-by-trial extraction of parameters on five randomly selected trials from one participant. The FF was
turned off when the hand speed dropped below 3 cm/s (dashed trace). The parameters extracted were the lateral hand velocity at the
moment of the hand speed minimum (squares), and the lateral hand velocity at the moment of the second hand speed maximum (open
discs). H, Lateral hand velocity at the moment of hand speed minimum or at the moment of the second hand speed maximum
averaged across trials for each participant (gray dots), and averaged across participants (blue, black, and red, mean *= SEM).
Individual means across the three trial types were subtracted from the data for illustration purpose. The stars represent significant

pair-wise differences at the level p < 0.005 with Bonferroni correction for multiple comparisons. NS, not significant.

ing the distributions of individual trials across CW and
CCW perturbations (Wilcoxon rank-sum test, p < 0.05).
Thus, the after-effects between the via-point and the goal
were due to a re-acceleration in the direction opposite to
the FF experienced during the first part of the trial.

By forcing participants to stop at the via-point, we
controlled experimentally for the effect of momentum be-
fore the via-point. We conducted additional analyses to
address the possible influence of hand kinematics before
the via-point based on statistical modeling. First, we re-
gressed the lateral velocity at the second peak as a
function of lateral velocity extracted at the first velocity
peak to address the influence of the perturbation experi-
enced before the via point (Fig. 5A). We fitted a linear
mixed model on individual trials from all participants while
including a random intercept to account for idiosyncrasy.
The regression was computed first on the baseline trials
only, and we found no significant correlation between the
lateral velocity before and after the via-point (Fig. 55,
dashed line, F344) = 0.31, p = 0.75). Second, we fitted
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another mixed model including FF trials and found a
significant relationship between velocity prior and after
the via-point (Fig. 5B, gray line, Fggg = 16.09, p <
0.0001). We then fitted a third model that included an
interaction between the first hand velocity, and the cate-
gories of trials (CCW, CW, baseline). The analysis of co-
variance with this model revealed again a strong influence
of the first velocity peak (F(1 gg6) = 267, p < 0.0001) as well
as a significant interaction between the first velocity peak
and the categories (Fp gg5) = 16, p < 0.0001). The com-
parison of the two models based on BIC indicated that the
best model was the one including the categories as a
factor. Thus, the modulation of hand velocity after the
via-point was best accounted for by a statistical model
that included the type of perturbations, indicating that the
modulation of hand velocity was not simply accounted for
by movement kinematics before the via-point.

Second, we extracted the evolution of trials across the
blocks and observed a significant interaction between the
FF and the block number across blocks #1 and #6 (Fig.
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Figure 5. Kinematics after the via-point. A, Extracted parameters. The lateral velocity (x-direction) was extracted at the moment of the
first and second peaks of hand speed prior and after the via-point, respectively (dots and arrows). Vertical dashed lines were added
to highlight the systematic deviation opposite to the perturbation during FF trials. We selected 10 traces randomly per condition from
one representative participant. B, Lateral velocity at the second peak as a function of the lateral velocity at the first peak. Crosses are
mean = SD across trials for each participant (n = 14). Dispersion ellipses illustrate 1 SD along the main variance axes (all trials pooled
together). The three statistical models are illustrated with thick lines: baseline trials only (not significant), all trials (gray), and all trials
with categories as factor (black plus average of the categories represented with the ellipses). The thin black line is the value of 0
displayed for illustration. Participants were included as random factor. C, Lateral hand velocity measured at the second peak hand
speed following CCW and CW force-fields (red and blue, respectively), and baseline trials (black) across blocks. Data are from 11
participants who completed successful trials in each block. The insets highlight the first and last block. D, Group data mean = SEM
in the 1st and 6th block for the lateral hand velocities at the minimum and at the second peak (n = 11 in both cases). Observe the

two different scales. One (two) star(s) highlight significant difference based on paired t test at the level p < 0.05 (p < 0.005).

5C,D, Fipo0 = 4.08, p = 0.032). This analysis was re-
stricted to the data from 11 participants who completed at
least one successful via-point trial in these blocks to
balance the statistical test. Strikingly, the modulation of
hand velocity following the via-point was already present
in the first block (Fig. 5D, paired t test on data from block
1:t40 = 2.7, p = 0.0106, effect size: 0.98, data from block
6: tho = 6.3, p < 0.0001, effect size: 1.56). Again we
verified that there was no effect of the force-field and no
interaction between FF and block number for minimum
hand speed within the via-point (Fp g < 1.7, p > 0.2).
Third, we assessed whether the lateral hand velocity be-
fore the via-point exhibited changes across the blocks
and found no significant change for both CW and CCW
perturbations (F5 7o) < 1.69, p > 0.1). In all, these analy-
ses indicated that there was no kinematic effect from the
first part of the movement, or residual momentum at the
via-point, that could be statistically linked to the lateral
hand velocity after the via-point, and to its evolution
across blocks.

The presence of a significant modulation in the first
block indicated that online adaptation occurred during the
first few trials (there were five trials with via-point and
switching-off of the FF per direction and per block). This
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striking result warranted further investigation: can these
adjustments occur within the very first trial? Our dataset
cannot provide a definitive answer because, due to ran-
domization, some via-point trials were preceded by FF
trials without via-point for some participants. Neverthe-
less, we used a statistical model of the modulation of
lateral velocity as a function of trial number to obtain the
beginning of an answer.

We first changed the sign of velocity during CW trials
such that an after effect corresponded to a positive ve-
locity for all trials. Then, we accounted for idiosyncrasy by
including participants as a random factor in a mixed linear
model. We found a significant positive correlation be-
tween the lateral hand velocity and the trial index. Most
importantly, the regression included an offset that was
significantly distinct from 0. The intercept value was 0.02
ms~', and the p values for the slope and intercept were
0.0026 and <10~ *, respectively. The same regression
performed on the baseline trials, where no FF was applied
before the via-point, revealed an offset of —0.004, which
was not significant (p = 0.15). Thus, we can reject the
hypothesis that the lateral hand velocity was zero in the
very first trial. In other words, our dataset supports the
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Figure 6. Model simulations. A, Schematic illustration of an adaptive controller: sensory feedback is used to estimate both the state
of the system and the model, which in turn updates the controller and estimator online. The solid arrows represent the parametric
state-feedback control loop, and the dashed arrows represent the real-time learning and update of model parameters. B, Repro-
duction of a standard learning experiment (hand paths and maximum lateral deviation across trials), with mirror-image catch trials (ct),
and unlearning following the catch trials (difference between ct-1 and ct+1). The trial-by-trial changes were reproduced with online
computations exclusively (Thoroughman and Shadmehr, 2000). C, left, Simulation of the results from experiment 1 with three distinct
values of online learning rate (y: 0.1 in black, 0.25 in gray, and 0.5 in dashed), which reduces the second peak hand force while the
first displays smaller changes across the tested range of y. The change in peak force relative to the mean across simulations was less
than 2 N for the first peak, while the second peak displayed changes ~4 N. Right, Correlations between simulated perturbation force
and the force produced by the controller. Black dots are the results of the adaptive control model with tested values of y (0, 0.1, 0.25,
and 0.5). Gray and open dots are the results of the model with time-evolving cost-function (both increase and decrease). D,
Simulations of behavior from experiment 2, the FF was turned off at the via-point (t = 0.6 s), and the second portion of the reach
displays an after effect (see Materials and Methods). The inset highlights the lateral velocity measured at the minimum and at the
second peak hand speed as for experimental data. The traces were simulated for distinct values of online learning rate (0.25 in

dashed, and 0.5 in solid).

hypothesis that online learning may have occurred during
the very first trial.

To summarize, experiment 2 showed that hand trajec-
tories after the via-point were compatible with an after
effect evoked by the presence of a FF before the via-
point. The experimental design and statistical models
were used to control for momentum and for kinematic
effects. Furthermore, statistical modeling also indicated
that the reported adjustments occurred within the first few
FF trials. A priori, it is possible that participants used three
internal models, one for null-field trials and one per force-
field direction, and switched between them dependent on
the ongoing movement. However, this explanation does
not easily account for the fact that participants never
experienced FF disturbances before their participation,
and thus never adapted to these perturbations. Such a
switch within a movement is consistent with adaptive
control, but it is not clear how they could switch between
models that they did not previously acquire, in particular
during the first few FF trials exhibiting improvements in
online corrections. A more compelling explanation in our
opinion, which explains the results of the two experiments
as well as the increase in modulation reported in experi-
ment 2, is the hypothesis that the nervous system tracks
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model parameters online. This is illustrated in the next
section.

Adaptive control model

Our behavioral results highlighted parallels with motor
adaptation despite the fact that perturbations were not
anticipated: the reduction in peak end force, the increase
in correlation, and the after effects following the via-
points. We show below that these observations can be
explained in the framework of adaptive control. The key
point is to explain how participants were able to adapt
their online response to unexpected FF without anticipa-
tion. The controller is composed of a feedback control
loop that corrects for perturbations to the state of the limb
(Fig. B6A, state-feedback, solid). This loop involves a state
estimator through an observer (e.g., Kalman filter for linear
systems), and a controller that generates motor com-
mands.

The second component is the adaptive loop, which
performs learning (Fig. 6A, outer loop, dashed). The key
idea is that the state feedback control loop is parameter-
ized in a way that accounts for limb and environmental
dynamics (Crevecoeur and Kurtzer, 2018), and the func-
tion of the adaptive loop is to adjust the parameterization
of the state-feedback control loop based on current sen-
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sory data and motor commands (Bitmead et al., 1990;
loannou and Sun, 1996; Fortney and Tweed, 2012). Clas-
sical studies have assumed that the parameterization of
the state feedback control loop is modified on a trial-by-
trial basis (Shadmehr and Mussa-Ivaldi, 1994; Thorough-
man and Shadmehr, 2000; Milner and Franklin, 2005;
Smith et al., 2006). In addition, previous modeling work
highlighted that there are multiple timescales in motor
adaptation (Smith et al., 2006; Kording et al., 2007). We
suggest complementing this theory by considering that
the fast time scale can be in fact shorter than a trial time.
This is mathematically possible: in the framework of adap-
tive control, learning occurs at each time step. We show
that behaviorally, this model accommodates our observa-
tions as well as trial-by-trial learning assuming that the
acquired representation within a movement carries over
to the next one.

Similar to trial-by-trial adaptation models, parameter
tracking is indirect because there is no measurement of
the unknown parameters, thus motor commands and
sensory feedback must be used together to deduce the
underlying dynamics. The simulations performed in this
study were based on iterative LS identification (Bitmead
et al., 1990), but other techniques such as expectation-
maximization may be considered (Ghahramani and Hin-
ton, 1996). However, it is important to note that the
increase in after-effect observed across the blocks of
experiment 2 required a degree of freedom in the model to
account for trial-by-trial modulation, which is why we
privileged the LS formalism as it includes such a param-
eter by design (online learning rate, ). The implication for
our interpretation and its limitations are addressed in the
Discussion.

Using this framework, we reproduced standard learning
curves in computer simulations, with exponential decay of
the lateral hand displacement, mirror-image catch trials or
after effects as documented in experiment 1 (Fig. 1E-G),
and unlearning following the catch trials as previously
reported in human learning experiments (Fig. 68; Thor-
oughman and Shadmehr, 2000). These simulations as-
sumed that the partially corrected model within a
movement was used in the next one. This model also
reproduced the reduction in peak end force occurring
near the end of movement as observed in experiment 1 by
assuming that the online learning rate increased across
FF trials (Fig. 6C, left), that is the online adjustments were
smaller in the first trials than in the last trials. This idea is
consistent with the presence of savings, characterizing a
faster re-learning on exposure to a previously experi-
enced environment (Smith et al., 2006; Gonzalez Castro
et al., 2014; Shadmehr and Brashers-Krug, 1997; Caith-
ness et al., 2004; Overduin et al., 2006; Coltman et al.,
2019; Nguyen et al., 2019). This assumption was captured
here by an increase in online learning rate across simula-
tions (y parameter, note that y was fixed within each trial).

We compared the simulated behavior of experiment 1
to an alternative hypothesis in which there is no online
changes in the representation of the reach dynamics
(learning rate y = 0), and in which control gains are
re-adjusted at each time step by increasing or decreasing
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the cost parameters within movements. First, an increase
in cost was clearly incompatible with the data since it
generated an increase in peak end force, whereas we
measured a strong exponential decay across FF trials. In
contrast, the decrease in cost produced a reduction in
peak terminal force, but also in the first peak later force (in
absolute value), which was again not consistent with our
dataset. In addition, the model with reduction in cost-
function produced larger lateral displacements due to a
reduced penalty on state deviation, which we did not
observe empirically (data not shown).

The strongest argument in support to the adaptive con-
trol model was obtained by calculating the correlations
between simulated forces and the controller force. The
measured force in the data are the force applied by the
hand to the handle. It can be equated to the force applied
by the controller to the point mass. In theory, it only
depends on the control vector, whereas in practice it also
depends on the arm passive dynamics. Thus, the com-
parison has limitations but it is valid for the purpose of this
analysis. Recall that we neglected the robot dynamics on
the basis that it had a small impact on the estimation of
hand acceleration. We found that by increasing the value
of the online learning rate, the correlations increased in a
range compatible with the data (compare Figs. 6C, black
dots, with 2D, 4D). In contrast, the models with time
evolving cost-functions did not produce any change in
correlation (Fig. 6C, gray and open dots), which sug-
gested that the change in correlation was a signature of
adapting the internal model.

Lastly, it is important to highlight that models based on
changes in impedance control or time-evolving cost func-
tions without any change in online representation would
not produce any after-effect after FF trials (Fig. 1F,G) or
after the via-point (Fig. 4H), since these would assume no
change in expected dynamics. In contrast, the adaptive
control model also reproduced the after effect observed
following a single FF trial (Figs. 1G, 6B), as well as the
modulation of lateral hand velocities following the via-
point (Fig. 6D). The adjustment of online learning rate
based on the assumption of savings was also necessary
in these simulations to account for the increase in lateral
hand velocity across the blocks (Figs. 5C, 6D). In all,
adaptive control combined with the possibility of an in-
crease in online learning rate across trials explains the
modulation of hand force and adaptation of feedback
responses during movement (Figs. 2, 3, 4D, 5C), rapid
adaptation following via-point trials (Figs. 4E-H, 6D), and
trial-by-trial learning.

Discussion

Controlling movements in the presence of model errors
is a challenging task for robotics as well as for the nervous
system. However healthy humans can handle model er-
rors like those arising when a FF is introduced experimen-
tally during reaching. To understand this, we explored the
possibility that the nervous system reduces the impact of
model errors within a movement following the principles
of adaptive control. We found that participants’ feedback
corrections to unexpected FFs gradually improved (ex-
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periments 1 and 2), and evoked after-effects in an ongo-
ing sequence of movements (experiment 2) within 500 ms
or less. We showed that these effects, as well as single
rate exponential learning curves, were captured in an
adaptive control model in which motor commands, state
estimates, and sensory feedback are used to update the
internal models of dynamics online. We suggest that this
model is a powerful candidate for linking movement exe-
cution with the fast time scales of trial-by-trial motor
learning.

First, this model is built on current theories of sensori-
motor coordination (Todorov and Jordan, 2002). There is
no disagreement between adaptive control and stochas-
tic optimal control (LQG; Todorov, 2005), but instead
there is complementarity between these models. Sto-
chastic optimal control is based on the assumption that
the system dynamics are known exactly, and that the
process disturbance follows a known Gaussian distribu-
tion (Astrom, 1970). The unexpected introduction of a FF
introduces a fixed error in the model parameters, which is
not a stochastic disturbance. In theory, such disturbances
warrant the use of a control design that explicitly consid-
ers the presence of errors in the model parameters. Adap-
tive control aims at solving this problem by learning about
the dynamics during movement.

Real-time adaptive control also stands in agreement
with learning and acquisition of motor skills over longer
timescales. Our analyses suggested in Figure 6B were
based on the idea that if the change in representation
acquired within a movement carried over to the next
movement, then we can reproduce exponential decay,
after effects and unlearning following catch trials. This
possibility is not in conflict with the existence of slower
changes in the nervous system supporting consolidation
and long-term retention. In fact, adaptive control simply
consists in adding a timescale shorter than the trial time to
current models (Smith et al., 2006; Kording et al., 2007),
with the major implication that, by being faster than a trial,
adaptation becomes available to complement feedback
control. The theory of adaptive control was put forward to
highlight that this was mathematically possible, and the-
ories are there to be challenged. In our opinion, this theory
is the simplest combination of control and adaptation
models: it adds adaptation to current models of move-
ment execution by considering a fast time scale in a
standard learning model.

Of course, it is important to consider candidate alter-
native mechanisms. The main findings that require revi-
sion of the theory are that participants made rapid, field-
specific adjustments to their motor output in an
unpredictable task environment. The main pieces of evi-
dence that point to rapid adaptation are (1) the increase in
correlation between commanded and applied forces also
observed in trial-by-trial adaptation (Figs. 2D, 3C, 4D);
and (2) the presence of an after effect within 500 ms (Fig.
4F). The value of the adaptive control model is to provide
a mathematical framework in which these observations
are expected, and which combines current models of
learning and control with the single addition of a timescale
faster than a trial. It is important to keep in mind that the
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beginnings of FF trials always exhibited large deviations,
because there was no anticipation, and that improve-
ments subtly impacted stabilization near the end of these
trials. This is also expected in the framework of adaptive
control: in theory, the online learning rate should not be
too high to prevent instability, and as a consequence the
associated gradual changes in control cannot have a
strong impact early during perturbation trials.

The shortcomings in our interpretations are the follow-
ing. First, our proposed model required a change in online
learning rate (y) to accommodate the improvement in
online feedback control in the absence of anticipation and
without previously acquired internal models. This as-
sumption was based in part on the observation that the
learning rate can change dependent on the context (Gon-
zalez Castro et al., 2014), and on the hypothesis of sav-
ings characterized by the ability to re-learn faster. This
hypothesis has been documented in many tasks including
adaptation to FFs (Shadmehr and Brashers-Krug, 1997;
Caithness et al., 2004; Overduin et al., 2006; Coltman
etal.,, 2019; Nguyen et al., 2019). Here, we used the same
concept applied to the online learning rate. This is of
course a strong assumption that requires further valida-
tion. Second, we drew a parallel between the fact that
feedback responses improved across FF trials in experi-
ments 1 and 2, and that the magnitude of the after effect
after the via-point increased. These two observations are
consistent with the increase in online learning rate. How-
ever, they also exhibited different rates, indicating that
several mechanisms could be at play.

Alternative models must be also considered. A first is
the possibility that participants used co-contraction to
modulate the mechanical impedance of their limb and
counter unpredictable or unstable loads (Hogan, 1984;
Burdet et al., 2001; Milner and Franklin, 2005). We do not
reject this possibility, but must underline that it does not
explain all the data. In particular, the results from experi-
ment 2 emphasized an after effect after the via-point,
which is not expected if participants only made their arm
mechanically rigid. In such case one expects a straighter
hand path instead of a deviation opposite to the FF. A
second argument that does not favor impedance control
was addressed in the model: by changing the cost-
function during movement, we effectively increased the
elastic and damping components of control gains, as
there was no delay in the model. We showed in the
(simplest) settings of our model that such a strategy
would not produce an increase in correlation compatible
with the one observed in the data (Fig. 6C). A third objec-
tion is based on a recent observation made in a similar
unpredictable environment (Crevecoeur et al., 2019). In
this case, participants co-contracted spontaneously fol-
lowing FF trials, which reduced lateral deviations for sub-
sequent perturbations. This has a small but measurable
impact (~10%), which likely explained the small reduction
observed in Figures 1C, 4B, but the question stand out as
how participants then managed to fall on target while
reducing the force applied to the handle. Thus, as first
approximation this model does not stand as the strongest
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candidate, but a more detailed account of the possible
role of impedance control in such task is warranted.

Another possibility is that participants switched be-
tween controllers corresponding to CW or CCW FFs
shortly following movement onset. In fact, such a switch-
ing between controllers is a form of adaptive control with
a limited, or finite set of representations. In this frame-
work, contextual cues such as feedback error signals
could be used to switch between multiple internal models
as suggested in the MOSAIC framework (Haruno et al.,
2001). Both switching between internal models and adap-
tive control include a change in representation within
movement, which is compatible with our data. The open
question is whether the change was discrete (between
two or more internal models), or continuous (as in online
parameter tracking). Two possible objections are that the
internal models corresponding CW and CCW perturba-
tions were not previously acquired, and that the change in
control seemed more gradual than discrete, as it mostly
impacted control near the end of the movement.

In fact, although possible, this interpretation would dis-
agree with a large body of literature showing that expo-
sition to opposite velocity-dependent FFs within short
times leads to partial to total interference (Brashers-Krug
et al.,, 1996; Gandolfo et al., 1996; Hwang et al., 2003).
Based on these results we would thus expect that partic-
ipants could not have acquired an internal model for each
FF. It was then shown that distinct planning conditions
were critical to learn opposite perturbations, such as ex-
plicit cues (Wada et al., 2003; Osu et al., 2004; Addou
et al., 2011), distinct representations of movements (Hi-
rashima and Nozaki, 2012), or even distinct prior or
follow-through movements associated with the same
movement (Howard et al., 2012; Sheahan et al., 2016). In
our study, there was no cue given about the upcoming
perturbation and planning was likely identical across
baseline and FF trials. Thus, it was the physical state of
the limb during movement that evoked the changes in
control. Part of the discrepancy may simply be that ad-
aptation became visible near the end of movements,
where classical studies would focus on metric such as
maximum lateral deviation, based on which we would also
conclude that there was no learning (Fig. 1C). But inter-
ference was not confined to the metric chosen; it also
impacted learning curves over several trials. Adaptive
control may solve this apparent contradiction: interfer-
ence does occur in our model as perturbations are ap-
plied randomly (L on average is 0), but the online
parameter tracking enabled adapted corrections.

The question arises as whether the after effect after the
via-point could be considered as a second submovement.
In this case the after effect documented after the via-point
would not be distinct from standard after effects. This was
the point of our developments: we wanted to highlight
standard after effects. Our key contribution was to show
that the second submovement (from the via-point to the
target) was re-planned, or changed, within 500 ms (Fig. 4),
since the same movement without FF was on average
straight. This rapid change was fast enough to influence
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control for standard FF trials, and faster than previously
identified time scales of motor adaptation.

It remains unclear how quickly these adjustments oc-
curred within movements, and this represents an impor-
tant but challenging question for future research.
Anatomically, long-latency corrections for perturbation to
the limb (~60 ms) are supported by a distributed network
through cerebellum (Hore and Flament, 1988), primary
somatosensory area, motor and pre-motor cortices, and
parietal cortex (Pruszynski et al., 2011; Omrani et al.,
2016; Scott, 2016). This network clearly overlaps with the
main regions associated with short-term plasticity (Dayan
and Cohen, 2011). Behaviorally, long-latency feedback
exhibits exquisite sensitivity to even very small distur-
bances (Crevecoeur et al., 2012). Thus, the network of
brain regions engaged in trial-to-trial learning is also likely
recruited very early during FF trials, and it is conceivable
that rapid adjustments occurred within this rapid path-
way.

Computationally, however, an online change in internal
models involves an indirect mapping of sensory feedback
into model updates, in addition to corresponding changes
in the neural controller. This computational load may re-
quire longer processing times associated with model up-
dates in comparison with feedback responses following
learned perturbations to the limb or to the movement goal.
As an absolute upper bound, we may consider that ad-
justments in experiment 2 were performed between reach
onset and the moment when participants exited the via-
point, which was around 500 ms. Similarly, visual inspec-
tion of the forces from experiment 1 indicates that
changes could have occurred earlier. However, the pre-
cise timing of change in feedback correction cannot be
unambiguously determined from the resultant force since
this variable involves both intrinsic limb properties and
neural feedback. We expect that future work measure the
latency of this outer loop more accurately based on mus-
cle recordings.

Another clear challenge is to unravel the underlying
neural mechanism. One key question is to understand
how neural circuits generated a near instantaneous after
effect like those observed in experiment 2. Indeed, at the
via-point with near-zero velocity across all trials, there
was no motor error to correct; yet the subsequent motor
output mirrored the previously encountered disturbances.
One possibility to account for this result is through syn-
aptic plasticity (Dayan and Cohen, 2011): that is the gain
of the same sensorimotor loop changes following re-
afference of sensory prediction errors, and associated
changes in synaptic strength. However, the fast time
scales of synaptic plasticity documented in cerebellar-
dependent adaptation remain longer than a trial time
(Raymond and Medina, 2018). Another possibility is that
the unexpected FF generated different neural trajectories
across FF trials, possibly exploiting dimensions that do
not directly influence the motor output (Kaufman et al,,
2014; Stavisky et al., 2017). Thus, a similar perturbation
can produce distinct motor outputs by tuning feedback
circuits. In theory such mechanism does not necessarily
engage changes in synaptic weights, which is computa-
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tionally advantageous (Fortney and Tweed, 2012). Fur-
thermore, changes in the null dimension of the neural
manifolds were recently reported as neural-basis of
trial-by trial learning (Perich et al., 2018), which makes
such a mechanism a very strong candidate to support
within-trial adaptation of movement representations. Un-
raveling the latency of the model updates will likely set
physiologic constraints on the candidate neural underpin-
nings.

Finally, our study also opens questions from a theoret-
ical standpoint. Indeed, we must recall that our model was
excessively simple: we considered the translation of a
point-mass in the plane with full state information (see
Materials and Methods). We thus expect that future mod-
eling work unveil the computational challenges that arise
when considering more realistic models of the neuro-
musculoskeletal system, including nonlinear dynamics,
several unknown parameters, sensorimotor noise, and
temporal delays.
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