
Fast and accurate long-read assembly with wtdbg2

Jue Ruan1,2,†, Heng Li3,4,5,†

1Agricultural Genomics Institute, Chinese Academy of Agriculture Sciences, Shenzhen, China

2Peng Cheng Laboratory, Shenzhen, China

3Department of data sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA

4Department of biomedical informatics, Harvard Medical School, Boston, MA 02115, USA

5Broad Institute, Cambridge, MA 02142, USA

Abstract

Existing long-read assemblers require thousands of CPU hours to assemble a human genome and

are being outpaced by sequencing technologies in terms of both throughput and cost. We

developed a long-read assembler wtdbg2 (https://github.com/ruanjue/wtdbg2) that is 2–17 times as

fast as published tools while achieving comparable contiguity and accuracy. It paves the way for

population-scale long-read assembly in future.

De novo sequence assembly reconstructs a sample genome from relatively short sequence

reads. It is essential to the study of new species and structural genomic changes that often

fail mapping-based analysis as the reference genome may lack the regions of interest. With

the rapid advances in single-molecule sequencing technologies by Pacific Biosciences

(PacBio) and Oxford Nanopore Technologies (ONT), we are able to sequence reads of 10–

100 kilobases (kb) at low cost. Such long reads resolve major repeat classes in primates and

help to improve the contiguity of assemblies. Long-read assembly has become a routine for

bacteria and small genomes, thanks to the development of several high-quality

assemblers1–5. For mammalian genomes, however, existing assemblers may require

significant computing resources. The computing cost with commercial cloud services is

comparable to the sequencing cost with one ONT’s PromethION machine, which is capable

of sequencing a human genome at 30-fold coverage in two days6. To address this issue, we

developed wtdbg2, a new long-read assembler that is times faster for large genomes with

little compromise on the assembly quality.

Wtdbg2 broadly follows the overlap-layout-consensus paradigm. It advances the existing

assemblers with a fast all-vs-all read alignment implementation and a novel layout algorithm

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
†To whom correspondence should be addressed. ruanjue@caas.cn and hli@jimmy.harvard.edu.
Author contribution. J.R. conceived the project, designed the algorithm and implemented wtdbg2. H.L. contributed to the
development and drafted the manuscript. Both authors evaluated the results and revised the manuscript.

Competing interests. The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2020 June 09.

Published in final edited form as:
Nat Methods. 2020 February ; 17(2): 155–158. doi:10.1038/s41592-019-0669-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ruanjue/wtdbg2

based on fuzzy-Bruijn graph (FBG), a new data structure for sequence assembly that is

related to sparse de Bruijn graphs and A-Bruijn graphs.

For mammalian genomes, current read overlappers7–9 split input reads into many smaller

batches and perform all-vs-all alignment between batches. This strategy wastes compute

time on repeated file I/O and on indexing and querying non-informative k-mers. These

overlappers do not build a single hash table as they worry the hash table may take too much

memory. Interestingly, this should not be a major concern. Wtdbg2 first loads all reads into

memory and counts k-mer occurrences. It then takes each tiling 256bp subsequence on reads

as one unit, defined as a bin (each small box in Figure 1), and builds a hash table with keys

being k-mers occurring ≥2 times in reads, and values being locations of associated bins on

reads. For example, among PacBio reads sequenced from the CHM1 human genome to 60-

fold coverage10, there are only 1.5 billion non-unique homopolymer-compressed 21-mers9.

Staging raw read sequences in memory and constructing the hash table takes 250GB at the

peak, which is comparable to the memory usage of short-read assemblers.

Sequence binning described above aims to speed up pairwise alignment with dynamic

programming (DP) between binned sequences. With 256bp binning, the DP matrix is 65536

(=256×256) times smaller than a per-base DP matrix as is used by the Smith-Waterman

algorithm11. This reduces DP to a much smaller scale in comparison to k-mer based8, 9 or

base-level DP7.

FBG extends the basic ideas behind de Bruijn graph (DBG) to work with long noisy reads.

In analogy to DBG, a “base” in FBG is a 256bp bin and a “K-mer” or K-bin in FBG consists

of K consecutive bins on reads. A vertex in FBG is a K-bin and an edge between two

vertices indicates their adjacency on a read. Unlike DBG, different K-bins may be

represented by a single vertex if they are aligned together based on all-vs-all read alignment.

This treatment tolerates errors in noisy long reads. FBG is closer to sparse DBG12 than

standard DBG in that it does not inspect every K-bin on reads. The sparsity reduces the

memory to construct FBG. Furthermore, FBG explicitly keeps the read names and the

offsets of bins going through each edge to retain long-range information without a separate

“read threading” step as with standard DBG assembly. After graph simplification4, 13,

wtdbg2 writes the final FBG to disk with read sequences on edges contained in the file.

Wtdbg2 constructs the final consensus with partial order alignment14 over edge sequences.

We evaluated wtdbg2 v2.5 on four datasets along with CANU-1.83, FALCON-1808311,

Flye-2.3.62, MECAT-1803145 and Ra-190327 (Table 1; see Supplementary Table 1 for more

datasets). We used minimap2 to align assembled contigs to the reference genome and to

collect metrics. Depending on datasets, wtdbg2 is 2–17 times as fast as the closest

competitors. Its contiguity and assembly accuracy are generally comparable to other

assemblers. Wtdbg2 assemblies sometimes cover less reference genomes, which is a

weakness of wtdbg2, but its contigs tend to have fewer duplicates (metric “% genome

covered more than once” in the table). The low redundancy rate is particularly evident for

the Col-0/Cvi-0 A. thaliana dataset that has a relatively high heterozygosity of ~1%. On a M.
schizocarpa (banana) ONT dataset sequenced to 45-fold coverage15, wtdbg2 delivers a

Ruan and Li Page 2

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

507Mb assembly with 1.0Mb N50. While this is not as good as the published result, it is

larger and more contiguous than the Flye and Ra assemblies (Online Methods).

For samples close to the reference genome, we also compared the consensus accuracy before

and after signal-based polishing16 when applicable. Without polishing, CANU, Flye and

MECAT tend to produce better consensus sequences. This is probably because they perform

at least two rounds of error correction or the consensus step, while wtdbg2 applies one round

of consensus only. After Quiver polishing, the consensus accuracy of all assemblers is very

close and significantly higher than the accuracy of consensus without polishing. This

observation reconfirms that polishing consensus is still necessary17 and suggests that the

pre-polishing consensus accuracy is not obviously correlated with post-polishing accuracy.

In the past, Quiver was taking a small fraction of total assembly time, but it is now several

times slower than wtdbg2 (7 wall-clock hours for C. elegans and 37 wall-clock hours for

CHM1) and becomes the new bottleneck. This calls for future improvement to the polishing

step.

We assembled four additional human datasets (Table 2). Wtdbg2 finishes each assembly in

<2 days on a single computer. This performance broadly matches the throughput of a

PromethION machine. In comparison, Flye and CANU required ~5,000 and ~40,000 CPU

hours, respectively, to assemble NA128782,18. For this sample, wtdbg2 uses 235GB

memory, less than half of memory used by Flye. Partly due to the relatively low memory

footprint, wtdbg2 is scalable to huge non-human genomes. It can assemble axolotl, with a

32Gb genome, in two days using 1.2TB memory. The NG50 is 392kb, longer than the

published assembly19.

Ten years ago when the Illumina sequencing technology entered the market, the sheer

volume of data effectively decommissioned all aligners and assemblers developed earlier.

History repeats itself. Affordable population-scale long-read sequencing is on the horizon.

Wtdbg2 is an assembler that is able to keep up with the throughput and the cost. With

heterozygote-aware consensus algorithms and phased assembly planned for future, wtdbg2

and upcoming tools might fundamentally change the current practices on sequence data

analysis.

Online methods

The wtdbg2 algorithm

Wtdbg2 reads all input sequences into memory and encodes each base with 2 bits. By

default, it selects a quarter of k-mers based on their hash code and counts their occurrences

using a hash table with 46-bit key to store a k-mer and 17-bit value to store its count.

Wtdbg2 filters out k-mer occurring once or over 1000 times in reads, and then scans reads

again to build a hash table for the remaining k-mers and their positions in bins.

For all-vs-all read alignment, wtdbg2 traverses each read, from the longest to the shortest,

and uses the hash table to retrieve the reads that share k-mers with the read in query. It takes

each bin as a basepair and applies Smith-Waterman-like DP between binned sequences,

penalizing gaps and mismatching bins that do not share k-mers. Wtdbg2 retains alignments

Ruan and Li Page 3

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

no shorter than 8×256bp. After finishing alignments for all reads, wtdbg2 frees the hash

table but keeps the all-vs-all alignments in memory (alignments are also written to disk as

intermediate results).

At this step, wtdbg2 drops base sequences. It only sees binned sequences and the alignments

between them. On an L-long binned sequence B = b1 b2 … bL, a K-bin BKi = bi bi+1 …

bi+K−1 is a K-long subsequence starting at the i-th position on B. If binned sequences B and

B’ can be aligned, we can infer the overlap length between K-bins BKi and B′Ki′ by lifting

their coordinates between the two sequences based on the alignment. We say two K-bins BKi

and b′Ki′ are equivalent if the overlap length between them is K (i.e. the two bins are

completely aligned). Using the all-vs-all alignment, wtdbg2 collects a maximal non-

redundant set Ω of K-bins such that no K-bin in Ω is equivalent to others. For each K-bin in

Ω, its coverage is defined as the number of equivalent K-bins in all reads. Wtdbg2 records

the locations and coverage of each K-bin.

Two K-bins in Ω may have an overlap up to K-1 bins. The vertex set V of FBG is intended to

be an Ω’s subset in which no K-bins overlap with each other. To construct V, wtdbg2

traverses each non-redundant K-bin in the descending order of their initial coverage. Given a

K-bin BK, wtdbg2 reduces its coverage by deducting the number of K-bins already in V that

overlap with BK. If the reduced coverage is ≥3 and higher than half of the initial coverage,

BK will be added to V; otherwise it will be ignored. After the construction of V, wtdbg2

adds an edge between two K-bins if they are located on the same read. There are often

multiple edges between two K-bins. Wtdbg2 retains one edge and keeps the count. An edge

covered by <3 reads are discarded. This generates FBG. The coverage thresholds can be

adjusted on the wtdbg2 command line.

Assembling evaluation datasets

With wtdbg2, we specified the genome size and sequence technology on the command line,

which automatically applies multiple options. Specifically, we used “-xrs -g100m” for C.
elegans, “-xsq -g125m” for A. thaliana, “-xrs -g144m” for D. melanogaster A4 strain, “-xont

-g144m” for the ISO1 strain, “-xrs -g3g” for CHM1, “-xont -g3g” for human NA12878 and

NA19240 ONT reads, “-xsq -g3g” for HG00733, “-xccs -g3g” for NA24385 and “-xrs -g3g”

for the axolotl dataset. Here, option “-x” specifies the preset. “rs” uses homopolymer-

compressed9 (HPC) 21-mer. Both “sq” and “ont” apply 15-mer to genomes smaller than

1Gb but use HPC 19-mer for larger genomes. Note that 415=1GB. We change the type of k-

mers for larger genomes to avoid non-specific seed hits, which reduce the performance. We

use shorter k-mers for Nanopore data due to their higher error rates and relatively low

coverage in our evaluation. Increasing k-mer length for Nanopore helps to resolve

paralogous regions but reduces alignment sensitivity and leads to more fragmented

assemblies for data at ~30-fold coverage.

For CANU, Flye and MECAT, we similarly specified the genome size and the sequencing

technology only. The FALCON configure file for assembling C. elegans is provided as

supplementary data. The FALCON A. thaliana assembly was downloaded at http://bit.ly/

pbpubdat. We are using AC:GCA_000983455.1 for the CANU CHM1 assembly and

AC:GCA_001297185.1 for the FALCON CHM1 assembly.

Ruan and Li Page 4

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bit.ly/pbpubdat
http://bit.ly/pbpubdat

Assembling the M. schizocarpa (banana) dataset

The authors who produced the dataset failed to run CANU, so we skipped CANU and

MECAT (which is based on CANU). This is a nanopore dataset to which FALCON is not

applicable. We used wtdbg2’s nanopore preset for large genome for assembly (“-xont -

g600m -k0 -p19”) and got an 507Mb assembly with N50=1.0Mb for contigs longer than

10kb. Flye assembled a 505Mb genome with N50=300kb. The authors of the dataset

managed to get N50=2.1Mb with Ra on all raw reads. However, with Ra, we could only

produce a small assembly of 490Mb at 643kb N50. Instead, we get the best contiguity with

miniasm, which generated a 520Mb assembly with N50=1.9Mb. Wtdbg2 is ~10 times as fast

as Flye and Ra.

Evaluating assemblies

To count alignment breakpoints, we mapped all assemblies to the corresponding reference

genomes with minimap2 under the option “--paf-no-hit -cxasm20 -r2k -z1000,500”. We

used the companion script paftools.js to collect various metrics (command line: “paftools.js

asmstat -q50000 -d.1”, where “-q” sets the minimum contig length and “-d” sets the max

sequence divergence). To count substitutions and gaps, we applied a different minimap2

setting “-cxasm5 --cs -r2k”. This setting introduces more alignment breakpoints but avoids

poorly aligned regions harboring spuriously high number of differences that are likely

caused by large-scale variations and skew the counts. We used “paftools.js call” to call

variations.

Data availability

C. elegans and A. thaliana Ler-0 reads are available at the PacBio public datasets portal:

http://bit.ly/pbpubdat. We downloaded SRR5439404 for the D. melanogaster A4 strain,

SRR6702603 for the D. melanogaster reference ISO1 strain, ERR2571284 through

ERR2571302 for M. schizocarpa (banana; MinION reads only), PRJNA378970 for axolotl,

SRR7615963 for HG00733, and ERR2631600 and ERR2631601 for NA19240. CHM1

reads were acquired from SRP044331 (http://bit.ly/chm1p6c4 for raw signals), NA12878

reads from http://bit.ly/na12878ont (release 5) and NA24385 from http://bit.ly/NA24385ccs.

For the A. thaliana Col-0/Cvi-0 dataset, the FASTQ files at SRA (AC: PRJNA314706) were

not processed properly. Jason Chin, the first author of the paper1 describing the dataset,

provided us with reprocessed raw reads, which are now hosted at public ftp site: ftp://

ftp.dfci.harvard.edu/pub/hli/col0-cvi0/. The CHM1 CANU and FALCON assemblies and the

axolotl assembly are available at NCBI (GCA_000983455.1, GCA_001297185.1 and

GCA_002915635.1, respectively). All the evaluated assemblies generated by us can be

obtained at ftp://ftp.dfci.harvard.edu/pub/hli/wtdbg/. The FTP site also provides the detailed

command lines and the FALCON configuration files.

Reporting Summary

Further information on research design is available in the Nature Research Reporting

Summary linked to this article.

Ruan and Li Page 5

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bit.ly/pbpubdat
http://bit.ly/chm1p6c4
http://bit.ly/na12878ont
http://bit.ly/NA24385ccs
ftp://ftp.dfci.harvard.edu/pub/hli/col0-cvi0/
ftp://ftp.dfci.harvard.edu/pub/hli/col0-cvi0/
ftp://ftp.dfci.harvard.edu/pub/hli/wtdbg/

Code availability

The wtdbg2 source code is hosted by GitHub at: https://github.com/ruanjue/wtdbg2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to Jason Chin for providing the properly processed raw reads for the A. thaliana Col-0/Cvi-0
dataset. We would like to thank Chengxi Ye from University of Maryland for frequent and fruitful discussion in the
development of wtdbg and thank Alun Li and Shigang Wu from CAAS for the help in polishing assemblies. We
also thank the reviewers whose comments have helped us to improve wtdbg2. This study was supported by Natural
Science Foundation of China (NSFC; grant 31571353 and 31822029 to J.R.) and by US National Institutes Health
(NIH; grant R01-HG010040 to H.L.).

Reference

1. Chin CS et al. Nat Methods 13, 1050–1054 (2016). [PubMed: 27749838]

2. Kolmogorov M, Yuan J, Lin Y & Pevzner PA Nat Biotechnol 37, 540–546 (2019). [PubMed:
30936562]

3. Koren S et al. Genome Res 27, 722–736 (2017). [PubMed: 28298431]

4. Li H Bioinformatics 32, 2103–2110 (2016). [PubMed: 27153593]

5. Xiao CL et al. Nat Methods 14, 1072–1074 (2017). [PubMed: 28945707]

6. De Coster W et al. Genome Res 29, 1178–1187 (2019). [PubMed: 31186302]

7. Myers G in WABI, Vol. 8701 (eds. Brown DG & Morgenstern B) 52–67 (Springer, Wroclaw,
Poland; 2014).

8. Berlin K et al. Nat Biotechnol 33, 623–630 (2015). [PubMed: 26006009]

9. Li H Bioinformatics 34, 3094–3100 (2018). [PubMed: 29750242]

10. Chaisson MJ, Wilson RK & Eichler EE Nat Rev Genet 16, 627–640 (2015). [PubMed: 26442640]

11. Smith TF & Waterman MS J Mol Biol 147, 195–197 (1981). [PubMed: 7265238]

12. Ye C, Ma ZS, Cannon CH, Pop M & Yu DW BMC Bioinformatics 13 Suppl 6, S1 (2012).

13. Zerbino DR & Birney E Genome Res 18, 821–829 (2008). [PubMed: 18349386]

14. Lee C, Grasso C & Sharlow MF Bioinformatics 18, 452–464 (2002). [PubMed: 11934745]

15. Belser C et al. Nat Plants 4, 879–887 (2018). [PubMed: 30390080]

16. Chin CS et al. Nat Methods 10, 563–569 (2013). [PubMed: 23644548]

17. Watson M & Warr A Nat Biotech (2019).

18. Jain M et al. Nat Biotechnol 36, 338–345 (2018). [PubMed: 29431738]

19. Nowoshilow S et al. Nature 554, 50–55 (2018). [PubMed: 29364872]

Ruan and Li Page 6

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ruanjue/wtdbg2

Fig. 1.
Outline of the wtdbg2 algorithm. Wtdbg2 groups 256 base pairs into a bin, a small box in

the figure. Bins/boxes with the same color suggest they share k-mers, except that a gray bin

doesn’t match other bins due to sequencing errors. Wtdbg2 performs all-vs-all alignment

between binned reads and constructs the fuzzy-Bruijn assembly graph, where a vertex is a 4-

bin segment and an edge connects two vertices if they are both present on a read. Wtdbg2

then trims tips and pops bubbles and produces the final contig sequences from the consensus

of read subsequences attached to each edge.

Ruan and Li Page 7

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ruan and Li Page 8

Table 1.
Evaluating long-read assemblies

FALCON requires PacBio-style read names and does not work with ONT data or the A4 strain of D.
melanogaster which was downloaded from SRA. The A. thaliana assembly by FALCON is acquired from

PacBio website as our assembly is fragmented. MECAT produces fragmented assemblies for the ONT dataset.

Human assemblies were performed by the developers of each assembler. Base-level evaluations and NGA50

are only reported when the sequenced strain or individual is close to the reference genome. BUSCO scores are

computed for genomes sequenced to 50-fold coverage or higher.

Dataset Metric CANU FALCON Flye MECAT Ra Wtdbg2

C. elegans Bristo ref. strain
PacBio x80

Total length (>=
50kbp)

106.5Mb 100.8Mb 102.0Mb 102.1Mb 108.1Mb 104.8Mb

% reference genome
covered

99.58 99.16 99.29 99.51 99.55 99.37

% genome covered
more than once

0.33 0.25 0.15 0.35 0.69 0.13

NG75 (75% ref. in
contigs longer than
NG75)

1,884,280 935,802 1,275,590 1,424,674 1,320,829 2,255,274

NG50 (50% ref. in
contigs longer than
NG50)

2,677,990 1,629,544 1,926,198 2,113,456 2,047,105 3,596,268

NGA50 (50% ref in
alignments longer
than NGA50)

1,283,814 980,062 1,087,075 1,119,713 1,019,386 1,365,602

alignment
breakpoints

681 192 284 278 724 177

BUSCO (%
complete single-
copy genes)

98.2% 88.1% 98.4% 97.0% 90.9% 97.5%

substitutions/1Mb
(pre-/post-polish)

64.1 / 62.2 233.2 / 50.1 61.6 / 57.6 65.9 / 62.8 309.9 /
66.8

83.8 / 60.3

insertions/1Mb
(pre-/post-polish)

31.1 / 22.4 592.7 / 19.4 29.8 / 21.8 43.9 / 21.9 3011.2 /
24.3

110.6 / 20.8

deletions/1Mb
(pre-/post-polish)

152.8 / 55.1 1822.7 /
56.7

381.4 /
56.9

366.0 /
57.9

144.1 /
53.1

343.0 / 57.7

Wall-clock time over
32 CPUs (pre-
polish)

9h30m 2h06m 2h58m 3h08m 2h23m 26m

D. melanogaster ISO1 ref.
strain ONT x32

Total length (>=
50kbp)

135.0Mb 130.7Mb 126.5Mb 127.4Mb

% reference genome
covered

91.74 89.40 86.35 89.34

% genome covered
more than once

1.19 0.14 0.68 0.22

NG75 714,013 1,367,004 685,943 1,752,322

NG50 4,298,595 6,016,667 1,898,336 10,631,323

NGA50 1,837,928 2,210,468 1,700,400 2,989,107

alignment
breakpoints

823 248 225 276

substitutions per
1Mb (pre-polish)

847.6 1318 1976.2 1109.2

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ruan and Li Page 9

Dataset Metric CANU FALCON Flye MECAT Ra Wtdbg2

insertions per 1Mb
(pre-polish)

255.9 10669.9 4388.7 371.2

deletions per 1Mb
(pre-polish)

7168.2 1901.3 2324.6 9746.3

Wall-clock time over
32 CPUs (pre-
polish)

22h23m 1h41m 2h10m 50m

A. thaliana F1 generation of
Col-0 and Cvi-0 strains (~1%
heterozygosity) PacBio x185

Total length (>=
50kbp)

196.5Mb 138.1Mb 122.3Mb 188.4Mb 133.3Mb 125.0Mb

% reference genome
covered

99.04 97.03 93.55 97.47 92.52 92.66

% genome covered
more than once

47.61 11.35 3.72 51.46 3.38 1.08

NG75 460,325 4,810,976 180,227 1,096,121 404,218 2,182,254

NG50 873,036 7,979,657 370,306 3,525,236 1,210,836 8,707,235

alignment
breakpoints

3,059 2,102 1,674 2,573 2,078 1,777

BUSCO (%
complete single-
copy genes)

43.8% 91.9% 93.1% 49.2% 87.8% 90.3%

Wall-clock time over
32 CPUs (pre-
polish)

30h42m (by PacBio) 20h3m 11h33m 18h33m 1h12m

Human CHM1 cell line
PacBio x100

Total length (>=
50kbp)

2,837Mb 2,938Mb 2,712Mb

% reference genome
covered

89.33 90.13 86.03

% genome covered
more than once

0.53 0.72 0.02

NG75 3,793,440 7,726,658 4,387,668

NG50 17,570,750 26,132,317 18,220,221

NGA50 7,128,216 9,262,902 8,017,241

alignment
breakpoints

1,795 7,966 1,619

BUSCO (%
complete single-
copy genes)

91.3% 91.5% 90.5%

substitutions per
1Mb (post-polish)

961.5 966.6 963.6

insertions per 1Mb
(post-polish)

142.8 140.1 140.2

deletions per 1Mb
(post-polish)

140.0 137.6 141.1

Total CPU hours
(pre-polish CPU
hours)

22,750 68,789 2,506 (632)

Nat Methods. Author manuscript; available in PMC 2020 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ruan and Li Page 10

Table 2.

Wtdbg2 performance on other human genomes. Performance metrics were obtained on a machine with 96

CPU cores. G. size: size of the reference genome; Cov.: sequencing coverage; NG50: 50% of the reference

genome are in contigs longer than this length.

Data set Technology Cov. CPU hour Real hour Peak RAM (GB) NG50 (Mb)

NA12878 Nanopore 36 1513 26 235 10.3

NA19240 Nanopore 35 1197 19 226 4.4

NA24385 PacBio CCS 28 410 6 108 11.8

HG00733 PacBio Sequel 93 1906 37 338 29.2

Nat Methods. Author manuscript; available in PMC 2020 June 09.

	Abstract
	Online methods
	The wtdbg2 algorithm
	Assembling evaluation datasets
	Assembling the M. schizocarpa (banana) dataset
	Evaluating assemblies
	Data availability
	Reporting Summary
	Code availability

	References
	Fig. 1
	Table 1.
	Table 2.

