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AMST: Alignment to Median 
Smoothed Template for Focused 
Ion Beam Scanning Electron 
Microscopy Image Stacks
Julian Hennies   1,2*, José Miguel Serra Lleti1, Nicole L. Schieber   1, Rachel M. Templin1, 
Anna M. Steyer3 & Yannick Schwab1*

Alignment of stacks of serial images generated by Focused Ion Beam Scanning Electron Microscopy 
(FIB-SEM) is generally performed using translations only, either through slice-by-slice alignments 
with SIFT or alignment by template matching. However, limitations of these methods are two-fold: 
the introduction of a bias along the dataset in the z-direction which seriously alters the morphology 
of observed organelles and a missing compensation for pixel size variations inherent to the image 
acquisition itself. These pixel size variations result in local misalignments and jumps of a few 
nanometers in the image data that can compromise downstream image analysis. We introduce a 
novel approach which enables affine transformations to overcome local misalignments while avoiding 
the danger of introducing a scaling, rotation or shearing trend along the dataset. Our method first 
computes a template dataset with an alignment method restricted to translations only. This pre-aligned 
dataset is then smoothed selectively along the z-axis with a median filter, creating a template to which 
the raw data is aligned using affine transformations. Our method was applied to FIB-SEM datasets and 
showed clear improvement of the alignment along the z-axis resulting in a significantly more accurate 
automatic boundary segmentation using a convolutional neural network.

In recent years, the development of new electron microscopy technologies allowed the automated serial imaging 
of entire biological specimens, from cells to model organisms. Amongst these techniques, Focused Ion Beam 
Scanning Electron Microscopy (FIB-SEM) has emerged as a preferred technology for gathering serial images at 
isotropic resolution. After volumetric acquisition, an important step for proper visualization and accurate mor-
phometric analysis is the alignment of the image stack along the z-axis. However, due to the size and complexity 
of the data, alignments using simple translations are most commonly used1,2 instead of adapting the transforma-
tions to the specific type of data. Consequently, the most common algorithms used to find correlation between 
adjacent slices are alignment by SIFT3 and alignment using a template structure matched by cross correlation, 
also known as template matching (TM). In the specific case of data acquired using the Atlas 5 software4, TM is 
efficiently performed on markings created at the surface of the sample (Fig. 1a). These markings are at a constant 
position with respect to the flat sample surface. In case of SIFT when only global translations are applied, each 
slice is aligned to the previous, preserving local morphological properties (a few slices) along the z-axis, while 
disturbing the global shape of objects across long distances. As a consequence, straight objects, such as the sample 
surface plane, can become crooked in a non-predictable manner (Fig. 2a).

Additionally, for FIB-SEM data, slices can project distorted images when different parts of an imaged 
cross-section are exposed to different rates of radiation. This effect typically occurs during auto-focus and 
auto-stigmation operations, which are triggered periodically during a run (Figs. 2 and 3 from b to d). These 
operations consist of the acquisition of several low resolution images at a specified location within the field of 
view, which creates non-homogeneous irradiation of the imaging surface. Upon subsequent acquisition of an 
image slice, differently irradiated regions introduce relative displacements during image formation and hence 
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a distortion that shows an uneven distribution of the pixel size5,6. After alignment of the dataset by SIFT, these 
deformations are especially prominent in the upper and lower parts of the stack, while with TM, the deformations 
result in a poor alignment quality further away from the template structure, hence at the bottom of the image 
(Fig. 2).

Several automatic approaches to align volume data have been developed previously. The most recent one 
applied to serial section transmission electron microscopy (ssTEM), uses elastic deformations in an optimized 
manner along the z-stack7. One drawback of this method is that local deformations can become very severe which 
does not ensure maintenance of morphological properties throughout the image data (Supplementary Fig. S1, 
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Figure 1.  Workflow of Alignment to Median-Smoothed Template (AMST). The raw data (a) is used to generate 
a pre-alignment (b). The pre-aligned data is smoothed along the z-axis by a median filter which yields the 
template dataset (c) to which the raw data (a) is aligned using affine transformations, i.e. translation, shearing, 
rotation, and scaling (d), thus generating the final result (e). The inset in (a) shows markings in the platinum 
coating used for auto-focus and auto-stigmation operations during image acquisition. These can be used for 
pre-alignment by TM. All images are from the HeLa dataset (EMPIAR-10311).

Figure 2.  Qualitative comparison of (a) alignment by SIFT and (b) alignment by template matching (TM) 
using the HeLa dataset (EMPIAR-10311). The alignment of the platinum layer (appearing as black bar above 
the cell) is a good indicator for the preservation of large-scale morphologies. Slice-wise alignment by SIFT does 
not ensure maintenance of morphology (indicated by crooked orange line at the platinum coating), whereas 
alignment by TM does (straight blue line). Orange arrow heads in close-ups indicate deformed slices which 
could not be properly aligned using translations. This effect showed both in the upper and lower part of the 
dataset for SIFT and with increasing severity towards the lower part for TM.
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Video S1). Moreover, machine learning based segmentation methods, such as membrane prediction by convolu-
tional neural networks (CNNs)8,9, can be sensitive to alignment artifacts. For this reason, much finer alignments 
are necessary for downstream processing.

To overcome the alignment induced drift effect as well as misaligned regions not adjacent to the sample sur-
face, we introduce a novel alignment scheme which we call Alignment to Median Smoothed Template (AMST). 
This method first creates a template dataset by pre-aligning the stack of images with either TM or SIFT and by 
smoothing it along the z-direction using a median filter. The raw data is then aligned to the template using affine 
transformations, i.e. linear transformations which include translation, rotation, shearing, and scaling (Fig. 1). 
Despite the introduction of affine transformations and due to the constraint to the template, our approach does 
not alter morphological properties of the image data. To evaluate alignments and compare AMST to SIFT and 
TM, local re-alignments on cropped regions were used, showing a substantial improvement of alignment quality. 
We demonstrate that better alignment enables a high segmentation quality, which we illustrate by means of an 
organelle boundary prediction using a CNN.

Results
Using AMST, we present substantially improved alignments of two FIB-SEM datasets. Both datasets differ in 
acquisition parameters and sample preparation, highlighting the robustness of the method for different data 
conditions. Additionally, we investigated the effects of AMST alignment in the downstream analysis for 3D seg-
mentation. We opted for a 3D CNN10 and observed that the volume reconstruction of organelle boundaries was 
substantially improved.

Limitations of commonly used alignment methods.  We set out to measure the limitations of two 
state-of-the-art alignment methods commonly utilized to align FIB-SEM datasets. First, we tested SIFT (Fiji 
plugin “Linear Stack Alignment with SIFT”) which is based on the identification of common features on two 
adjacent images. We also evaluated TM, a common alignment strategy for FIB-SEM, which relies on marks intro-
duced into the platinum layer deposited at the surface of the sample to protect it upon acquisition (Fig. 1a). Such 
marks serve as reference for the alignment, as they benefit from a high signal to noise ratio, and can be automat-
ically detected by cross-correlation.

On long ranges in the z-direction, the results from SIFT and TM alignments differed substantially. Using 
SIFT, alignments were not maintained over long z-distances, as only adjacent image slices are aligned one to 
the other. As a result, straight structures such as the platinum deposition at the surface of the sample appeared 
sheared (Fig. 2a). As expected however, when TM was utilized to align the dataset, the flat surface of the sample 
appeared as a straight horizontal line in a zy-projection (Fig. 2b). In this case, the top surface of the sample can 

Figure 3.  Comparison of alignments by SIFT, TM, and AMST using the proposed evaluation scheme, namely 
comparison to local SIFT alignments on the HeLa dataset (EMPIAR-10311). (a) Image slice which is located 
in the center of the resliced crops of (b). (b) Evaluations of the different alignment methods. The microscopy 
images are resliced crops (zy) along the respective dashed line indicated in (a). The plots show the displacements 
an alignment by SIFT performs when run on the areas as indicated by the boxes in (a). The distinct regions 
and their respective displacements are color coded: blue denotes the top part of the dataset, yellow the bottom. 
The peaks in the alignment error plots for SIFT and TM originate from auto-focus and -stigmation operations 
during image acquisition. (c) Comparison of the AMST and SIFT alignments to show the bias of SIFT along 
the z-axis on the morphology of the sample. (d) Comparison of the AMST and TM alignments showing 
the preservation of the overall morphological structures and the efficacy in correcting for the local image 
deformations. The inset highlights the difference of the alignments with respect to the maintenance of smooth 
membranes.
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be considered perfectly flat, as it corresponds to the surface onto which the cells were growing (here a sapphire 
cover-slip used as a support for cell culture and compatible with high pressure freezing). Hence, the alignment 
markings within the coated top of the sample were considered to be straight lines orthogonal to the imaging 
plane. Using them as a reference for TM leads to a better preservation of the morphological properties of the 
sample.

In both SIFT and TM, the alignment strategy was restricted to translational movements. However, due to 
changes in imaging conditions during a standard run with the FIB-SEM, pixel sizes are not constant from one 
image slice to the next and alignment using translations cannot yield good results. Misalignments were clearly 
visible at both the top and bottom of the SIFT aligned dataset (Fig. 2a, see orange arrowheads in crops). Although 
the top of the TM aligned dataset, close to the template, seemed to have negligible alignment errors (Fig. 2b, 
upper crop), the bottom displayed a clear distortion (Fig. 2b, see orange arrowheads in lower crop). In summary, 
with SIFT, local misalignments increased with distance from the center of each slice while with TM, local mis-
alignments increased with distance from the surface.

Fixing local misalignments using rotation, scaling, and shearing at the level of the full image or elastic regis-
tration in local regions, poses the danger of altering the raw data in undesired ways – commonly resulting in a 
cascade of transformations that can alter the original shape of the imaged sample (also see Supplementary Fig. S1 
and Video S1). Another solution leans on the combination of morphology-preserving TM as pre-alignment 
in conjunction with the linear stack alignment workflow implemented in IMOD11. This method can partially 
compensate for local misalignments while maintaining the morphology of the sample. However, we found 
that outlier slices affected the transformation of surrounding slices and introduced rippled membrane surfaces 
(Supplementary Fig. S2). We thus concluded that none of the current solutions are satisfying for a fine alignment 
of a FIB-SEM volume, as they fail to fully compensate for local misalignments, or are prone to introducing long 
range morphological distortions.

AMST outperforms other alignment procedures.  AMST aligns FIB-SEM data and corrects acquisition- 
induced distortions using a three-step workflow. First, the dataset is pre-aligned using either TM or SIFT by trans-
lations (Fig. 1a), depending on the application. Second, the pre-aligned stack is smoothed in the z-direction using 
a median filter (Fig. 1b). This dataset is referred to as the template dataset (Fig. 1c). Third, the template dataset is 
used as a reference to which the original, non-aligned data is registered slice-wise using affine transformations, 
(Fig. 1d) thus generating the final result (Fig. 1e).

Affine transformations are linear mappings based solely on translation, rotation, shearing and uniform scaling 
of images. This implies that parallel lines in the original space will remain parallel in the transformed space. The 
affine transformations for each data slice were performed using the Elastix toolkit12,13 and are formulated as a 
coordinate mapping from the fixed to the moving image domain (  Ω ⊂ → Ω ⊂T: F

d
M

d). In this workflow, 
the fixed images are the slices of the template dataset and the moving images are those from the raw data. The final 
registration result μI T x( ( ))M  consists of affine transformations of the raw data slices to the respective template 
dataset slices which are, for each slice, defined as

= − + +μ A c t cT x x( ) ( ) (1)

where c is the center of the image, t denotes translations, A is a non-restricted 2 × 2 transformation matrix, and 
μ = a a a a t t( , , , , , )x y

T
11 12 21 22  is the parameter vector. The parameter vector contains the matrix elements aij and 

the translations in x and y, tx and ty, respectively. The affine transformations were solved by iterative optimization 
(by gradient descent) of the parameter vector μ by means of mutual information14 defined by Unser et al.15.

To evaluate the performance of AMST in comparison to SIFT and TM, we cropped two regions of 512 × 512 
pixels in the xy-plane – one at the top of the dataset and one at the bottom (Fig. 3a, blue and yellow boxes, respec-
tively). For each crop, we ran a local alignment and the displacements were stored. The magnitude of the displace-
ments was used as an indication of the alignment error for each slice (Fig. 3b, bottom row).

In our evaluation, SIFT showed alignment errors for single slices of around 20 to 30 nm at intervals of approx-
imately 0.1 µm in z-direction. These misaligned slices appeared as a streaky texture in zy-re-slices Figs. 2a and 
3b, SIFT, top and middle) and were equally severe in the top and bottom crops. With TM, the alignment at the 
top part of the slice showed errors of about 10 nm, whereas errors in the bottom part reached up to 60 nm, also 
yielding a streaky pattern clearly visible in the zy-re-slice (Figs. 2b and 3b, TM).

With AMST the error decreased below 10 nm both at the top and bottom of the image with an average dis-
placement error of 3.2 nm which is well below the size of one pixel (5 nm) (Fig. 3b, AMST, bottom). Consequently, 
the texture of zy-re-slices appeared of similar quality compared to an image slice in xy (Fig. 3b, AMST, top and 
middle), thus maintaining the coherence along each axis of the imaged volume.

The main benefits of AMST with TM-pre-alignment are the maintenance of sample morphology and the 
solving of local misalignments. For direct comparison we overlaid yz-re-slices of two different alignment types 
of the same dataset (cyan and red channel), to reveal their relative y-offset in dependence of the z-position 
(Fig. 3c,d). The central slice was set to offset = 0. The overlay of SIFT and AMST showed a strong bias of SIFT in 
the z-direction (Fig. 3c). The same overlay between TM and AMST illustrated that AMST maintained the mor-
phology of the sample coherently along the slices of the stack (Fig. 3d). Here, the slices which contained altered 
pixel sizes after TM became visible (Fig. 3d, inset).

The pre-alignment step described here can be chosen depending on the sample type. When the surface of 
the specimen is flat, as it is the case for adherent cells seeded on cover-slips or sapphire disks, TM was the best 
adapted pre-alignment method. TM maintained the flat sample surface in the resulting alignment as described 
above. However, in some applications like minimal resin embedded samples16, the sample surface is not flat. Here, 
a feature alignment method like SIFT was used for the pre-alignment (Fig. 4). Whilst, in this case, long range 
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deformations caused by the alignment are hard to evaluate or correct for, local jumps due to image deformation 
during the run were still present with an average of 7 nm and up to 80 nm for major outliers (Fig. 4a). Using 
AMST with SIFT pre-alignment, we managed to efficiently abate the amplitude of local displacements in outlier 
slices with a reduction to less than 15 nm and an average error of 2.5 nm (Fig. 4b).

Altogether, these results showed that the AMST alignment method preforms significantly better compared 
to routinely used alignments (TM or SIFT) for preserving the anatomical integrity of specimens acquired by 
FIB-SEM.

Automated 3D membrane reconstruction improves on AMST processed datasets.  To illustrate 
the impact of a high-quality alignment on downstream processing of the data we set up a segmentation pipeline 
to predict organelle boundaries and plasma membrane using the dataset shown in Figs. 2 and 3. We used a 3D 
U-Net10 with batch normalization and L2 regularization.

Our segmentation results show a striking difference of the membrane prediction quality between TM and 
AMST. On the validation set, for the membrane class in TM and AMST aligned datasets, the dice coefficients 

Figure 4.  Comparison of alignments by SIFT and AMST when no alignment marking were available in the 
platinum coating due to embedding by minimal resin technique (P. dumerilii dataset, EMPIAR-10310). (a) 
Cropped region from the top of the dataset after alignment by SIFT and the plot of the alignment quality along 
the same region. The blue and yellow plot correspond to displacement errors in the top and bottom part of 
the dataset, respectively, as described in Fig. 3. Three major outlier slices are visible in approximately 2 µm 
distance, (arrowheads and dashed lines) which correspond to auto-focus and auto-stigmation operations of 
the microscope. (b) Illustration of the same region as in (a) after alignment by AMST with SIFT serving as pre-
alignment. The displacement error of major outlier slices was reduced from up to over 80 nm to an error less 
than 16 nm. Additionally, the alignment quality generally improved from an average in displacement error of 
around 7 nm to 2.5 nm.
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were 0.25 and 0.34, respectively, showing a substantial improvement of the segmentation on the validation set. 
However, the validation set was directly adjacent to the training set, so we additionally selected a distant region 
at the plasma membrane of the cell as a test set. Here, qualitative analysis showed that membranes of organelles 
(endoplasmic reticulum and endosome) were frequently lost for TM, while successfully reconstructed on the 
AMST dataset (Fig. 5a–c, red arrows and Supplementary Video S2). This was further highlighted in the mem-
branes of the ER which appeared fuzzy in the reconstruction from the TM dataset, while being correctly resolved 
from the AMST dataset (Fig. 5a–c, green arrows and Supplementary Video S2). A quantitative assessment of the 
segmentation was measured by comparing the automated segmentation to a manually curated ground truth using 
intersection over union. The AMST alignment indeed led to an improved segmentation efficiency (IoUTM = 0.37 
and IoUAMST = 0.47, Supplementary Fig. S3).

3D rendering also showed the quality difference between membrane reconstructions originating either from 
TM or AMST datasets (Fig. 5d,e). For illustration purposes, the 3D rendering was oriented such that a section of 
the plasma membrane is visible in the foreground. The orange arrow head points to the same location and in the 
same direction parallel to the image slices for all subfigures (Fig. 5b–e). On the reconstruction from TM aligned 
dataset, the pattern created by the major outlier slices (Figs. 2 and 3) broke the connectivity of the plasma mem-
brane (Fig. 5d, yellow arrow). Also, some areas of ER membrane were completely lost (Fig. 5d, magenta arrow). 
The reconstruction performed on the AMST aligned dataset fixed these issues, the plasma membrane was nicely 
reconstructed as a smoother and continuous sheet (Fig. 5e, yellow arrow) and the formerly missing ER stretches 
were successfully recovered (Fig. 5e, magenta arrow).

Discussion
The interest for ultrastructural volume imaging is growing in Biology. When using scanning electron micro-
scopes, all methods are based on imaging the specimen one slice after another. Specialized methods are thus 
crucial to preserve or restore the integrity of the volume by correcting local distortions and keeping coherence 
along the z-axis. Moreover, well aligned image stacks significantly improve the fidelity of the visualization as well 

Figure 5.  Qualitative comparison of 3D U-Net membrane reconstructions using TM or AMST aligned 
datasets (subsets from aligned HeLa dataset, EMPIAR-10311). (a) Raw data slice of the test set. (b,c) Membrane 
reconstructions of the same slice from TM and AMST aligned datasets, respectively. Red and green arrows 
indicate organelle boundaries that were substantially improved upon alignment with AMST. (d,e) 3D 
renderings of a sub-volume containing the predictions shown in (b,c), respectively. Membrane reconstruction 
quality was substantially improved when using AMST aligned data. Jumps in the data alignment as found in 
the TM dataset, frequently disrupted the membrane prediction and thus membrane connectivities. The 3D 
renderings were oriented such that a stretch of the plasma membrane is visible in the front. The orange arrow 
heads (b–e) point to the same location in identical direction parallel to the image slices. The yellow arrows 
highlight the plasma membrane, magenta arrows an ER sheet.
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as the segmentation accuracy and quantification. For the correction of local distortions and the positive effect on 
downstream analysis AMST presents a novel alignment strategy developed for FIB-SEM data volumes.

On samples with a flat surface AMST benefits from a pre-alignment by TM, which best maintains morpho-
logical properties of the sample. It then solves local misalignments, caused by distortions occurring during image 
acquisition, by re-alignment of images based on a morphology-preserving median smoothed template using 
affine transformations. Affine transformations include rotation, shearing and scaling, usually resolved using 
interpolation, which, in extreme cases, can cause blurring in transformed images. However, the actual amount of 
blurring introduced by these transformations in AMST is minimal as the median smoothed template is computed 
over isotropic or nearly isotropic datasets and the transformations are restricted to a level of a few pixels.

Additionally, we show the impact an improved alignment has on automatic segmentation of organelles and 
plasma membranes. Although it is well known that deep learning networks are resilient to errors in alignment, the 
ability of the CNN to predict improved substantially upon re-alignment. This enabled a more faithful recovery of 
structures such as ER membrane sheets. Also, smooth membranes, such as the plasma membrane, showed sub-
stantially less artifacts and could, on the re-aligned dataset, be reconstructed as one continuous plane.

AMST is a tool developed for fine tuning an aligned dataset to correct for alignment errors originating from 
a random alteration in pixel sizes, where the deformations of adjacent slices are non-correlated. Consequently, 
the AMST re-alignment step cannot curate alignment errors on larger scales such as a drift effect as described for 
SIFT aligned datasets. This kind of alignment error should be solved at the level of the pre-alignment. Defective 
or missing slices are currently not specifically handled, as, due to the median filtering, single aberrant slices do not 
have a negative effect on the final result. A further improvement of the workflow could include a more specifically 
adapted pre-alignment which detects and curates missing or damaged slices.

Avoiding larger scale alignment errors is especially difficult due to the lack of z-references. In FIB-SEM data-
sets originating from cells growing on a flat cover-slip, we propose that the most sensible approach to align along 
z is to consider the top of the sample with the platinum coat as a flat surface without any type of slope or variation. 
An uneven sample surface, for example due to dust particles, can introduce a morphological error in affected 
slices. Since this usually affects multiple consecutive slices, AMST will not correct for this. In these particular 
cases, a manual correction is needed for the affected slices as part of the pre-alignment step and before running 
AMST. If a general slope in the surface of the sample is known, a possible improvement could be to introduce the 
slope artificially within an extra step using an affine transform after applying AMST.

In addition, the introduction of side fiducial marks can be used to measure thickness variations17. FIB-SEM 
datasets show a certain degree of inaccuracy between the thickness of each section at a nanometer scale, which 
can vary up to 50% of the expected z-thickness, altering the final voxel size18. The reasons attributed to these 
fluctuations are multiple: the nature of sample materials which can change during the FIB slicing, thermal fluctu-
ations or charge balance stabilization between the ion and the SEM beams. AMST is focused on correcting SEM 
distortions in x- and y-direction while maintaining morphology along the z-axis (based on a pre-alignment). As 
it is not designed to compensate for uneven voxel sizes, future implementations could extend the present align-
ment functionality to 3D. In conclusion, we believe AMST is a straight forward solution that could be generalized 
to aligning any datasets produced by FIB-SEMs, paving the way for more accurate volume segmentation and 
analysis.

Methods
Sample preparation and imaging.  The data in Figs. 1–3 and 5 show one cell from a cell culture of 
GalNAc-T2–GFP HeLa cells19 that were grown on a sapphire disk (Wohlwend) and high-pressure frozen (HPM 
010, ABRA Fluid AG). The method for freeze substitution (EM AFS, Leica) and Epon embedding was adapted 
from Walther et al. and Villinger et al.20,21. The freeze substitution medium contained 1% osmium tetroxide, 0.5% 
uranyl acetate and 5% water diluted in acetone. The temperature was raised from −90 °C to 20 °C within 22 hours 
(5 °C per hour). The samples were then kept at 20 °C for an additional hour and then rinsed several times with 
pure acetone. Epon infiltration was performed in the microwave (Pelco BioWave, Ted Pella) in multiple steps (all 
were 3 minutes at 250 W with vacuum on) while gradually increasing the resin concentration (1 × 50% resin/ace-
tone, 3 × 100% resin). The resin was polymerized at 60 °C for 48 hours. Samples were mounted onto SEM stubs 
with a carbon sticker, surrounded with silver paint and sputter coated with gold (Quorum Q150R S).

Platynereis dumerilii (Fig. 4) were raised in natural sea water under a 16 hour light and 8 hour dark cycle at 
18 °C in an established culture at the European Molecular Biology Laboratory in Heidelberg. At six days post 
fertilization, P. dumerilii were anaesthetized (in a 1:1 solution of 7.5% MgCl2 and sea water for 10 minutes) and 
fixed in 2% formaldehyde in 0.1 M cacodylate buffer. Immediately followed by a second step of fixation in 2.5% 
glutaraldehyde in 0.1 M cacodylate buffer. Both fixation steps were completed within a microwave (Pelco Biowave, 
Ted Pella) at a regime of two 14 minute cycles of 2 minutes on/2 minutes off, at 150 W under vacuum. The method 
for en bloc staining for P. dumerilii was adapted from Hua et al.22. After fixation samples were rinsed with 0.1 M 
cacodylate buffer and post fixed with 2% osmium tetroxide in 0.1 M cacodylate buffer. Following this, samples 
were immersed in 2.5% potassium ferrocyanide also buffered with 0.1 M cacodylate, then 1% thiocarbohydrazide 
(aqueous) and lastly 2% osmium tetroxide (aqueous). Each step was performed in the microwave and all steps 
excluding the first osmium tetroxide were followed by thorough rinsing with distilled water. Samples were dehy-
drated with increasing concentrations of ethanol (20, 50, 70, 90, 3 × 100% in the microwave each for 40 s at 250 W, 
no vacuum) and infiltrated with durcupan resin (25, 50, 75, 2 × 100% in microwave each for 3 minutes at 250 W 
with vacuum on plus one step of 100% overnight on the bench). Samples were embedded using the minimal resin 
technique16. After polymerization at 60 °C, they were mounted onto SEM stubs with silver epoxy and sputter 
coated with gold (Quorum Q150R S).

FIB-SEM image acquisition was performed with the Zeiss Auriga 60 or a Zeiss Crossbeam 540 using the Atlas 
5 software (FIBICs, Carl Zeiss Microscopy). We used the sample preparation workflow of Atlas 3D in the software 
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package containing the following steps: (i) Deposition of a 1 µm of platinum coating onto the sample surface at 
the region of interest using the gas injection system (GIS), (ii) FIB etching of autotune marks into the platinum 
followed by an additional insulator coating to fill the marks, and (iii) exposition of the sample imaging surface by 
FIB-milling of an initial trench. For both datasets the images were acquired at 1.5 kV with the energy-selective 
back-scattered electron (EsB) detector with a grid voltage of 1100 V, analytical mode at a 700 pA current. The 
dwell time was 4 µs/10 µs, with line average of 1. For the HeLa dataset images had a 5 nm xy pixel size and 8 nm 
slicing thickness in the z-direction and for the P. dumerilii dataset, images had a 10 nm xy pixel size and 10 nm 
slicing thickness. During the 3D data acquisition the FIB was operated at 1 nA/1.5 nA with the SEM and the FIB 
operating simultaneously23. In the HeLa cell dataset the tracking was active for the first half, but then failed. For 
the P. dumerilii there was no form of z-slice thickness tracking performed.

Alignment to median smoothed template (AMST).  The AMST workflow is composed of three major 
steps, namely (i) generation of a pre-alignment, (ii) median-smoothing of the pre-alignment yielding a template 
dataset, and (iii) alignment of the raw data to the template dataset, described in the following in detail:

	 (i)	 When available, alignment markings in the platinum coating were used. These were assumed to be located 
at the same position within each slice of the image data and, consequently, served as a strong reference to 
guide the TM to generate a pre-alignment. We use the Fiji plugin developed by Tseng (https://sites.google.
com/site/qingzongtseng/template-matching-ij-plugin) where the template is matched with normalized 
correlation coefficient. To obtain best possible results, subpixel displacements with bilinear interpolation to 
place slices according to the template position were used.
If no alignment markings were available, alignment by SIFT (“Linear stack alignment with SIFT” in Fiji3) 
was used while only allowing translational movement alongside the default parameter set including an 
initial Gaussian blur of σ = .1 6 px.

	(ii)	 The resulting aligned data was then smoothed with a median filter (filter size of 15 pixels along the z-axis, 
no filtering along the x- and y-axes) to generate the template dataset. By this means, information from 
slices that were altered in pixel size with respect to their neighbors (due to aberrations or charging in the 
image acquisition process) was removed.

	(iii)	 For the final step, the Elastix toolkit12,13 was used to align the raw data to the template dataset. The raw data 
was mapped to the template using affine transformations, meaning that the image could be translated, 
rotated, scaled, and sheared. The registration was solved in 200 iterations using gradient descent as 
introduced by Klein et al.24 and by Mutual Information14 serving as similarity measure. As, in practice, 
Elastix requires moving and fixed images to already be in close proximity, we added an optional translation 
step (SIFT implementation from the Silx python package3, after an initial Gaussian blurring with 
σ = .1 6 px), hereby bringing the raw data close to the template before applying the affine transformation 
with Elastix.

The current implementation in python can be found on GitHub (https://github.com/jhennies/amst). The runt-
ime of the workflow depends linearly on the number of slices. The full workflow runs on a desktop computer on 
CPU (median smoothing and affine registration) and GPU (the optional SIFT step) within several hours for an 
average-sized FIB-SEM dataset (approximately 1 hour for a dataset with approximately ×6000 3000 pixel section 
size and 512 slices using a maximum 12 CPU cores; also see Supplementary Table S1). The components (median 
smoothing and re-alignment) are individually parallelized over the image slices, resulting in increased perfor-
mance with additional CPU cores available. Memory consumption is not limiting, as only the currently processed 
image slices are loaded from disk.

Evaluation of alignments.  FIB-SEM data, although showing aberrations with respect to pixel sizes on a 
larger scale, was assumed to have homogeneous pixel sizes on a local scale (e.g., ×512 512 pixels). To evaluate the 
quality of an alignment of a full dataset, first regions of 512 × 512 pixels were cropped along a sensible z-range 
using the aligned data. The two regions were chosen according to the following criteria: (i) A region contains 
features that can be used to align over the full window and in all its z-slices; (ii) the regions are as distant as possi-
ble to each other such that they represent different parts of the full dataset (e.g., one region near the top and one 
near to bottom of the dataset, Fig. 2a,b). To fulfil both (i) and (ii) most effectively, the data usually needed to be 
split into subsets along the z-stack. Subsequently, we used SIFT to compute displacements that would locally 
optimize the alignment, comparing one slice to the previous. The absolute value of this displacement was used as 
quality measurement, as it represents the local error of the overall alignment. We plotted the error, expressed in 
nanometers, over the image slices (z-axis). Additionally, for qualitative alignment, we overlaid z-re-slices of SIFT 
and AMST as well as TM and AMST results, respectively. Here we put TM/SIFT in the red channel and AMST in 
the cyan channel such that differences in the respective alignments become visible.

Automated 3D membrane reconstruction.  Automated 3D membrane reconstruction was performed 
using a CNN implemented in Keras25 with Tensor Flow backend26 with a 3D U-Net architecture as described in 
Çiçek et al.10 and an input volume size of 64 × 64 × 64 voxels. The network was trained in batches of one volume 
and by using batch normalization. Regularization was performed using L2 regularization with the regularization 
parameter λ = −10 5. Our annotated data consisted of a 512 × 512 × 64 voxel densely annotated subset of the 
HeLa dataset which we split into training data (3/4) and validation data (1/4), individually for the TM and AMST 
aligned datasets. The model was trained for 100 epochs with 100 steps per epoch until convergence and the epoch 
after which the model performed best on the validation data was selected. The results shown were computed on 
two 512 × 512 × 512 voxels test sets, of the same region for TM and AMST respectively, by splitting the test sets 
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into 64 × 64 × 64 cubes with an overlap of 32 voxels in each dimension. The area for the test sets was chosen such 
that it was distant to the training and validation data as well as distant to the markings in the insulator coating 
used for alignment. 3D rendering of the stitched probability map of the test sets was performed using Drishti27.

Data availability
The datasets used for method development and shown in this manuscript are available in the EMPIAR 
repository: HeLa: https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10311/, P. dumerilii: https://www.ebi.ac.uk/
pdbe/emdb/empiar/entry/10310/
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