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ABSTRACT Here, we present complete genome sequences of four Enterococcus fae-
cium isolates, obtained from two patients with apparent vancomycin-resistant En-
terococcus faecium bacteremia; these isolates also carried two mutations known to
be associated with daptomycin resistance. Sequences were obtained using de novo
and hybrid assembly of Oxford Nanopore and Illumina sequence data.

Enterococcus faecium, a Gram-positive opportunistic bacterial pathogen, has become
one of the leading causes of nosocomial infections (1). Bacteremia caused by

vancomycin-resistant Enterococcus faecium (VREfm) is associated with increased mor-
tality and length of hospital stay.

We previously sequenced 48 VREfm isolates collected from the University of Arkan-
sas for Medical Sciences (UAMS) Hospital using short-read sequencing (2). Here, we
report the complete genome sequences of four clinical VREfm isolates. These four
VREfm isolates were collected before and after daptomycin treatment from two pa-
tients with prolonged bacteremia at the UAMS. Patient 1 was a 63-year-old male with
acute myeloid leukemia (AML) who underwent chemotherapy, and patient 2 was a
64-year-old male with myelodysplastic syndrome who underwent a haploidentical stem
cell transplant. For whole-genome sequencing using Oxford Nanopore Technologies
(ONT) and the Illumina platform, we selected two isolates from each patient, the first and
last isolates from an episode of VREfm bacteremia during hospitalization, as follows: two
isolates obtained on 28 June 2018 (UAMSEF_01) and 7 July 2018 (UAMSEF_08) from patient
1 and two isolates obtained on 18 September 2018 (UAMSEF_09) and 26 September 2018
(UAMSEF_20) from patient 2.

The VREfm isolates from positive blood cultures were subcultured on blood agar
plates. Isolated colonies on the blood agar plates were picked and resuspended into a
DNA/RNA Shield collection and lysis tube (Zymo Research, Irvine, CA). Genomic DNA
was extracted from each tube using a ZymoBiomics miniprep kit (Zymo Research). Each
genomic DNA sample was subdivided into two aliquots; one was subjected to ONT
library preparation and the other to Illumina library preparation. The ONT library
preparation was performed using a Rapid Barcoding kit (catalog number SQK-RBK004
[ONT]). The barcoded constructed library (all 4 samples) was loaded into an R9.4/FLO-
MIN106 flow cell on a MinION device and run for 48 h. ONT raw signals were base
called, demultiplexed using Albacore v2.3.4 (ONT), and adapter trimmed with Porechop
v0.2.3 (https://github.com/rrwick/Porechop) using default parameters. Following the
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pipeline used by Jenjaroenpun et al. (3), the reads were filtered by a mean quality score
of 9 and a minimum read length of 2,000 bases to retain 0.86, 0.65, 1.33, and 1.11 Gb
in total for UAMSEF_01, UAMSEF_08, UAMSEF_09, and UAMSEF_20, respectively. The
Illumina library was prepared using a Kapa HyperPlus kit (Roche), and paired-end
sequencing was done on the NextSeq 550 platform. We ran fastp v0.19.5 with default
parameters (4) to perform quality control, read filtering, and base correction of Illumina
reads, retaining 0.77, 0.87, 1.14, and 0.81 Gb in total for UAMSEF_01, UAMSEF_08,
UAMSEF_09, and UAMSEF_20, respectively. We performed de novo hybrid assembly of
Illumina and ONT reads (5) using Unicycler v0.4.4 (6) with default parameters. In the
case of a single contiguous circular chromosome not being produced by Unicycler,
we first assembled the chromosome using Canu v1.8 (7), then circularized it using
Circlator v1.5.5 (8) with modified parameters (–merge_min_id 85 –merge_breaklen
1000 –verbose –assembler canu –split_all_reads – data_type nanopore-raw – bwa_opts
“-x ont2d”), and then took two additional steps to improve assembly quality, namely,
one round of correction with ONT reads using NanoPolish v0.11.0 (9) and two iterative
error corrections with Illumina reads using Pilon v1.22 (10). The quality of genome
sequences was checked using QUAST v5.0.2 (11) and annotated by the Prokaryotic
Genome Annotation Pipeline (PGAP) (12). The Comprehensive Antibiotic Resistance
Database (CARD) (13) was used to complement the detection of antibiotic resistance
genes in the assembled genomes.

For patient 1, de novo hybrid assembly generated complete circular chromosomes
of 2,824,869 bp (G�C content, 38.16%) and 2,827,987 bp (G�C content, 38.16%).
Annotated genome assemblies are publicly available in the NCBI database under
GenBank accession numbers CP035648 and CP035654, respectively. For patient 2, the
assembly of both isolates resulted in complete chromosomes of 2,912,202 bp (G�C
content, 38.10%) and 2,912,170 bp (G�C content, 38.10%), available under accession
numbers CP035660 and CP035666, respectively. Each isolate contains five plasmids,
listed in Table 1. All VREfm isolates carried a transferable plasmid harboring a vanA
gene. In addition, all VREfm isolates harboring comutations (LiaST120A and LiaRW73C)

TABLE 1 Isolate details and associated features

Sample
GenBank
accession no. Type of contig

Total
length (bp)

G�C
content (%)

No. of predicted
ORFsa

vanA
present

UAMSEF_01 CP035648 Circular chromosome 2,824,869 38.16 2,800 No
CP035649 Circular plasmid 257,028 35.71 302 No
CP035644 Circular plasmid 37,314 35.14 44 Yes
CP035645 Circular plasmid 6,303 36.09 9 No
CP035646 Circular plasmid 4,316 36.93 5 No
CP035647 Circular plasmid 3,030 34.59 4 No

UAMSEF_08 CP035654 Circular chromosome 2,827,987 38.16 2,804 No
CP035655 Circular plasmid 256,961 35.71 303 No
CP035650 Circular plasmid 37,293 35.15 44 Yes
CP035651 Circular plasmid 6,303 36.09 9 No
CP035652 Circular plasmid 4,316 36.93 5 No
CP035653 Circular plasmid 3,008 34.64 4 No

UAMSEF_09 CP035660 Circular chromosome 2,912,202 38.10 2,918 No
CP035661 Circular plasmid 295,052 35.67 351 Yes
CP035656 Linear plasmid 81,204 33.54 98 No
CP035657 Circular plasmid 6,303 36.09 9 No
CP035658 Circular plasmid 4,316 36.93 5 No
CP035659 Circular plasmid 3,008 34.64 4 No

UAMSEF_20 CP035666 Circular chromosome 2,912,170 38.10 2,918 No
CP035667 Circular plasmid 294,919 35.66 351 Yes
CP035662 Linear plasmid 81,272 33.53 98 No
CP035663 Circular plasmid 6,303 36.09 9 No
CP035664 Circular plasmid 4,316 36.93 5 No
CP035665 Circular plasmid 3,008 34.64 4 No

a ORF, open reading frame.
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commonly associated with daptomycin resistance (14) were identified against the
CARD database.

Data availability. Accession numbers are listed in Table 1. Raw sequences were

deposited into the NCBI SRA database under BioProject number PRJNA518133.
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