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Phenotypic Subtypes of OSA

A Challenge and Opportunity for Precision Medicine
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Current strategies for the management of OSA reflect a one-size-fits-all approach. Diagnosis

and severity of OSA are based on the apnea-hypopnea index and treatment initiated with CPAP,

followed by trials of alternatives (eg, oral appliances) if CPAP “fails.” This approach does not

consider the heterogeneity of individuals with OSA, reflected by varying risk factors, patho-

physiological causes, clinical manifestations, and consequences. Recently, studies using ana-

lytic approaches such as cluster analysis have taken advantage of this heterogeneity to identify

OSA phenotypes, or subtypes of patients with unique characteristics, that may enable more

personalized approaches to prognostication and treatment. Examples include symptom-based

subtypes such as “excessively sleepy” and “disturbed sleep” with differing impact of CPAP on

symptoms and health-related quality of life. Polysomnographic subtypes, distinguished by

respiratory event association with hypoxemia, arousals, or both, exhibit varying risks of car-

diovascular disease and response to therapy. This review summarizes the findings from recent

cluster analysis studies in sleep apnea and synthesizes common themes to describe the po-

tential role (and limitations) of phenotypic subtypes in precision medicine for OSA. It also

highlights future directions, including linking of phenotypes to clinically relevant outcomes,

rigorous and transparent assessment of phenotype reproducibility, and need for tools that

categorize patients into subtypes, to prospectively validate phenotype-based prognostication

and treatment approaches. Finally, we highlight the critical need to include women and more

racially/ethnically diverse populations in this area of research if we are to leverage the het-

erogeneity of OSA to improve patient lives. CHEST 2020; 157(2):403-420
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OSA is a heterogeneous syndrome, with
varied predisposing factors,1

pathophysiological mechanisms,2 clinical
presentations,3,4 and consequences of
respiratory events.5-8 Importantly, the
efficacy of OSA treatment and its impact on
outcomes may also vary depending on these
characteristics.9-11 However, the current
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paradigm for diagnosis and management of
OSA largely reflects a one-size-fits-all
approach whereby polysomnographic data
are reduced to a single metric (the apnea-
hypopnea index [AHI]) and patients are
managed by trial and error initially with
CPAP, followed by attempts at other
treatments (eg, oral appliances) for CPAP
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therapeutic failure. Approaching a heterogeneous
condition such as OSA in this way may have important
consequences, including suboptimal treatment
adherence and effectiveness leading to inefficient use of
the health-care system and patient resources. Moreover,
this approach may be one reason that the field’s large,
multicenter clinical trials of CPAP therapy have shown
modest or no risk reduction in cardiovascular disease,
death, or improvement of neurocognitive outcomes.12-15

An alternative approach is to leverage the heterogeneity
of OSA by classifying it into smaller, more homogeneous
disorder subtypes, sometimes referred to as
phenotypes.16 Features used to identify such phenotypes
may come from a variety of observable and measurable
OSA characteristics such as signs, symptoms,
demographic characteristics, polysomnographic and
physiologic metrics, or comorbidities. The expected
benefit of this approach is that separate phenotypes
could allow for a more specific diagnostic and treatment
strategy, which may lead to improved patient outcomes
and successful clinical trials. For example, an OSA
anatomical phenotype defined by lack of complete
concentric palatal collapse has helped identify
responders to airway neurostimulation, enabling a new
treatment option.17 Such approaches are an important
step toward developing precision medicine for OSA,
whereby treatments are targeted to the needs of
individual patients on the basis of genetic, biomarker,
phenotypic, or psychosocial characteristics that
distinguish a given patient from others with the same
disorder.18

Phenotyping strategies can be broadly grouped into two
analytic approaches: hypothesis-driven (or supervised)
and hypothesis-generating (or unsupervised).19

Identification of the airway collapse phenotype
described earlier is an example of a hypothesis-driven
approach using traditional regression methods, which
are suited for evaluation of individual or a few disorder
features with outcomes of interest. In contrast,
hypothesis-generating approaches, using unsupervised
learning methods such as cluster analysis, focus on
discovering emerging patterns within the data by
grouping subjects into homogeneous categories on the
basis of unique associations between subject features.
This is accomplished by assessing similarity (or
dissimilarity) between subjects by using metrics such as
correlation or distance based on the features used to
characterize each individual. Ideally, members of each
cluster are as similar as possible to each other and as
different as possible from those in other clusters. Cluster
404 CHEST Reviews
analysis techniques, such as hierarchical, K-means, or
latent class analysis, have been used by several groups to
identify symptom,20 polysomnographic,21 and
comorbidity22 clusters among patients with OSA, with
differing quality of life (QOL),20 treatment use and
benefit,23 and risk for developing cardiovascular
disease.21,24,25

The purpose of the current review was to: (1) summarize
the findings and synthesize the themes from cluster
analysis studies that aim to identify OSA phenotypes; (2)
describe the role of phenotypic subtypes of OSA in
precision medicine approaches to sleep apnea; and (3)
highlight important future directions and unanswered
questions on this topic. Discussions of precision
medicine in OSA not specific to phenotypic clusters
have also been recently explored.26-29

Examples of OSA Patient Clusters and
Associated Outcomes
In the last decade, many clusters have been identified
among study participants evaluated for sleep apnea.
These studies vary dramatically in terms of individuals
included (eg, population, clinical, administrative
cohorts), sample size (n ¼ 161-72,217), patient features
used to identify the clusters (eg, symptoms,
polysomnographic indices), and outcomes (eg,
cardiovascular disease, CPAP use). A summary of the
designs and main findings are noted in Table 1, and the
following sections describe the findings according to the
domain of features used.

Patient Symptoms

Assessment of the heterogeneity of OSA by using cluster
analysis has been most consistently applied to patient
symptoms.20,23,24,30,31 Individuals studied include both
clinical20,23,30 and population24,31 cohorts with AHI $
15 events per hour, assessed with the same
questionnaires on symptoms of sleepiness (eg, drowsy
driving), insomnia (eg, early awakenings), nighttime
disturbance (eg, restless sleep), upper airway symptoms
(eg, snoring), and other related reports (eg, morning
headaches). In a seminal study by Ye et al,20 in the
predominantly male Icelandic Sleep Apnea Cohort
(n ¼ 822), three clusters of patients were identified,
confirming that sleepiness captures only a part of the
OSA symptomatic spectrum.3 The “Excessively
sleepy” cluster (prevalence of 42%), with its highest
Epworth Sleepiness scale (ESS) scores, falling asleep
involuntarily, and drowsy driving, was consistent with
the “Classic OSA” cluster and comprised the youngest
[ 1 5 7 # 2 CHES T F E B R U A R Y 2 0 2 0 ]



TABLE 1 ] Summary of Cluster Analysis in Patients With Sleep Apnea (or Referred for Sleep Apnea Evaluation) According to Variable Domain Used for
Classification

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

Symptoms (14
questions) ESS

Mazzotti
et al,24

2019

Population (SHHS, US)
N ¼ 1,207,
PSG
AHI $ 15
Hypopnea: not defined

LCA 4 clusters:
1: Disturbed sleep (12%)—
predominant insomnia symptoms

2: Minimally symptomatic (33%)—
lowest symptom burden of all
clusters

3: Excessively sleepy (17%)—
predominant sleepy, involuntary
sleep, drowsy driving

4: Moderately sleepy (39%)—
snoring, napping

Outcomes: Prevalent (OR) and incident
CVD (HR)

Adjusted for: age, sex, BMI, AHI,
presence of DM, HTN, cholesterol,
triglycerides, smoking status, alcohol
usage, race, ethnicity, and lipid-
lowering medication

Prevalent:
� Cluster membership not associated

with CVD overall
� Increased risk of HF for “Excessively

sleepy” (OR, 3.1-3.7) vs all other
clusters

Incident:
Increased risk of incident CVD or death for
“Excessively sleepy” vs all other clusters
(HR, 2.2-2.4)

Symptoms (16
questions) ESS
Comorbidities

(CVD, HTN, and
DM)

Kim et al,31

2018
Population (South

Korea)
N ¼ 422
HSAT
AHI $ 15
Hypopnea:
30% flow decrement
with 4% desaturation

LCA 3 clusters:
1. Disturbed sleep (14%)
2. Minimally symptomatic (56%)
3. Excessively sleepy (30%)

No outcomes reported
No differences between clusters in AHI or

BMI
HTN highest among “Disturbed sleep”

Symptoms (19
questions) ESS
Comorbidities
(CVD, HTN, DM, and

COPD)

Ye et al,20

2014
Clinical (Iceland)
N ¼ 822
HSAT
AHI $ 15
Hypopnea:
30% flow reduction
with 4% desaturation

LCA 3 clusters
1. Disturbed sleep (33%)
2. Minimally symptomatic (25%)
3. Excessively sleepy (42%)

Outcomes: QOL (SF-12 physical and
mental components)

QOL highest for “Minimally symptomatic”
No differences between clusters in AHI or
BMI

Comorbidities highest in “Minimally
symptomatic”

(Continued)
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TABLE 1 ] (Continued)

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

Symptoms
(17 questions) ESS

3 comorbidities
(CVD, HTN, and
DM)

Keenan
et al,30

2018 and
Pien
et al,23

2018

Clinical (Iceland)
N ¼ 215 (Keenan

et al30)
N ¼ 706 (Pien et al23)
HSAT
AHI $ 15
Hypopnea:
30% flow reduction
with 4% desaturation

LCA 3 clusters:
1. Disturbed sleep (33%)
2. Minimally symptomatic (29%)
3. Excessively sleepy (38%)
Nearly identical to Ye et al20/2014
regarding age, BMI, AHI, and
comorbidity distribution, which did
not differ among clusters

Outcomes (Pien et al23): changes in
symptoms, QOL, comorbidities,
anthropometrics over time; CPAP
adherence

Effect of CPAP on symptoms was most
notable in “Excessively sleepy” on the
sleepiness symptoms (eg, drowsy
driving, falling asleep during the day)

Both CPAP users and nonusers improved
in “Disturbed sleep.” CPAP users
improved in sleepiness and insomnia
symptoms

QOL improved in “Excessive sleepy” only
“Minimally symptomatic” with highest
rate of HTN and CVD at follow-up

Symptoms (17
questions), ESS

3 comorbidities (CVD,
HTN, and DM)

Keenan
et al,30

2018

Clinical (multi-ethnic,
multinational)

N ¼ 757
PSG/HSAT
AHI $ 15
Hypopnea:
30% flow reduction
with 4% desaturation

LCA 5 clusters:
1. Disturbed sleep (19%)
2. Minimally symptomatic (20%)
3. Upper airway with sleepiness
(similar to “Excessively sleepy”
from Icelandic studies) (22%)

4. UA symptoms (19%)
5. Sleepiness-dominant (similar to
moderately sleepy in SHHS study)
(20%)
New clusters (4 and 5) composed of
patients in “Minimally symptomatic”
and “Excessively sleepy” in Icelandic
study

Similar trends in age, BMI, and AHI
among three common clusters to above
studies

“Upper airway with sleepiness” is
younger, more obese, and sleepy than
others; no clinical difference in AHI

“Disturbed sleep” with highest proportion
of women and highest rates of
comorbidities (not consistent with
SHHS, South Korean, or Icelandic
studies)

Multiple variable
domains:
Symptoms
Comorbidities (HTN,

DM, CVD, and
others)

Anthropometrics
(Age, sex, and
BMI)

AHI not included

Bailly
et al,32

2016

Clinical (registry in
France)

N ¼ 18,263
Sleep assessment not
specified
AHI $ 15
Hypopnea: no

specified

Multiple
correspondence
analysis for
feature selection
followed by
hierarchical
clustering

6 clusters:
1. Young symptomatic (10%)
Low BMI, few or no comorbidities,
high sleepiness, and near misses
driving; medium T90%

2. Older obese (23%)
Lowest ESS, few comorbidities

3. Multidisease, old, obese (19%)
Symptomatic but low ESS,
HTN, diabetes, CVD; highest T90%

No outcomes reported
Fatigue differed by cluster. Highest among

“Young symptomatic” and
“Multidisease symptomatic”

No difference in depression scores

(Continued)
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TABLE 1 ] (Continued)

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

4. Young snorers (15%)
Lowest BMI, few symptoms no
comorbidities; lowest T90%
5. Drowsy obese (19%)
Highly symptomatic, few
comorbidities

6. Multidisease, obese, symptomatic
(15%)

Highly symptomatic, HTN, diabetes,
and CVD; high T90%

Multiple variable
domains:

Anthropometrics
Sleep symptoms
Insomnia report
Depressive

symptoms
Comorbidities

(HTN, CVD, and
DM)

AHI not included

Gagnadoux
et al,34

2016

Clinical (France)
N ¼ 5,983
PSG/HSAT

AHI $ 15
Hypopnea: not defined

LCA 5 clusters:
1. Female OSA with insomnia (14%)
Middle-aged, obese women with
insomnia and comorbidities

2. Male OSA with comorbidities
(15%)

3. Severe sleepy OSA without
comorbidities (18%)
Youngest, lack of comorbidities
4. Mild sleepiness, insomnia (32%)
Non-obese with minimal
comorbidities
5. Older, comorbid OSA (21%)
Minimally symptomatic

Outcome: CPAP success at 6 mo (this
metric defined as a combination of)
Adherence ($ 4 h daily) and (ESS
decrease of $ 4 OR, increase of $ 7
points in vitality from SF-36

Adjusted for: marital, educational, and
employment status; model, AHI, and
baseline ESS score

“Female OSA with insomnia” (OR, 0.66)
“Mildly sleepy, insomnia” (OR, 0.66) and
“Older, comorbid OSA” (OR, 0.38) with
lower likelihood of CPAP success
vs “Severely sleepy OSA without
comorbidities”

“Older, comorbid OSA,” despite highest
CPAP use/adherence, had lowest
reduction in ESS and improvement in

QOL
AHI differed by significance with narrow
range (38-46)

Multiple variable
domains:
Sleepiness
Demographic

characteristics
Anthropometrics
Polysomnographic

indices
Lung function
Blood gases
Comorbidities (HTN,

DM, CVD, and
others)

Lacedonia
et al,36

2016

Clinical (Italy)
HSAT
N ¼ 198
AHI $ 5
Hypopnea:

AASM 2007 criteria
(recommended or
alternative not
specified)

Patients excluded:
OHS
COPD
NMD

PCA for feature
selection,
Network analysis
with hierarchical
and local
optimizing
clustering

3 clusters:
1. Severe, hypoxic OSA (50%)
Most sleepy, obese, small lung
function

2. Moderate, nonhypoxic OSA (51%)
3. Severe, minimally hypoxic OSA
(9%) Large AHI vs ODI discrepancy
Less sleepy

No outcomes reported
No differences in comorbidities, age, or

sex
No differences in blood gases or lung
function

(Continued)
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TABLE 1 ] (Continued)

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

Multiple variable
domains:

Demographic
Anthropometric
Symptoms
Comorbidities (CHF,

pulmonary HTN,
and arrhythmias)

AHI not included

Ferreira-
Santos and
Pereira
Rodrigues,33

2018

Clinical (Portugal)
N ¼ 211
AHI: cutoff not defined
Patients excluded:
Severe lung
diseases
Neurological

conditions

K-modes
categorical
clustering

3 clusters:
1. Nonobese, young, drowsy (55%)
2. Female, poor sleep (20%)
3. Obese, older, non-drowsy (25%)

No outcomes reported
No difference in AHI or comorbidities

among clusters
“Obese, older, non-drowsy” with highest
Mallampati score and neck
circumference

“Female, poor sleep” with headaches and
nonrestorative sleep

Multiple variable
domains:

19 variables:
Demographic
Health habits
BP
AHI, T90
Comorbidities
Medications

Quan et al,25

2018
Clinical (clinical trial,

multinational)
N ¼ 2,649
Patients with CAD and/
or CeVD and OSA
(ODI $ 12) on home
sleep apnea test
randomized to
receive CPAP or
usual care

LCA 4 clusters:
1. CeVD and DM (9%)
2. CAD and DM (15%)
3. CeVD (37%)
4. CAD (39%)

Outcomes. Primary, composite of death
from any CV cause or incident MI,
stroke, hospitalization for unstable
angina, HF, or TIA (HR by cluster).

Adjusted for: posterior probability of
cluster membership
Primary outcome:

CAD and DM (HR, 2.1)
CeVD and DM (HR, 1.7)
CAD and DM (HR, 1.4)
CAD (referent)
Rate of primary outcome by < 4 h/night
vs $ 4 h/night CPAP use:

CeVD and DM (21% vs 5%; P ¼ .015)
Other clusters with no significant
differences

Comorbidities (30
conditions, ICD-9
defined)

Turino
et al,40

2017

Clinical (Spain)
N ¼ 72,217
Patients on CPAP
therapy
AHI, hypopnea not
reported

Multiple
correspondence
for feature
selection,

K-means for
clustering

6 clusters:
1. Neoplastic (10%)
2. Metabolic syndrome (28%)
3. Asthmatic (6%)
Most women (53% of cluster)

4. Musculoskeletal and joint disorders
(10%)

5. Few comorbidities (35%)
6. Oldest CVD (10%)

Outcomes: all-cause mortality,
hospitalizations,

Health-care utilization
“Neoplastic” and “Oldest CVD” with
highest mortality (15%) and
hospitalizations (> 1 visit, 30%-37%)

Lowest mortality for “Metabolic
syndrome” and “Musculoskeletal and
joint disorders” (< 2%)

Comorbidities (19
components of
Charlson
comorbidity index),
AHI

Vavougios
et al,22

2016

Clinical (Greece)
N ¼ 1,472
Patients referred for
PSG
AHI: no cutoff used

Hypopnea:
50% flow reduction
or 30% flow
reduction with
arousal or
3% desaturation

PCA for feature
selection,

“Two-step
clustering”
(“preclustering”
followed by
hierarchical
clustering)

6 clusters:
1. Mild OSA, no comorbidities (20%)
Increased CAD vs no OSA
2. Moderate OSA, high comorbidity
(7%)
Older, obese, low oxygen nadir
OSA

3. No OSA, no comorbidities (17%)
Youngest, no sleepiness

4. Severe OSA, no comorbidities
(31%)

Obese, sleepy

No outcomes reported
More obese, older individuals tended to be

in more comorbid clusters
Comorbidities cluster independently of the
AHI or hypoxemia (measured by nadir
oxygen saturation)
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TABLE 1 ] (Continued)

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

5. Severe, high comorbidity (10%)
Older,morbidly obese, hypersomnia

6. Moderate OSA, no comorbidities
(15%)
Mild obesity, not sleepy, high oxygen
nadir

PSG characteristics
(all from supine
sleep)

Mean event duration
Minimum oxygen

saturation
Fraction of apneas
Arousal ratio

(respiratory/
total)

AHI

Nakayama
et al,37

2019

Clinical (Japan)
N ¼ 210
PSG
AHI $ 15
Hypopnea:
50% flow reduction
with 3% desaturation
or arousal
Patients excluded:
CVD
Psychiatric disease
Women
Hypnotic use
PLM index $ 15

Hierarchical and
K-means

3 clusters:
1. Hyper-severeOSA, hypoxemic (20%)
Obese, highest NREM 1 stage sleep,
most arousals respiratory

2. Severe OSA, long event duration
Nonobese, low NREM 1 stage, most
arousals respiratory, non-hypoxemic

3. Severe OSA, short event duration
Overweight, higher central apneas,
low fraction of apneas, low NREM 1
stage, nonhypoxemic

No outcomes reported

PSG characteristics
(AHI metrics
stratified by
position and sleep
state [REM
vs NREM]),
arousals, age, BMI,
sex, ESS

Joosten
et al,35

2012

Clinical (Australia)
N ¼ 1,064

PSG
AHI 5-30 per hour

Hypopnea: >

50% reduction in the
oronasal pressure
signal, or a smaller
reduction in
association with
oxygen desaturation
of 3% or an arousal

K-means 6 Clusters:
1. Mild supine predominant OSA (32%)
Youngest, nonobese
2. Moderate supine predominant OSA
(21%)
Older

3. Moderate supine isolated OSA (4%)
Younger, nonobese

4. REM predominant OSA (12%)
Most female, most obese

5. Mild REM-supine OSA (20%)
Oldest

6. Moderate REM-supine OSA (13%)
Younger

No outcomes reported

(Continued)
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TABLE 1 ] (Continued)

Phenotypic Feature Study/Year
Study Population/Sample

Size/OSA Severity Clustering Method Main OSA Cluster Findings (Prevalence, %) Outcomes Associated With Phenotypes/Comments

PSG characteristics
only

29 variables in
domains of:

Respiratory
disturbance

Sleep architecture
Autonomic

dysfunction
Hypoxia

Zinchuk
et al,21

2018

Clinical (US veterans)
N ¼ 1,247
Patients referred for
OSA evaluation
PSG

AHI: no cutoff used
Hypopnea: >

30% reduction in
nasal pressure with a
4% desaturation

PCA and
hierarchical
clustering for
feature
selection,

K-means for
clustering

7 clusters:
1. Mild (43%)
Lowest apneas/hypopneas
2. PLMS (20%)
3. NREM and poor sleep (15%)
Highest ratio of arousals per AHI,
minimal hypoxemia

4. REM and hypoxia (15%)
Relatively preserved sleep
architecture

5. Hypopnea and hypoxia (6%)
6. Arousal and poor sleep (3%)
Highly fragmented sleep, minimal
hypoxemia

7. Combined severe (10%)
Apneas with arousals and
desaturations, severe hypoxemia

Outcome: incident CVD or death by
cluster (HR, compared with “Mild”
cluster)

Adjusted for:
Framingham risk score, regular CPAP use,
ethnicity, alcohol use, home oxygen use
Multiple clusters in each conventional

severity category:
Mild: 1 and 2
Moderate: 3 and 4
Severe: 5, 6, and 7
“PLMS” (HR, 2.0)
“Hypopnea and hypoxia” (HR, 1.7)
“Combined severe” (HR, 1.7)
Risk of outcome in regular vs nonregular
CPAP users, cluster
“PLMS” (OR, 0.38)
“Hypopnea and hypoxia” (OR, 0.22)

CPAP adherence
trajectories
Hours of CPAP use

per day by each
patient over 180 d

Babbin
et al,45

2015

Clinical (clinical trial,
multinational)

N ¼ 161
AHI $ 5
Hypopnea: not defined

Time series
analysis and
dynamic cluster
analysis

4 Clusters
1. Great users (17%)
2. Good users (33%)
3. Low users (23%)
4. Slow decliners (27%)

Outcomes: CPAP adherence (hours/
night), symptoms (ESS), QOL (FOSQ),
attention (PVT)

“Good users” more vigilant (FOSQ)
vs “Low users” or “Slow decliners”

“Good users” with higher productivity
(FOSQ) vs “Low users” and “Great
users”

“Great users” and “Good users” higher
sleep quality vs “Low users”
Over time, self-efficacy waned in “Low-
users”

OR and hazard ratio (HR) reported only for significant associations between clusters and outcome. AASM ¼ American Academy of Sleep Medicine; AHI ¼ apnea-hypopnea index; CAD ¼ coronary artery disease; CeVD ¼
cerebrovascular disease; CHD ¼ coronary heart disease (myocardial infarction; coronary revascularization procedure); CHF ¼ congestive heart failure; CV ¼ cardiovascular; CVD ¼ cardiovascular disease (CHD, stroke,
and heart failure); DM ¼ diabetes mellitus; ESS ¼ Epworth Sleepiness Scale; FOSQ ¼ Functional Outcomes of Sleep Questionnaire; HF ¼ heart failure; HSAT ¼ home sleep apnea testing; HTN ¼ hypertension; ICD-9 ¼
International Classification of Diseases, Ninth Revision; LCA ¼ latent class analysis; MI ¼ myocardial infarction; NMD ¼ neuromuscular disease; NREM ¼ non-rapid eye movement; ODI ¼ oxygen desaturation index;
OHS ¼ obesity hypoventilation syndrome; PCA ¼ principal component analysis; PLMS ¼ periodic limb movements of sleep; PVT ¼ Psychomotor vigilance test; QOL ¼ quality of life; REM ¼ rapid eye movement; SF ¼
Short-form quality of life questionnaire; SHHS ¼ Sleep Heart Health Study; T90% ¼ percent recording time spent at arterial oxygen saturation below 90%; TIA ¼ transient ischemic attack; UA ¼ unstable angina.
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patients. Additional clusters were termed “Disturbed
sleep” (33%), characterized predominantly by insomnia-
related symptoms, restless sleep, and gasping
awakenings; and “Minimally symptomatic” (25%),
comprising the oldest patients and the most rested upon
awakening, with spouse-disturbing snoring and apneic
episodes at night as the most common symptoms.20

Notably, the traditional OSA characteristics of AHI and
BMI did not differ among the patient groups, whereas
potential consequences of OSA (mental and physical
QOL) did (highest for the “Minimally symptomatic”
cluster).

These same clusters were also identified in a study by
Keenan et al,30 in separate Icelandic (n ¼ 215)23,30 and
international (n ¼ 757) clinical cohorts, although in the
latter, additional symptom patient subgroups (“Upper
airway symptoms” and “Sleepiness dominant”) were
noted (Table 1).30 Similar clusters were detected in OSA
populations by Mazzotti et al24 and Kim et al,31 with
differences in prevalence likely reflecting higher
frequency of less symptomatic patients in these samples.
Other studies incorporating demographic,
anthropometric, AHI, and comorbidity data in addition
to symptoms (“Multidomain” clusters in Table 1)
identified analogous patient subgroups32-34; however,
given the diversity of features, patients, and inclusion of
AHI, cluster types also vary widely in these reports.

Overall, it is notable that: (1) the symptoms in these
clusters do not track with AHI; (2) the traditional
sleepiness measured by using ESS only captures part of
the phenotypic spectrum; and (3) some patients, like
those in the “Minimally symptomatic” group who
exhibit disturbing snoring and require naps, may not be
diagnosed until later in life. Other implications were
gleaned from a longitudinal two-year analysis by Pien
et al23 showing that the effect of CPAP treatment on
symptoms and QOL differed according to symptom
cluster. Notably, not only the “Excessively sleepy”
patients benefited from treatment. Significant
improvements were also observed in the “Disturbed
sleep” group (less restless sleep, more restful awakenings,
and lower sleepiness) and in the “Minimally
symptomatic” group (less fatigue and fewer apneic
episodes) among those who used CPAP regularly. A
recent analysis by Mazzotti et al24 in the Sleep Heart
Health Study revealed that risk of incident
cardiovascular disease (CVD) (coronary heart disease
[CHD], heart failure, stroke, or cardiovascular mortality)
differed according to cluster. The “Excessively sleepy”
group was at increased risk of incident CVD (hazard
chestjournal.org
ratio [HR] of 2.2–2.4, driven by CHD and heart failure)
compared with the other clusters. This finding was not
present among those with the same symptoms but
without OSA.

Features of Polysomnography

It has long been recognized that overall AHI does not
capture the diversity of the polysomnographic
presentations of OSA as reflected by a priori
categorizations according to sleep stage (eg, rapid eye
movement [REM] sleep predominant), position (eg,
supine predominant), and others proposed over the
years.16 Joosten et al35 confirmed these clinical
observations by identifying six patient clusters (Table 1)
in an analysis of clinic patients (n ¼ 1,064) with mild to
moderate OSA (AHI 5 to < 30) incorporating age, BMI,
sex, AHI, and sleep stage/position. Clusters were based
on REM or position predominance and stratified
according to either mild (AHI 5 to < 15) or moderate
(AHI 15 to < 30) severity.

A wider scope of polysomnography (PSG) indices (29
measures) was used by Zinchuk et al21 in 1,247 US
veterans referred for OSA evaluation. The study
included metrics of degree of flow reduction, association
of events with hypoxemia vs arousals or both, sleep
architecture, periodic limb movements of sleep (PLMS),
sleep fragmentation, and detailed assessment of
hypoxemia. Multiple clusters were observed within each
conventional AHI severity stratum (AHI 0 to < 15,
“Mild” and “PLMS”; AHI 15 to < 30, “NREM and poor
sleep” and “REM and hypoxia”; and AHI $ 30,
“Hypopnea and hypoxia,” “Arousal and poor sleep,” and
“Combined severe”), potentially reflecting different
mechanistic pathways. For example, in the severe OSA
stratum, the “Arousal and poor sleep” cluster,
characterized by marked sleep fragmentation and apneas
associated with arousals only, exhibited minimal
hypoxemia (median percentage of sleep below oxygen
saturation of 90% [T90%] of 0%) despite a high
frequency of events (AHI of 68). In contrast, the
“combined severe” cluster with a high AHI of 84
exhibited events associated with both arousals and
desaturations (T90% of 20%).

A study by Lacedonia et al36 used the AHI, oxygen
desaturation index, T90%, and multiple non-PSG
characteristics for analysis of 198 clinic patients. The
investigators observed three clusters, including a
subgroup (cluster 3) with markedly elevated AHI and
low level of hypoxemia (analogous to the “Arousal and
poor sleep” cluster described earlier) and a high
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frequency of events associated with severe hypoxemia
(cluster 1, analogous to the “Combined severe” cluster
described earlier). Using respiratory event duration,
apnea fraction, respiratory arousal fraction, and nadir
oxygen saturation in patients with AHI$ 15, Nakayama
et al37 identified three clusters, including a patient
subgroup with AHI > 30, short event duration, and no
hypoxemia and severe OSA with high fraction of apneas
and hypoxia, analogous to the aforementioned clusters.

Few studies examining PSG clusters report associations
with outcomes, and thus in some cases, implications can
be inferred from data on isolated PSG features. For
example, studies examining the REM-AHI indices show
an association with prevalent and incident
hypertension,7,38 which raises the importance of CPAP
adherence during the second half of the night when
REM sleep occurs.39 In the US veterans study that
examined outcomes, risk of incident CVD and death
was increased for the “PLMS,” “Hypopnea and hypoxia,”
and “Combined severe” clusters. In contrast, stratifying
patients according to traditional AHI-based severity (or
continuous AHI) was not associated with CVD.
Furthermore, only some clusters (“PLMS” and
“Hypopnea and hypoxia”) benefited from CPAP
treatment in terms of CVD risk reduction. Specifically,
among the clusters with AHI < 15, the “PLMS” group
was at twofold increased risk vs the “Mild” cluster, and
regular CPAP use was associated with attenuated risk for
CVD (OR, 0.4).
Comorbidities

Given that OSA is common and associated with a host
of disorders that can also affect symptoms, function,
and prognosis, some studies have attempted to
identify comorbidity patterns among patients with
OSA. In one study, Vavougios et al22 used the AHI
and 19 comorbidities, including cardiovascular,
metabolic, liver, renal, and pulmonary disorders and
malignancies. They found high and low comorbidity
burden clusters within both moderate and severe OSA
groups. As anticipated, age, BMI, daytime oxygen
saturation, and hypertension predicted inclusion in
the high vs low comorbidity clusters. Quan et al25 used
cardiovascular and cerebrovascular comorbidity data
(in addition to other clinical features) from the Sleep
Apnea Cardiovascular Endpoints (SAVE) trial14 to
identify four clusters: coronary artery disease (CAD),
CAD and diabetes, cerebrovascular disease, and
cerebrovascular disease and diabetes. The risk of
incident composite cardiac and stroke outcomes was
412 CHEST Reviews
increased in all clusters (HR, 1.4–2.1) compared with
those with cerebrovascular disease alone.

In a population of 72,217 CPAP-treated patients in
Spain using 30 diagnoses in an administrative database,
Turino et al40 identified six clusters of comorbidity
(Table 1). A predominantly female subgroup of patients
with asthma was identified, exhibiting higher rates of
hospitalization than clusters with minimal or
musculoskeletal comorbidities. Such findings are
consistent with previous studies suggesting a
bidirectional OSA-asthma relationship with a combined
adverse impact on health outcomes.41,42 In addition, a
cluster with cancer and one with cardiovascular disease
(eg, heart failure, stroke), both oldest and with
previously reported associations with hypoxemia in
OSA,43,44 exhibited the highest rates of mortality and
health-care resource use. Whether age and the
aforementioned comorbidities alone or in conjunction
with OSA determined health-care use and mortality was
not assessed.

Multidomain and Other Features

Several studies included multiple measures of
symptoms, anthropometrics, and comorbidities in
clustering analyses among patients with AHI $ 15.
Bailly et al32 identified six clusters (Table 1). Two
subgroups of young, nonobese patients with snoring and
equivalent OSA metrics (AHI, oxygen desaturation
index, and T90%) differed primarily according to
presence of sleepiness, fatigue, and drowsy driving.
Clusters with high burdens of hypertension, diabetes,
CVD, COPD, and depression (“Older, comorbid OSA”
and “Multidisease, old, obese” clusters) were primarily
distinguished from others by marked8,32 nocturnal
hypoxemia (T90%, 49%-59%). Gagnadoux et al34

reported five clusters, including a “Female OSA”
characterized by insomnia, a “Mildly symptomatic OSA”
with low sleepiness but nocturnal and insomnia
symptoms, and a “Comorbid OSA” comprising older
patients. These three clusters exhibited significantly
lower rates of CPAP success (OR, 0.36-0.66) than the
patients in the “Severe OSA” cluster who were younger
and exhibited higher sleepiness (ESS score > 10).

Babbin et al45 have taken advantage of longitudinal
CPAP use data to identify patterns of adherence by
using individual time series analysis combined with
clustering. Among 161 patients with AHI $ 5 initiated
on CPAP in a clinical trial, the investigators identified
four subgroups of adherence: “Great users,” “Good
users,” “Low users,” and “Slow decliners.” Notably, in
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some groups, such as “Slow decliners,” adherence
changed over time, highlighting that an established
marker of long-term CPAP use, early adherence,46,47 is
not a consistent predictor in > 25% of patients and that
increased vigilance following early CPAP success is
warranted in some. Moreover, although all patient
subgroups started with the same level of treatment self-
efficacy (ie, a modifiable psychological determinant of
adherence48,49), this coping mechanism eroded by 3 to
6 months in “Low users,” offering an opportunity for
intervention in this group. CPAP use trajectory analyses
have identified other clinically relevant OSA subgroups.
Using a large CPAP telemonitoring dataset, Liu et al50

noted four groups with increasing risks of therapy
termination: OSA (lowest), treatment transient,
persistent, and emergent central sleep apneas (highest).
Pepin et al51 found that switching patients with
increased residual events, including high frequency of
central apneas, to adaptive servo-ventilation improved
treatment efficacy and adherence.

Common Themes
Although direct comparison between results of the
aforementioned studies in OSA are not possible due to
large discrepancies in populations, OSA features, analytic
techniques, and outcomes studied, we attempted (in the
following sections) to synthesize the common themes. We
first focused on potential OSA subtypes based on relative
differences between clusters in age, BMI, sex, symptoms,
and comorbidities (Fig 1),52 followed by OSA physiology
as assessed by using PSG (Fig 2).

Subtype A. This group includes younger, obese,
predominantly male individuals with severe OSA and
“classic” symptoms (eg, sleepiness, drowsy driving).
Analogous clusters were identified in six
studies.20,24,30,32,34 The younger age of these patients
may reflect an earlier diagnosis given their recognizable
symptoms. This subtype tended to benefit most from
CPAP treatment in terms of improving symptoms and
QOL.23,34,53 These patients were at highest risk of
drowsy driving (18%-30%) and, based on the
“Excessively sleepy” cluster in a study by Mazzotti
et al,24 were at an increased risk (HR, 2.2-2.4) of incident
CVD (CHD and heart failure). As such, this subtype
may represent a high-yield group in which to initiate
treatment, although the impact of CPAP on CVD has
not been assessed given the exclusion of the hyper-sleepy
patients from previous randomized clinical trials.14,15

Subtype B. This group consists of older, obese,
predominantly male subjects with minimal to moderate
chestjournal.org
symptom burden (sleepiness, disturbed sleep, and
consistent snoring), frequent comorbidities, and severe
OSA with marked hypoxemic burden (T90%, 32%-59%).
Older age at diagnosis may reflect unrecognized
symptoms of OSA or development of the disorder later
in life. The high prevalence of hypertension, diabetes,
and CVD in this group is consistent with both older age
and impact of profound, ongoing desaturation.44,54

Gagnadoux et al34 found such patients to have lowest
rates (OR, 0.36) of CPAP success (defined as a
composite of adherence, reduction in ESS score, and
improvement in QOL), although fatigue and apneic
episodes improved with CPAP in such a group in the
study by Pien et al.23 This scenario suggests that if
treatment is initiated in such a subtype, conventional
sleepiness metrics alone (eg, ESS) are not sufficient to
assess for potential benefits, and attention should be
paid to snoring, apneic episodes, and fatigue. Notably,
incidence of CVD was not increased in this group in the
study by Mazzotti et al.24 This finding is consistent with
some,55 but not all,56 previous reports that elderly
subjects with OSA are not at an increased risk of
incident CVD. Effects of CPAP on recurrence in older
populations with established CVD are not known,
although subanalyses from the SAVE trial suggest lack of
benefit for secondary prevention.14

Subtype C. This group includes middle-aged, mildly
obese, predominantly female subjects with symptoms
of insomnia (difficulty falling and staying asleep, early
awakenings, and nonrestorative sleep). In six
studies,20,24,30,31,33,34 10% to 35% of patients exhibited
analogous symptoms with moderate to severe OSA
and hypertension, diabetes, and CVD prevalence that
were generally higher than for Subtype A and lower
than for Subtype C. Although CPAP success was lower
in this group than in younger sleepy patients (OR,
0.66),34 regular CPAP users exhibited significant
symptomatic improvements in self-reported
sleepiness (rather than ESS) and restful sleep but not
insomnia.23 Previous studies showed that patients
with comorbid OSA and insomnia exhibit lower
CPAP adherence vs those with OSA alone and that
middle-of-the-night insomnia, rather than sleep onset
or early awakenings, tends to respond to CPAP.57,58

Such findings suggest that in patients with OSA and
insomnia, combination therapy such as cognitive
behavioral therapy for sleep initiation insomnia and
CPAP for middle insomnia (rather than cognitive
behavioral therapy or CPAP alone) could be explored.
The “Disturbed sleep” cluster in the Sleep Heart
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Subtype A:

“Classic”

Age

Feature

Sex

BMI

Symptoms

Comorbidity

PSG

Nstu 1 2 3 4 5 6 7 8 9 10

Level
a

Younger

Male

Obese

Sleepy,
involuntary sleep,
fatigued

Low

AHI High
T90% Medium

Treatment:

Most CPAP benefit
? CPAP alone

Risk:

Drowsy driving
Incident CVD

Nstu 1 2 3 4 5 6 7 8 9 10

Subtype B:

Oldest, comorbid

Age

Feature

Sex

BMI

Symptoms

Comorbidity

PSG

Level
a

Oldest

Male

Obese

Naps, snoring
disturbs partner

Highest

AHI High
T90% High

Treatment:

Least CPAP benefit
? Manage comorbidity

Risk:

Low CPAP adherence
High prevalent CVD
No incident CVD risk

Nstu 1 2 3 4 5 6 7 8 9 10

Subtype C:

Female, insomnia

Age

Feature

Sex

BMI

Symptoms

Comorbidity

PSG

Level
a

Middle age

Female

Overweight-obese

Difficulty falling
asleep, early
awakening,
nonrestorative sleep

Medium

AHI Medium
T90% Medium

Treatment:

Medium CPAP benefit
(apneic symptoms,
restful sleep)
? CBTi + CPAP

Risk:

Low CPAP adherence
? Lower incident
Stroke

Nstu 1 2 3 4 5 6 7 8 9 10

Subtype D:

Youngest, upper

airway symptoms

Age

Feature

Sex

BMI

Symptoms

Comorbidity

PSG

Level
a

Youngest

Male

Nonobese

Snoring, sudden
awakening, less
sleepy (ESS low),
± insomnia

Lowest

AHI High
T90% Low

Treatment:

Medium CPAP benefit
(QOL)
? Alternative/adjunct
treatments treatments
(eg, oral appliance,
drugs)

Risk:

Low CPAP adherence
Unknown CVD risk

Figure 1 – Potential OSA Subtypes (A-D) based on common themes in the cluster analysis studies focused on demographic characteristics, anthro-
pometrics, comorbidities, and symptoms. aLevel is based on relative difference for that variable/feature within each study. Studies and clusters cor-
responding to potential OSA subtypes (X [Cluster #], where X is first initial of the study cited): Subtype A: B [1 or 5], F [1], G [3], Ke [3], M [3], Y [3];
Subtype B: B [3], G [5], Ke [2], Ki [2], M [2], V [5], Y [2]; Subtype C: G [1], F [2]; Ke [1], Ki [1], M [1], P [1], Y [1]; and Subtype D: B [4], G [4], Ke [4],
V [6]. Study cited: B ¼ Bailly et al,32 2016; G ¼ Gagnadoux et al,34 2016; F ¼ Ferreira-Santos and Pereira Rodrigues,33 2018; Ke ¼ Keenan et al,30

2018; Ki ¼ Kim et al,31 2018; M ¼Mazzotti et al,24 2019; Y ¼ Ye et al,20 2014. AHI ¼ apnea-hypopnea index; CBTi¼ cognitive behavioral therapy for
insomnia; CVD ¼ cardiovascular disease (coronary heart disease, heart failure, and stroke); ESS ¼ Epworth Sleepiness Scale; Nstu ¼ number of studies
that identified analogous clusters, with 0 to 10 range selected for demonstration; PSG ¼ polysomnography; QOL ¼ quality of life (measured by using
the Short Form-36 Health Survey); T90% ¼ percent of total sleep (or recording) time spent with oxygen saturation below 90%.
Health Study (SHHS) exhibited reduced risk of stroke
compared with other OSA subtypes (HR, 0.19-0.26).24

These findings require confirmation and highlight the
importance of objective sleep duration measurement
given that insomnia with short sleep duration may be
a risk factor for CVD.59

Subtype D. Patients in this group are younger nonobese,
predominantly male subjects with primarily upper
airway symptoms (snoring, sudden awakening, and
cessation of breathing). Sleepiness (as measured by using
the ESS or other questions) was not a predominant
feature, with ESS scores consistently < 10 in four studies
that identified similar patients.22,30,32,34 Insomnia
symptoms occurred in a minority (13%-26%).30,34 The
AHIs were in the traditional severe range (38-51 events/
hour) and comparable to other clusters. With the
exception of the cluster from Vavougios et al,22 these
exhibited the lowest metrics of hypoxemia among other
414 CHEST Reviews
clusters (T90%, 10%-15%).32,34 The most prevalent
comorbidity was hypertension (< 10% in all but the
study of Vavougios et al), with overall lowest rates of
associated comorbidities. Only Gagnadoux et al34

reported outcomes with lower CPAP success (OR, 0.66)
for cluster 4, driven by lower improvements in ESS
reduction and QOL (similar to Subtype C).

Although many other clusters were identified in studies
using the feature domains described here,
commonalities between those clusters were less apparent
in the current review, recognizing the limitations of the
qualitative approach and cluster implications that
require validation.

Among PSG metric-based studies, two subtypes appear
in most, both predominantly male (Fig 2). The first
(Subtype E) includes patients with hyper-severe OSA
(AHI, 66–84), highest BMIs (33-38 kg/m2), and
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Treatment:

CPAP

Risk:

Incident CVD

Treatment:

CPAP or OAT +
? Sedative hypnotics
? Acetazolamide/oxygen

Risk:

Low CPAP adherence
? Neurocognitive
dysfunction

Subtype F:

Severe, non-hypoxemic

Older, male, obese, less sleepy

Arousals

Hypopneas

Oximetry

23:56

23:5622:56

32

3

23:51

3

2

AHI = high; Hypoxic:Ar. Apn. = low;
Apnea L. = short; O2 nadir = high.

Sleep stages

Apneas

Nstu 1 2 3 4 5 6 7 8 9 10

Subtype E:

Severe, hypoxemic

Yonger, male, severely obese, sleepy

Arousals

Hypopneas

Oximetry

01:02

01:02

3
Ox

2

3

01:02

01:02

rate: 01 Session
Ap: 0 / 0 (ACT: 0) I

2

AHI = high; Hypoxic:Ar. Apn. = high;
Apnea L. = medium; O2 nadir = low.

Apneas

Sleep stages

Nstu 1 2 3 4 5 6 7 8 9 10

Figure 2 – Potential OSA Subtypes (E and F) based on common themes in the cluster analysis studies focused on polysomnographic features.
Characteristics described in the text-box for each subtype are based on relative differences for that variable/feature within each study. Studies and
clusters corresponding to potential OSA subtypes (X [Cluster #] where X is first initial of the study cited): Subtype E: L [1], N [1], Z [7]; and Subtype F: L
[3], N [3], Z [6]. Study cited: L ¼ Lacedonia et al,36 2016; N ¼ Nakayama et al,37 2019; Z ¼ Zinchuk et al,21 2018. Apn. L. ¼ apnea length; CVD ¼
cardiovascular disease (acute coronary syndrome, stroke, or death), Hypoxic:Ar Apn. ¼ ratio of apneas with 4% desaturation only to apneas with
arousal only; OAT ¼ oral appliance therapy. See Figure 1 legend for expansion of other abbreviations. (Hypnogram images modified and adapted from
Cooksey et al.52)
most marked hypoxemia among the clusters
(T90%, 20%–45%).21,36,37 They reported the highest ESS
scores compared with other PSG clusters. A high
fraction of apneas (89%–98%) may be suggestive of
increased collapsibility, and marked obesity may
predispose to hypoxia with respiratory events in this
subtype.60,61 In the study by Zinchuk et al,21 such
patients exhibited increased risk of incident CVD or
death (HR, 1.91). Although high sleepiness and obesity
are similar to Subtype A, lack of more detailed
polysomnographic data in that cluster and detailed
symptom data in the study by Zinchuk et al precludes
direct comparisons.

The second common PSG phenotype (Subtype F)
includes those with severe OSA (AHI, 34-68), lower
BMIs (28-38 kg/m2), and notably lowest degrees of
hypoxemia for a given AHI (T90%, 0%–12%).21,36,37 ESS
scores (9–10) in these clusters were lower compared
with other clusters of similar OSA severity. In study by
Nakayama et al,37 such a subgroup exhibited the shortest
respiratory event duration. Although speculative, such
findings may suggest that in addition to pharyngeal
collapsibility, low arousal threshold and/or elevated loop
gain may contribute to pathogenesis in such
patients.62,63 In the study by Zinchuk et al,21 the
“Arousal and poor sleep” cluster exhibited the lowest
rate of regular CPAP use (29%) among clusters with
AHI $ 15 and did not exhibit a significant reduction in
CVD or death with CPAP use (OR, 0.55; P > .05). For
chestjournal.org
reasons similar to those noted earlier, direct
comparisons with demographic/symptom/comorbidity-
based clusters are difficult; however, both Subtype C
(predominant insomnia, a disorder of hyperarousal) and
Subtype D (less sleepy, with increased sudden
awakenings and lower hypoxemia) may be connected
with this polysomnographic subtype.

Other polysomnographic subtypes, such as those with
REM-predominant OSA, were identified in more than
one study and have been previously considered a
potentially relevant clinical phenotype of OSA.64

A Potential Role for Phenotypic Clusters in a
Precision Medicine Approach to OSA
There is growing evidence and consensus that the one-
size-fits-all approaches are insufficient for the diagnosis
and management of individuals with sleep
apnea.2,16,26,27 Ideally, caring for patients with such a
complex disorder would incorporate genetic,
pathophysiologic, biomarker, phenotypic, and treatment
response characteristics that form the foundation of
precision medicine approaches. Targeted prevention,
prognostication, and treatment selection based on
phenotypes, including the potential phenotypic clusters
described earlier, may represent a first step in that
direction. For example, improved prognostication may
be achieved by stratifying patients at risk of CVD based
on a constellation of symptoms, such as those observed
in the excessively sleepy subtype of OSA, rather than on
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TABLE 2 ] Summary of Gaps and Future Directions

� Anchor phenotypic clusters to clinically meaningful
outcomes, including patient-centered measures (eg,
quality of life, function)

� Assess reproducibility and stability of phenotypic
clusters within and across study cohorts

� Harmonize methods for assessment of features used in
cluster analyses

� Incorporate novel features with mechanistic implica-
tions (eg, physiologic OSA traits, hypoxic burden,
arousal intensity)

� Evaluate biomarker profiles within phenotypic sub-
types and incorporate them into multi-domain
analyses

� Develop simple prediction tools for OSA subtypes with
clinical implications

� Include broad age ranges, women and racial/ethnically
diverse participants in future studies
AHI and ESS alone. Notably, inclusion of patients at
different risk of adverse outcomes can bias clinical trials
of a potentially useful therapy toward the null
hypothesis (false negative).65 Phenotypes may therefore
also be used to design more successful clinical trials of
CPAP therapy by targeting subtypes of OSA with the
highest risk of adverse health outcomes and largest
symptomatic benefit from CPAP, such as the excessively
sleepy OSA, a group excluded from previous trials of
CPAP therapy in CVD.14,15

Deeper characterization of individuals exhibiting a
particular phenotype may also reveal pathophysiological
mechanisms, genetic risk factors, and new potential
treatments. For example, patients with OSA and
profound sleep fragmentation whose respiratory events
are predominantly associated with arousals may exhibit
short event duration.37 This scenario, in turn, has been
associated with certain genetic loci66 and may reflect
specific pathophysiological mechanisms such as easy
arousability and/or increased loop gain.62,63 Treatment
in these patients might include attenuating arousability
with non-myorelaxant hypnotic agents and reducing
loop gain with acetazolamide,67,68 alone or in
combination with some form of upper airway
stabilization (oral appliance or CPAP). The former has
been previously reported to improve adherence and AHI
in unselected patients with OSA.69,70

Limitations of Current Literature, Unanswered
Questions, and Future Directions
The examples discussed here highlight the potential
utility of phenotypic clusters. However, the studies
reviewed also reflect a number of limitations to
phenotype-based approaches, in general, and those
using unsupervised learning methods, in particular, that
will need to be addressed prior to such approaches being
used in personalized treatment of patients with OSA.
For example, phenotypes based on clinical or
polysomnographic features may not reflect unique
pathophysiological or biological mechanisms (ie,
endotypes) or genetic risk, and thus may limit the ability
to identify new mechanism-based treatments or improve
prognostication.16 In fact, similar to other heterogeneous
disorders such as COPD and asthma, it is likely that an
OSA phenotype may be an end-result of multiple
mechanisms with several genetic risk factors.71 One way
to ensure that phenotype-based approaches have utility
is for future research to consistently link the phenotypes
to clinically meaningful outcomes (eg, symptoms,
response to therapy, health outcomes, QOL) (Table 2).
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Focus on outcomes beyond AHI reduction
(eg, treatment adherence, BP reduction, cognitive
performance) to define treatment success is prudent
given the examples in the literature that lowering AHI
does not translate to benefit10 or may even be harmful.72

In addition, research focusing on outcomes beyond
“hard” end points such as risk of CVD or mortality to
include patient-centered outcomes such as OSA-specific
QOL and functional status73 may help tailor evaluation
of treatment response for each patient subtype and thus
personalized care. For example, although in sleepy
patients (Subtype A, “Classic”), assessing response to
treatment using sleepiness metrics maybe sufficient, for
others such as Subtype B (“Oldest-comorbid”) or
Subtype C (“Female, insomnia”), assessing snoring,
fatigue, and QOL, or early awakenings, sleep quality, and
function, respectively, may be needed. Targeting patient
outcomes based on phenotypes requires prospective
assessment and validation.

Currently, very limited data are available on
reproducibility of phenotypic clusters within the same
datasets (ie, consistency of classifying OSA individuals
into a given subtype) and across cohorts (eg, clinical,
population). Assessing cluster stability by using
established approaches such as the Rand or Jaccard
index74 to ensure that the phenotypes are reproducible is
needed prior to evaluating their clinical or
pathophysiological implications. Notably, in other
heterogeneous disorders such as COPD, examining
clusters based on common clinical and physiological
variables across 10 independent cohorts showed that
clustering results were only modestly reproducible.75

Although the “Disturbed sleep,” “Excessive sleepiness,”
and “Minimally symptomatic” clusters, as assessed in
both clinical and population samples,24,30,31 represent a
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first step in establishing generalizability of phenotypic
subtypes, studies that evaluate reproducibility across
populations are needed.

One barrier to addressing these challenges has been the
lack of large datasets and consistency in features and
clustering methods. Identifying and validating unique
(and clinically relevant) OSA phenotypes require large,
multidimensional datasets compiled by using validated
and transparent methods. The Sleep Apnea Global
Interdisciplinary Consortium and the National Sleep
Research Resource (www.sleepdata.org), a data
repository containing > 30,000 PSG records and various
phenotype data from well-characterized cohorts,
exemplify some of the resources that can be leveraged
for this purpose. Harmonizing methods for
characterizing OSA risk factors, symptoms,
polysomnographic manifestations, and physiological
traits (eg, loop gain, arousal threshold) for use as
features in cluster analyses are critical to ensure
consistency of identification and implication of
phenotypic clusters across subjects and settings. In
addition, it is unknown whether domain-specific (eg,
symptoms) or multidomain (eg, risk factors, symptoms,
PSG features) clustering approaches are optimal to
identify unique OSA phenotypes. The domain-specific
approaches are suited to interpret the implications of
heterogeneity within a single domain of data (eg,
symptomatic presentation) but may be difficult to
integrate with other OSA characteristics for those
subgroups (eg, PSG features, risk factors) not included in
clustering. Conversely, the multidomain approaches
provide a more holistic view of the disorder subtypes but
can be difficult to interpret. Novel methods that
integrate clusters across data domains in an
interpretable way have been developed in the fields of
cancer and lung fibrosis.76-78 Application of such
strategies to multidomain OSA data may help identify
OSA endotypes, linking pathogenesis,
polysomnographic manifestations, and symptoms with
unique clinical implications.

Although more cohorts with consistent features and
clustering methods are likely to address
reproducibility of phenotypic OSA clusters, studies
incorporating new features are needed to refine
current and elucidate novel phenotypic expressions of
OSA with clinical implications. For example,
incorporating new measures such as hypoxic
burden,79,80 respiratory event duration,81 arousal
intensity, and heart rate response82 could more
precisely define a current polysomnographic OSA
chestjournal.org
phenotype with frequent events, fragmented sleep,
and lack of hypoxemia. Continuous measures of
physiologic signals, such as cardiopulmonary
coupling, may enable longitudinal assessment of its
clinical implications (eg, sleep quality).83 Lack of
reproducible and precisely defined phenotypes has
been identified as a barrier to linking the phenotypes
to pathogenic mechanisms or endotypes (eg, high
pharyngeal collapsibility, low arousal threshold) upon
which treatment can be personalized, a key gap in the
field.26 Ultimately, coupling phenotypic expression
(cluster-based or defined by using supervised analytic
methods) with endotypes and genomic and genetic
data as well as biomarkers is needed to define disorder
subtypes and develop precision medicine approaches.

A clear opportunity exists to incorporate biomarker
profiles in OSA (blood, salivary, urinary, or other) to
better understand the sequelae imposed by the current
subtypes, assess response to treatment, and monitor
progression. For example, evaluating inflammatory
[eg, C-reactive protein, interleukin-8, tyrosine(Y)
lysine(K) leucine(L)-40 peptide], metabolic (eg,
insulin, fatty acids), and sympathetic activation (eg,
norepinephrine/epinephrine) biomarkers in the OSA
subtypes (Figs 1 and 2) may provide mechanistic
insights into the profiles of risk for CVD,
neurocognitive, or liver dysfunction84-88 among these
subtypes. Incorporating potential biomarker profiles
into multidomain, unsupervised learning analyses that
also include symptoms and/or polysomnographic
features may help identify new phenotypes with
biomarker relations to sleepiness and insomnia and/or
intermittent hypoxia and sleep fragmentation.
Because some biomarkers exhibit responses to
treatment,9,86 they may be used to predict response to
treatment or monitor risk over time. One example
includes a cluster of micro-RNAs that predicts BP
response to CPAP in a clinical phenotype of patients
with OSA and resistant hypertension.9

Given that some phenotypic clusters, such as
“Excessively sleepy,” exhibit potential prognostic
(risk of CVD) and treatment (CPAP response) utility,
prediction models of how to categorize patients into
such subtypes without clustering are needed. Ideally,
predictors would include readily obtainable clinical,
sleep study, and potentially biomarker data. This
method can enable prospective validation of clinical
outcomes in observational studies and randomized
clinical trials, necessary before such approaches can
be applied to caring for those with sleep apnea.
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Finally, most phenotypic clustering studies include
predominantly middle-aged to older white men.
This population does not reflect the heterogeneity of
OSA as affected by age, sex, and race/ethnicity. For
example, the role of anatomical vs nonanatomical risk
factors for OSA differs between younger and older
individuals,89 men and women,90 as well as Asian,
African-American, and Caucasian race/ethnicities.91-93

Sleep symptoms also vary, with the highest prevalence of
excessive sleepiness in African-American individuals,1,94

findings that may in part be explained by epigenetic
changes.95 Lastly, implications of OSA differ according
to race/ethnicity and age. Higher prevalence of
nocturnal BP nondipping in African-American subjects
vs Caucasian subjects and differences in risk of CVD
between men and women with OSA are just some
examples.96 If we are to embrace heterogeneity of sleep
apnea to develop equitable and individualized
approaches for improving the lives of patients, studies
must include a broader spectrum of age, more women,
and racially and ethnically diverse populations.

Altogether, identifying and validating clinically
relevant phenotypic subtypes of OSA may be a
promising avenue toward applying precision medicine
tools to patients with sleep apnea. Such approaches
are bound to inform prognosis, provide insight into
mechanisms, and allow for the design of more
rigorous clinical trials that will lead to personalized
treatments for patients.
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