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Dispersion tuning and route reconfiguration
of acoustic waves in valley topological
phononic crystals
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The valley degree of freedom in crystals offers great potential for manipulating classical

waves, however, few studies have investigated valley states with complex wavenumbers,

valley states in graded systems, or dispersion tuning for valley states. Here, we present

tunable valley phononic crystals (PCs) composed of hybrid channel-cavity cells with three

tunable parameters. Our PCs support valley states and Dirac cones with complex wave-

numbers. They can be configured to form chirped valley PCs in which edge modes are slowed

to zero group velocity states, where the energy at different frequencies accumulates

at different designated locations. They enable multiple functionalities, including tuning of

dispersion relations for valley states, robust routing of surface acoustic waves, and spatial

modulation of group velocities. This work may spark future investigations of topological

states with complex wavenumbers in other classical systems, further study of topological

states in graded materials, and the development of acoustic devices.
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Topological materials that exhibit a valley degree of freedom
(DOF) enable a way to transport information and energy1–11

and are attracting a growing interest in condensed matter
physics6. Recently, the concept of valley topological phases has
been extended to classical bosonic systems, inspiring various
ways of manipulating classical waves using periodic structures,
such as electromagnetic waves with photonic crystals12–18 or
acoustic/elastic waves with phononic crystals (PCs)19–33.
The valley Hall phases for classical waves are generally realized
by creating a periodic lattice that breaks a mirror19–23 or
inversion25–31 symmetry of a two-dimensional (2D) honeycomb
lattice. In such structures, the eigenmodes at inequivalent
valleys naturally possess opposite polarizations24,27, giving rise
to topological transport that does not require strong spin-orbit
interactions. At interfaces between distinct valley Hall phases,
edge states emerge20,26 that are immune to backscattering
at defects22,23, imperfections28,34, and sharp corners19,30 in the
wave path20,33.

Despite intensive research on tunable acoustic systems34–47,
including metamaterials35–39, metasurfaces40–42, recently reported
topological insulators43, and rotatable-unit-based valley PCs34,
tuning the dispersion (frequency, wavenumber, and slope) of
topological states for acoustic waves is challenging. For previously
reported topological acoustic systems, including two of the most
recent designs34,43, it remains difficult to continuously tune the
frequencies of topological states over a wide range, because the
frequencies are inherently tied to fixed lattice constants and unit
cell designs. The frequency tunability could be useful for wideband
tunable acoustic devices. Moreover, previous topological acoustic
systems cannot continuously tune the dispersion slope, which
would be useful for controlling the group velocities of acoustic
topological states, and they afford limited control over the
imaginary part of the wavenumber, which is associated with
an exponential decay of waves that is not manifested in many
topological acoustic systems. Although systems with topological
bands in the real wavenumber—frequency domain have been
intensively studied and developed for applications19–33, there have
been few studies on acoustic systems with topological bands in the
complex wavenumber—frequency domain. Similarly, few studies
have explored acoustic topological states in PCs with chirped or
other graded structures.

Topological acoustic systems have been designed with various
functionalities, such as robust sound transport48–50, directional
antennas22, negative refraction51, and acoustic delay lines34.
Nevertheless, some potentially important controllable function-
alities have not been demonstrated. Examples include tuning the
dispersion of surface acoustic waves (SAWs), tailoring the group
velocity of an edge mode in the space-frequency domain, slowing
the group velocity of an edge mode to zero, and rainbow trapping
of an edge mode with the energy of different frequency compo-
nents accumulated at different locations. The development of a
phononic topological system with multiple tunable parameters
that enable the exploration of many different functionalities
in one platform could save time and reduce costs associated
with fabricating and testing many individual, non-configurable
designs.

Here, we present tunable valley PCs composed of hybrid
channel-cavity cells with three tunable parameters (channel
height and depths of two cavities) for dispersion tuning and route
reconfiguration of acoustic waves. The tunable PCs allow for
investigating topological physics in PCs in different dynamical
regimes and realizing multiple functionalities using a single,
reconfigurable platform. We demonstrate experimentally with
simulations the tuning of multiple features of dispersion relations,
including Dirac point frequencies, band-edge frequencies, ima-
ginary parts of wavenumbers, edge mode frequencies, edge mode

group velocities, and edge mode attenuation. Experimental and
numerical studies reveal that our PCs support acoustic topolo-
gical states with complex wavenumbers, and we describe the
topological bands, Dirac degeneracies, and edge modes in the
complex wavenumber—frequency domain. To further establish
the flexibility of our platform, we experimentally demonstrate
frequency tuning and robust routing of the valley Hall edge mode
of spoof SAWs. Finally, by realizing chirped valley PCs, we
experimentally illustrate the modulation of the edge mode group
velocity in the space-frequency domain, slowing the group velo-
city to zero, and rainbow guiding of edge waves. This study
represents an advance in engineering tunable PCs with an array
of potentially useful properties. The scope of possibilities
also suggests avenues for further scientific studies of topological
systems with complex wavenumbers and systems with graded
structures.

Results
Valley topological PCs with hybrid channel-cavity cells.
Figure 1a shows a schematic diagram of the designed valley
topological PCs, which are composed of a glass ceiling and an
acrylic plate with cylindrical cavities distributed in graphene-like
2D honeycomb lattices52. The acoustic waves are confined for 2D
propagation in the space between the glass ceiling and the acrylic
plate. Each unit cell contains two cylindrical cavities with the
same diameter d of 8.7 mm, which are D= 21.1 mm away from
each other. The depths h1 and h2 of two cavities can be controlled
by pumping water into/out of the cavities through ports
connected to the their bottoms. When h1= h2= 11.5 mm, the
dispersion for waves in the PCs features Dirac degeneracies at the
K and K′ points (blue dotted lines in Fig. 1b–d). By breaking
the inversion symmetry (i.e., creating the type A PCs with h1 < h2
or type B PCs with h1 > h2 in Fig. 1a), the Dirac degeneracies are
removed and a complete bandgap is opened (red solid lines in
Fig. 1b–d). The insets in Fig. 1e present simulated acoustic energy
and intensity fields for the two states labelled by p− and q+ points
on the first two bands when h1 ≠ h2. The acoustic intensity fields
for p− and q+ modes show typical vortex profiles with antic-
lockwise and clockwise energy flows (pseudospins) around the
field centers, respectively. The anticlockwise and clockwise
pseudospins can be further confirmed by the temporal evolution
of pressure fields in a period from t= 0 to 2π/ω (Supplementary
Fig. 1). In addition, the intensity fields for the p− mode in Fig. 1e
indicate clockwise energy flows around three vertices labeled with
“p” in a hexagon unit (Fig. 1a). The intensity fields for the q+

mode in Fig. 1e show anticlockwise energy flows around three
vertices labeled with “q” in a hexagon unit (Fig. 1a).

To reveal the acoustic valley Hall phase transition, the evolution
of band-edge frequencies ωp− and ωq+ at p− and q+ modes versus
the difference Δh= h1− h2 is plotted in Fig. 1e. The evolution
clearly shows that the bandgap width increases continuously as Δh
varies from zero. Figure 1f shows the valley Chern numbers that
characterize the distinct valley-dependent behaviors (Methods).
For type A PCs with Δh < 0, the theoretical valley Chern numbers
at the K and K′ points are −1/2 and 1/2, respectively; for type B
with Δh > 0, these are reversed. These features offer the potential
to achieve valley Hall edge states at the interface of type A and B
PCs. Moreover, by controlling the difference in Δh, the band gap
between p− and q+ modes can be tuned. To evaluate the change of
intervalley mixing induced by the increase of |Δh|, valley Chern
numbers are calculated by integrating the Berry curvature over a
finite square around the valley points with δkx and δky in the range
�π
2a ;

π
2a

� �
29. As the inversion symmetry breaking becomes stronger

(increase of |Δh|), the |CK(K′)| calculated through integration
decreases (Supplementary Fig. 1c). This means that the Berry
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curvature becomes less localized at K (K′) points and the
intervalley mixing becomes stronger29.

Another tunable parameter in our acoustic device is the
channel height hc. When the channel height is small (for example
hc= 1 mm), acoustic waves can strongly interact with the ceiling.
For this case, the acoustic waves can be considered as waveguide
acoustic waves (WAWs), as the wave energy is confined and
guided by the space (waveguide) between the top ceiling and
the bottom cavity array (Fig. 1g, inset for hc= 1 mm).
The topological bands and Dirac cones for WAWs are in the
real wavenumber—frequency domain, as shown by the dispersion
curves for hc= 1 mm (Fig. 1b). When the channel height is very
large (for example hc ≥ 50 mm), the effect of the top ceiling on
acoustic waves is negligible. Hence, the generated acoustic waves
can be considered as SAWs that propagate along the bottom
cavity array (Fig. 1g, inset for hc= 50 mm).

We find that the topological bands for SAWs are in fact in the
complex wavenumbers (k+ i∙kimag)—frequency domain, as
shown in a 3D view of dispersion curves for hc= infinity
(Fig. 1d). A projection of the 3D view in the real wavenumber
part-frequency domain is given in Fig. 1c; a projection in the
complex wavenumber space is given in Supplementary Fig. 2a.
The 3D view and projections show that band crossing at the
Dirac point occurs in the complex wavenumber-frequency

domain, when Δh= 0 mm (blue dotted lines). Since the
imaginary part (kimag) of the wavenumber is associated with
wave attenuation, the intersection in the complex wavenumber
domain means that the two SAW modes have the same
attenuation at the Dirac point (Supplementary Fig. 2b). This
attenuation is related to the energy leakage of SAWs into the
bulky air medium above the cavity array. Moreover, we find that
by breaking the inversion symmetry (h1 ≠ h2), a gap forms
between imaginary wavenumber parts for q+ and p− modes at
the K point. This means the attenuations of the modes with
opposite pseudospins are different.

By gradually tuning the channel height hc, continuous
evolutions of the Dirac point and the band edges at q+ and p−

points within a wide frequency range 0–5 kHz can be realized.
Figure 1g shows that the frequencies for the Dirac, q+, and p−

points gradually increase with the increase of hc and eventually
approach constant values for SAWs. 3D pressure fields in the PCs
with different channel heights 1, 10, and 50 mm are plotted in
Fig. 1g (insets) for the p− mode and in Supplementary Fig. 3
(insets) for the q+ mode. By comparing the pressure fields for
different channel heights, it can be found that the interaction of
acoustic waves with the ceiling becomes weaker as the ceiling
height increases from 1 to 50 mm. When the channel height is
very large (for example hc ≥ 50 mm), most of the energy of the
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Fig. 1 Schematic of valley topological phononic crystals and their dispersion curves. a Schematic of the phononic crystals (PCs) composed of a glass
ceiling and an acrylic plate with cylindrical cavities distributed in honeycomb lattices. The unit cell (marked by a parallelogram) contains two cavities with
the same diameter d. The effective depths h1 and h2 of cavities can be changed by pumping water into the cavities. When h1= h2, the PCs are considered as
an acoustic analogue of graphene. When h1 < h2 and h1 > h2, the configurations are denoted as type A and B PCs, respectively. b Dispersion curves for valley
PCs, when the channel height hc is 1 mm. Inset: first Brillouin zone (FBZ). Figure b shows a Dirac degeneracy at the K point, when h1= h2= 11.5 mm.
A complete band gap is opened, when Δh= h1 − h2= 3mm. c Dispersion curves for valley PCs, when hc= infinity. d Three-dimensional (3D) view of
dispersion curves in the complex wavenumber – frequency domain. Figure c can be considered as a projection of the 3D view in the real wavenumber part
—frequency domain. e Phase diagram revealed by the order of band-edge frequencies locked with specific vortex features (insets), when hc= 10.5 mm.
The color and white arrows in insets indicate acoustic energy and intensities, respectively. The blue and white arcs represent cavities with depths of 10 and
13mm. Different acoustic insulating phases are characterized by the signs of the effective mass m. f Theoretical valley Chern numbers for type A and B
PCs. g Frequency variations of the Dirac, p−, and q+ points with respect to the channel height hc, when the difference Δh is 3 mm. Insets: pressure fields for
the p− mode. The q+ mode’s pressure fields are given in Supplementary Fig. 3. The frequencies gradually increase and approach frequencies for surface
acoustic waves (SAWs), as hc increases. The evolutions of pressure fields and waves frequencies reveal the transition from waveguide acoustic waves to
SAWs as the channel height increases.
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generated wave mode tends to cling to the bottom cavity array;
additionally, the effect of the ceiling on the generated acoustic
mode becomes negligible, as shown by the pressure field in Fig. 1g
for hc= 50 mm. In this scenario, the generated acoustic mode
propagates along the bottom cavity array as spoof SAWs, whose
energy can leak into the bulky space above the cavities. The
evolutions of pressure fields and mode frequencies (Fig. 1g and
Supplementary Fig. 3) reveal that WAWs confined in a waveguide
between the top ceiling and the bottom cavity array can gradually
become SAWs propagating along the bottom cavities, as the
channel height gradually increases. Such transition allows the
frequencies for the Dirac, q+, and p− points to be continuously
tuned down to nearly 0 kHz by reducing the ceiling height. The
ability to continuously tune the frequency without changing the
lattice constant would allow for adjusting the subwavelength
ratio, i.e., the ratio between the lattice constant a and the
wavelength λ of free space acoustic waves (Supplementary
Fig. 4a). The parametric study also suggests that optimized
hybrid channel-cavity PCs have the potential to support
deep subwavelength manipulation (Supplementary Fig. 5). Valley
Chern numbers obtained through the integration of Berry
curvature are provided to evaluate the change of intervalley
mixing induced by the decrease of the ceiling height (Supple-
mentary Fig. 4b). The |CK(K′)| calculated through integration

increases with the decrease of the ceiling height hc from 50 to
0.01 mm, which means the Berry curvature becomes more
localized at K (K′) points and the intervalley mixing becomes
weaker.

The following subsections show that our PCs can support edge
modes of both the WAWs and SAWs and realize unusual functions,
including dispersion tuning of edge modes, space-frequency
modulation of edge mode group velocities, and rainbow trapping
of edge modes. Some more commonly studied functions of PCs are
demonstrated in Supplementary Figs. 6–8 and Supplementary
Note 1 and 2, including splitting waves, guiding waves at different
frequencies along distinct paths, and steering waves through
positive/negative refraction.

Valley Hall edge states for WAWs and SAWs. A key feature of
valley topological PCs, the valley Hall edge state20,26, can be
achieved in hybrid channel-cavity PCs. Dispersion, attenuation,
pseudospins, and temporal evolution of pressure fields for the
edge mode are investigated through numerical simulations. The
type A–B configuration (Fig. 2) with type A PCs above and type B
PCs below the interface is selected as an example. The difference
Δh between deep and shallow cavities is chosen to be 3 mm to
provide a moderate level of symmetry breaking that does not
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Fig. 2 Acoustic valley Hall edge states and their dispersion curves. a Dispersion curves for the type A–B supercell, when the channel height is 10 mm and
the deep and shallow cavity depths are 10 and 13 mm. The red and blue solid lines are dispersion curves for the edge mode with positive and negative
wavenumbers. The black dotted lines are in the bulk bands. Inset: edge states at wavenumbers of kp− and kn+. The color and arrows indicate acoustic
energy and intensity, respectively. b Acoustic energy field in a supercell with an A–B interface, when the wavenumber is kp− or kn+. c Evolution of acoustic
pressure fields from 0 to 2π in the vicinity of the A–B interface. The top and bottom fields are for kp− and kn+, respectively. The blue and white circles in
c represent cavities in with depths of 10 and 13mm. d Evolution of the edge mode dispersion with respect to channel height hc. With the increase of the
channel height, the edge mode frequency for waveguide acoustic waves (WAWs) gradually increases and approaches to that for surface acoustic waves
(SAWs). e, f Frequency and attenuation curves for the SAW-type edge mode, when the channel height is infinity. The attenuation is related to the leakage
of SAW energy into the semi-infinite air medium above the cavities. The imaginary parts of wavenumbers for the SAW-type edge mode are plot in
Supplementary Fig. 13.
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introduce too strong intervalley mixing. From the derived dis-
persion relations (Fig. 2a) for hc= 10 mm, a valley Hall edge
mode (solid line) is observed in the frequency range 4.15–4.55
kHz. The energy field (Fig. 2b) at the wavenumber kp− (or kn+)
reveals that most energy is concentrated near the A–B interface,
confirming that this is an edge mode. In the notations kp− and
kn+, the subscripts “p” and “n” are for positive and negative
wavenumbers and “−” and “+” are for backward and forward-
propagating waves, respectively. The acoustic intensity at the
wavenumber kp− features anticlockwise (−) and clockwise (+)
pseudospins above and below the interface, respectively. At the
wavenumber kn+, the pseudospin directions are reversed. Tem-
poral evolutions of pressure fields for forward and backward
propagating waves are given in Fig. 2c. As waves propagate
backward with the wavenumber kp−, the pressure field evolution
from 0 to 2π shows pseudospin− and pseudospin+ above and
below the interface (Fig. 2c, top). In contrast, the pressure field
evolution for forward-propagating waves shows the pseudospins
reversed (Fig. 2c, bottom). To further characterize the edge
mode transport, finite element simulations are performed
(Supplementary Note 3). The simulation results (Supplementary
Fig. 9) show that the pressure field in a plane at the top of the
horizontal channel is nearly the same as that in a plane at the
bottom of the channel. The generated edge mode is confined in
the waveguide composed of a horizontal channel and an array of
cavities; thus, the generated edge mode can be considered as a
WAW-type edge mode. Such edge mode is demonstrated for
multiple functionalities (see Supplementary Notes 4 and 5 for

details). The results for robust routing, spin-locked wave division
and frequency tuning of acoustic waves are shown Fig. 3 and
Supplementary Fig. 10. The results for topological switches are
provided in Supplementary Fig. 11.

The edge mode dispersion can be tuned by varying hc. As
shown in Fig. 2d, the frequency of the WAW-type edge mode
gradually increases with the increase of the channel height and
gets closer to the edge mode frequency for PCs with hc= infinity.
To visualize the edge mode transport, numerical simulations are
performed (Supplementary Note 6). The simulation pressure
fields in Supplementary Fig. 12 show that an edge mode is guided
along a Z-shaped interface. The simulation pressure in a plane
near the bottom cavities is much larger than that in a plane
50 mm above. Moreover, the pressure amplitude drops rapidly
with height. These observations indicate that an edge mode of
SAWs, namely, “SAW-type edge mode”, propagates along the
bottom cavity array and simultaneously is guided by the Z-shaped
interface.

The dispersion relation for the SAW-type edge mode are
derived, which involves complex wavenumbers. Figure 2e plots
frequency as a function of the real part of the wavenumber
(the imaginary part is given in Supplementary Fig. 13). The
SAW-type edge mode has a nonzero imaginary wavenumber part
kimag for kx ≠ 0 and |kimag| increases with the increase of |kx|.
Figure 2f shows the edge mode attenuation rates, computed from
|kimag|, increase as |kx| increases. We note the unexpected finding
that some modes in bulk bands have lower attenuation rates than
the edge mode.
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Fig. 3 Experimental results for controlling the edge mode of waveguide acoustic waves. Valley phononic crystals with different interface configurations for
a transporting acoustic waves along a Z-shaped path, b 180 degrees turning of acoustic waves, c dividing acoustic waves with a four-port topological junction,
and d guiding acoustic waves along a straight path. The blue and brown circles represent cavities with depths of 10 and 13mm, respectively. e–h Experimental
pressure fields at 4.3 kHz for configurations in a–d, respectively. The circulation arrows represent directions of pseudospins. i–k Experimental transmission
spectra for configurations in a–c, respectively. The shadow regions correspond to bulk bands. l Two-dimensional (2D) representation of normalized amplitudes
versus frequency and channel height hc for transmitted edge waves through the straight interface in d. The 2D representation shows that the frequencies of
transmitted edge waves gradually increase from 2.6 to 4.3 kHz with the increase of channel height hc from 0.4 to 10.4mm.
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Robust routing and frequency tuning of SAW-type edge
modes. We experimentally prove the existence of SAW-type edge
modes in our system with acoustic field measurements and
demonstrate robust routing and frequency tuning of such modes.
In experiments, we remove the top ceiling, and a speaker is
placed near the bottom cavity array to generate incident waves.
Two routes are demonstrated, one for transporting SAWs along
a straight interface (Fig. 4a) and the other for guiding SAWs
along a Z-shaped interface with two sharp corners (Fig. 4f). The
pressure fields of SAW-type edge waves are acquired by scanning
a microphone in a plane 10 mm away from the bottom cavity
array. Figure 4b, g depict the obtained pressure fields for con-
figurations with straight and Z-shaped interfaces, when the
depths of shallow and deep cavities are hsl= 10 mm and hdp=
13 mm, respectively. The pressure fields clearly show that
SAWs at 4.55 kHz can be transported along the two routes
without obvious scattering even at sharp corners. We also
quantitatively compare the experimental transmission spectra
with simulation results in Supplementary Fig. 12j. Both the
numerical and experimental spectra for receivers off the interface
have transmissions lower than −15 db in the frequency
range 4.51–4.88 kHz, while both spectra for receivers on the
interface have transmissions above −15 db in the frequency
range 4.51–4.65 kHz. The maximum experimental transmission
is around −6.7 dB at 4.55 kHz, which is close to the maximum
simulation transmission −3.6 dB at 4.68 kHz. The maximum
transmission is smaller than 0 dB, as the SAW-type edge mode
has an imaginary wavenumber part and gradually attenuates
during the wave propagation along the interface. Note that the
experimental spectrum for the receiver on the interface in Sup-
plementary Fig. 12j has a dip at 4.72 kHz, whereas the dip in the
simulation result is at 4.86 kHz. The slight frequency shift could
be induced by errors in acoustic wave sensing experiments and
inevitable fabrication errors of the actual sample.

In addition to the routing experiment at a frequency of
4.55 kHz (Fig. 4b, g), our acoustic system allows for tuning the
dispersion of the SAW-type edge mode and thus efficiently
transporting SAWs at other frequencies. To tune the frequency of
the SAW-type edge mode, a depth change Hδ is applied on both
the shallow and deep cavities. When Hδ is −1 mm, SAWs at an
increased frequency of 4.75 kHz successfully transmit along
the straight and Z-shaped interfaces (Fig. 4c, h). When the

depth change Hδ further reduces to −2 mm, SAWs at a higher
frequency of 4.95 kHz can be transported along the two
interfaces. Transmission spectra for different depth changes Hδ

are plotted in Fig. 4e for the straight interface and Fig. 4j for the
Z-shaped interface. The spectra show that the frequencies for
SAW-type edge waves increase as the cavity depths decrease.
Moreover, the acquired pressure fields at the three frequencies of
4.55, 4.75, and 4.95 kHz show that the wavelengths at different
frequencies are nearly the same. Simulation results of SAW-type
edge waves at multiple frequencies (Supplementary Fig. 14)
confirm the experimental observation. The fact that our valley
PCs can be used to tune the frequency of the SAW-type edge
mode while locking the wavenumber is an interesting feature of
this system.

Group velocity modulation and rainbow edge waves. Valley
Hall edge modes at interfaces in valley PCs allow for robust
transport, as has been observed in many acoustic systems25–31.
Here we show that spatial tailoring of the edge mode dispersion
allows for additional effects of interest. A straightforward
reconfiguration of our acoustic system with a gradient in the
cavity depths along the interface produces a chirped valley PC.
Through theoretical, numerical, and experimental studies, we
show that the edge mode dispersion curve and group velocity can
be spatially modulated and that edge waves at different fre-
quencies can be spatially separated with accumulated energy at
different locations along the edge, manifested as the “acoustic
rainbow” of the edge mode.

Figure 5a shows a schematic of a chirped valley PC composed
of type A–B supercells with a horizontal straight edge (black solid
line). The blue and brown circles represent locations of shallow
and deep cavities. The depths of shallow and deep cavities in the
mth column are denoted as hsl,m and hdp,m, which linearly
increase with m, following the relations hsl,m= hsl,1+ (m− 1)hδ
and hdp,m= hdp,1+ (m− 1)hδ, where hδ is the step size and
(m− 1)hδ is the depth change Hδ. In our example, we take hδ=
0.08mm, hsl,1= 8.24 mm, and hdp,1= 11.24mm. For the experi-
ment of the SAW-type edge mode, the top ceiling is removed.

The variations of wavenumber-frequency and group velocity
dispersion curves with respect to the column index m are
investigated. Figure 5b presents the wavenumber-frequency
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dispersion relations for supercells in columns m= 1 and 18,
showing an edge mode (blue dotted line) whose frequency
decreases with m. Figure 5c compares group velocity cg dispersion
curves for different cavity depth changes Hδ from 0.16 to 1.76
mm. The edge mode shows a cutoff frequency fcut at the trailing
end of the group velocity curve. At the cutoff frequency, the
group velocity becomes zero, and the edge mode is no longer
supported above this frequency. As the depth change Hδ

decreases, the maximum group velocity increases and the cutoff
frequency fcut shifts higher. It is also worth noting that the group
velocities of the edge modes are much smaller than that for bulk
acoustic waves in air (343 m/s), which means the edge mode can
be used to effectively delay acoustic waves.

The chirped valley PCs, being composed of type A–B supercells
with gradient dispersion relations, enable spatial modulation of
the edge mode group velocity along a straight interface.
Figure 5d–f present the dependence of the group velocity on
location x long the interface at three selected frequencies of 5.13,
5.02, and 4.96 kHz, respectively. These group velocity plots have
trailing edges where velocities gradually reduce in the +x
direction and finally reach zero. As the frequency decreases, the
location x with zero group velocity increases; waves can propagate
further in the +x direction at a lower frequency.

Based on the spatial modulation of the edge mode’s group
velocity in Fig. 5d–f, it is expected that edge waves at different
frequencies will stop propagating forward at different locations
and thus become spatially separated along a straight interface.
This is confirmed by experiments performed using the config-
uration in Fig. 5a. The acquired energy fields of edge waves are

given in Fig. 5g–i for the three selected frequencies used in
Fig. 5d–f. The energy fields show that edge waves at different
frequencies can be generated and confined in the interface of the
chirped valley PCs, with the edge waves propagating further at
lower frequencies. The locations where the experimental wave
stops propagating (Fig. 5g–i) nicely match the locations where the
computed group velocity goes to zero (Fig. 5d–f). Moreover,
accumulations of edge mode energy (Fig. 5g, h) present in the low
group velocity region. Simulations have been performed to
confirm the experimental observations (Supplementary Note 7
and Supplementary Figs. 15–18). The accumulations of edge
mode energy can be seen clearly from the simulation results in
Supplementary Fig. 18. In addition to the spatial modulation of
their group velocities, SAWs propagating in the chirped valley
PCs are also subjected to continuous energy leakage during their
propagation. As SAWs propagate further, their effectively
transmitted energy will gradually decrease due to energy leakage.
Therefore, using the SAW mode, it will be difficult to guide
acoustic waves for a long distance with high transmission
efficiencies. It will also be difficult to use chirped valley PCs for
efficiently accumulating wave energy in low group velocity
regions that are far from the wave source. Adverse effects caused
by the energy leakage can be addressed by using WAWs in
chirped valley PCs with a low ceiling height.

To further characterize the spatial modulation of edge waves,
the wave energy distribution along the straight interface of the
chirped valley PCs is acquired and plotted in Fig. 5j, a 2D
representation of the wave energy distribution with respect to
location x along the edge and frequency. The figure shows that
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the propagation distance of edge waves decreases as the frequency
increases. The locations at which edge waves stop propagating
forward agree well with the theoretically predicted locations with
zero group velocity (brown solid line). We also note that as the
frequency increases, the location with accumulated energy shifts
to the left side of the interface. These features of rainbow edge
waves can be seen more clearly from the 2D representation of
simulation results in Supplementary Fig. 19. In our study, edge
waves at different frequencies can be guided to distinct locations
using the chirped valley PCs. This type of wave guidance is
known as “rainbow guiding”53, which can be used to precisely
control the wave guidance and may facilitate the design of
acoustic circuits.

Discussion
We have developed tunable valley PCs composed of hybrid
channel-cavity cells with three tunable parameters and demon-
strated that such PCs can realize multiple functionalities. Our
experiments, supported by simulation results, show successful
tuning of dispersion relations, robust routing of SAWs, control of
wave attenuation, and modulation of edge mode group velocities.
We have also shown that these PCs support acoustic topological
states with complex wavenumbers and can be configured to form
chirped valley PCs, which permit the formation of rainbow edge
waves. These results demonstrate the value of this system for
further scientific investigations and device development.

Although recently reported topological insulators43 and
rotatable-unit-based valley PCs34 can realize reconfiguration of
acoustic wave pathways, their functionalities rely heavily on
simply changing the path configuration. Compared to those
designs, our valley PCs enable more functionalities. Firstly, these
PCs can tune multiple features of dispersion relations, including
Dirac point frequencies, band-edge frequencies, band gaps, edge
mode frequencies, and edge mode group velocities. Those men-
tioned frequencies can be tuned continuously over wide ranges
while locking the wavenumber and phase pattern of acoustic
waves; this feature could inspire the design of tunable wideband
acoustic devices. Secondly, our PCs can adjust the imaginary parts
of wavenumbers; thus, they can switch between decaying and
nondecaying acoustic waves and control the wave amplitude and
attenuation. Thirdly, they can continuously tune the sub-
wavelength ratio, i.e., the ratio between the lattice constant a and
the wavelength λ of free space acoustic waves (Supplementary
Fig. 4); this ability could be useful for deep subwavelength
manipulation.

There are intensive studies on topological systems with real
wavenumbers19–33, but relatively few consider topological sys-
tems with complex wavenumbers. Using our PCs, we found that
band crossing and Dirac cones for SAWs occur in a multi-
dimensional space of complex wavenumber and frequency and
that breaking the inversion symmetry opens a gap in the ima-
ginary part of the wavenumber for q+ and p− modes at the K
point. This means the attenuation factors of modes with opposite
pseudospins are different. Furthermore, we found that SAW-type
edge modes have complex wavenumbers, implying that they
decay exponentially as they propagate along an interface. Our
work suggests possible benefits of the exploration of different
types of topological systems with complex wavenumbers.

Our results on edge mode propagation in chirped valley PCs
also suggest various possibilities. Our experiments and simula-
tions confirm that edge modes can be generated in chirped valley
PCs, and we demonstrated the space-frequency modulation of the
edge mode group velocity as well as gradually slowing the group
velocity to zero. We demonstrated rainbow edge waves where
different frequency components of SAW-type edge modes are

spatially separated with accumulated energy at different desig-
nated locations along the PCs’ interface. This could be useful for
decomposition of frequency components in space, energy har-
vesting, and selective wave filtering.

Future developments will focus on miniaturizing the valley PCs
for deep subwavelength manipulation and control of ultrasonic
waves. The parametric study (Supplementary Fig. 5) suggests that
the miniaturized PCs have the potential to support deep sub-
wavelength manipulation with a/λ ~ 0.02. Moreover, by reducing
both the lattice constant and cavity depth, miniaturized PCs
could be developed for controlling ultrasonic waves. Such devices
could be fabricated by advanced manufacturing techniques, such
as replication-based forming54–56, high-resolution additive man-
ufacturing57–59, and/or micromilling60,61. It should also be pos-
sible to reduce the response time of the system through automatic
operation. To realize this, one potential method is to introduce
automated pumps connected to the cavities. By controlling the
automated pumps with a microcontroller board, we would expect
to be able to control the effective cavity volumes with a response
time would be similar to our previous result41 (30 s) for fully
filling an empty cavity. For miniaturized devices, the response
time would be further reduced. These research directions are
important steps toward fast, miniaturized designs that can be
integrated with precision electro-acoustic systems62–64 to develop
advanced acoustic tweezers for high-resolution dynamic manip-
ulation of nano- to micro-objects.

Methods
Fabrication and tuning of valley topological PCs. The valley topological PCs is
composed of a 5 mm thick glass ceiling and a 25.4 mm thick acrylic plate con-
taining cylindrical cavities distributed in 2D honeycomb lattices. The channel
height (distance hc between the glass ceiling and the acrylic plate) can be adjusted
by changing the heights of four spacers placed at the four corners of the acrylic
plate for supporting the glass ceiling. The cavities are fabricated through milling
and have the same diameter of 8.7 mm and the same depth of 18 mm. The cavity
centers are located at the vertices of a honeycomb with the distance D= 21.1 mm.
The effective depth of each cavity can be tuned by pumping water into/out of the
cavity with a syringe (Becton Dickinson, 5 ml Syringe) through a port connected to
the bottom of the cavity or by directly pipetting water with a high precision pipette
(Fisherbrand™ Elite Pipette with an error less than 2 µL). In our proof-of-concept
design, the channel height and cavity volumes are manually controlled, but auto-
mated tuning using a microcontroller is clearly possible.

Acquisition of acoustic fields. The acoustic field acquisition was performed in a
2D acoustic waveguide. Incident waves were generated by a loudspeaker with 0.9
cm radius. Acoustic pressures between the glass ceiling and the acrylic plate with
cavities were acquired by a microphone attached on a 2D scanning system.
Through point-by-point scanning, 2D acoustic pressure fields were acquired. At
each scanning point, four pressure signals were acquired and then averaged to
reduce the system noise.

Derivation of valley Chern numbers. Through the k∙p perturbation method20,65,
the valley Hall phase transition can be captured by the Δh-dependent continuum

Hamiltonian HK δkð Þ ¼ vD δkxσx þ δkyσy
� �

þmv2Dσz , where vD is the Dirac

velocity, δk is the momentum deviation k-kK from the valley center K, and σi are
Pauli matrices that operate on the vortex pseudospins. The effective mass m is

ωqþ � ωp�
� �

=2v2D. The Hamiltonian depends on Δh through the frequencies ωq+

and ωp− in the effective mass term. Using this Hamiltonian, the Berry curvature

can be derived as Ω δkð Þ ¼ mvD jδkj2 þm2v2D
� ��3=2

=2. By further integrating the
Berry curvature in the K valley, the associated valley Chern number can be
obtained CK ¼ γ

2π ¼ 1
2π

R
Ω δkð Þd2δk, where γ is the Berry phase. The theoretical

valley Chern numbers can be calculated using CK = sgn(m)/2 and CK′=−sgn(m)/2
for K and K′ valleys, respectively20.

Numerical simulations. The commercial finite element analysis software COM-
SOL Multiphysics is used for numerical simulations. The background medium is
air with density and speed of sound being 1.2 kg/m3 and 343 m/s, respectively. The
air-liquid interface is modeled by an impedance boundary with density and speed
of sound in the liquid being 1000 kg/m3 and 1480 m/s, respectively. The glass
ceiling and acrylic walls are modeled as rigid walls as their impedances are much
larger than that of the background medium.
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Data supporting the findings of this study are available from the corresponding author
upon reasonable request.
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