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An interactive Image) plugin for semi-automated
image denoising in electron microscopy
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The recent advent of 3D in electron microscopy (EM) has allowed for detection of nanometer
resolution structures. This has caused an explosion in dataset size, necessitating the devel-
opment of automated workflows. Moreover, large 3D EM datasets typically require hours to
days to be acquired and accelerated imaging typically results in noisy data. Advanced
denoising techniques can alleviate this, but tend to be less accessible to the community due
to low-level programming environments, complex parameter tuning or a computational
bottleneck. We present DenoisEM: an interactive and GPU accelerated denoising plugin for
Image) that ensures fast parameter tuning and processing through parallel computing.
Experimental results show that DenoisEM is one order of magnitude faster than related
software and can accelerate data acquisition by a factor of 4 without significantly affecting
data quality. Lastly, we show that image denoising benefits visualization and (semi-)auto-
mated segmentation and analysis of ultrastructure in various volume EM datasets.
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he field of three-dimensional electron microscopy (3D EM)

covers several technologies that unveil a sample at nan-

ometer (nm) resolution. The classical setup typically
involves serial sectioning and high-resolution imaging by trans-
mission EM (TEM). Lots of progress has been made in this field
by automating acquisition, which eventually enabled successful
imaging of the complete Drosophila melanogaster brain at
synaptic resolution!. The development of serial block face (SBF)
scanning EM (SEM) techniques has made 3D EM more easily
available for large-scale imaging of biological samples?. SBF-SEM
repetitively acquires a 2D SEM image from the smoothened
sample surface (or block face) and then removes the top of the
sample with a diamond knife ultramicrotome®4, revealing the
next sample surface to be imaged. Eventually, this results in a
stack of 2D images that can be compiled to a high-resolution 3D
volume image. A similar slice-and-view approach is used in
focused ion beam (FIB) SEM, where the block face is removed by
FIB milling. While both SBF-SEM and FIB-SEM have the
potential to generate images at 3- to 5-nm lateral resolution, the
FIB milling is more precise than the mechanical SBF-SEM slicing,
resulting in a maximal axial resolution of 5 and 20nm,
respectively>>9,

Over the past years, there has been a substantial increase in the
use of these techniques in life science research’-12, The advantage
of generating high-resolution 3D information, and also a com-
prehensive view of a complete cell or tissue, has invited the sci-
entific community to apply these techniques for many different
research questions. Recent ambitious research projects, such as
imaging 107 um? sections of Drosophila brain and mammalian
neuronal tissuel>13 at 8nm3 isotropic resolution for con-
nectomics research have taken volume EM imaging to a next
level. Even considering the impressive tenfold speedup obtained
by Xu et all3, it still requires 6 months and six FIB-SEM
machines to section an entire Drosophila ventral nerve cord of
~2.6 x 107 um? voxels. Note that the classical image acquisition
setup with a single FIB-SEM machine, used by most other
research facilities, would require more than 5 years. Conse-
quently, this approach is limited in terms of scalability. A
potential solution arises in the dwell-time acquisition parameter,
i.e., the time that is used to “illuminate” one pixel. Shorter dwell
times have two advantages: shorter total acquisition time and less
risk to overexposure artefacts such as charging. However, the
noise level increases as the dwell time decreases, which can
introduce issues with regard to subsequent visualization, seg-
mentation, and analysis of ultrastructure.

For the last few years, there has been great progress in com-
puter vision research, particularly in image denoising, which aims
to restore the true image signal from noisy data. State-of-the-art
denoising methods are based on multiresolution shrinkage!%1>,
nonlocal pixel averaging!>16, Bayesian estimation!”:!8, or con-
volutional neural networks!®. Many of these methods have shown
remarkable performance for 3D EM applications?0-2>, Even
though most of these methods are available to the community,
they are often impractical due to low-level programming envir-
onments, parameter sensitivity, and high computational
demands. We believe that an interactive approach is required as
the restored image data can only be validated by experts.
Nevertheless, the existing interactive denoising frameworks20-28
tend to rely on parameters that are difficult to interpret and/or are
computationally too intensive for efficient tuning and scaling
toward large-scale 3D data sets, such as the teravoxel size data sets
generated by Xu et al.!3 Furthermore, the current state-of-the-art
in image restoration is evolving fast, prompting the need for a
framework that is easily extendible with new algorithms.

In this work, we propose an interactive and user-friendly fra-
mework called DenoisEM equipped with state-of-the-art image

restoration algorithms, combined with intuitive parameter
interpretation available through ImageJ?°. The computational
backend is accelerated via GPU-based massive parallel computing
and a high-level programming language called Quasar). We
show that by using DenoisEM data acquisition times can be
reduced by a factor of 4 without significantly affecting image
quality. We also show that visualization and automated seg-
mentation and analysis can be improved by using the denoising
algorithms that are implemented in DenoisEM. Our plugin is
publicly available at http://bioimagingcore.be/DenoisEM.

Results

Interactive semi-automated image restoration with DenoisEM.
Many solutions have been proposed for restoration of EM ima-
ges>l. However, practical solutions that allow for user feedback to
apply state-of-the-art denoising on large 3D EM data sets gen-
erated by e.g., SEM or serial section TEM are not readily available.
Optimal finetuning of parameters in denoising is crucial, and this
requires expert intervention. Therefore, we wanted to offer a tool
that is based on a human-in-the-loop approach. To tackle this
challenge, we developed DenoisEM, a GPU accelerated denoising
plugin with an interactive workflow that allows for efficient
interaction and feedback by the expert. DenoisEM is a plugin for
Image]?%, an open-source program that is extensively used in the
microscopy community. The plugin allows for quick testing,
comparison, and application of different denoising solutions, and
can be used for any modality that generates 3D image data. The
plugin workflow (see Fig. 1) consists of six steps: data loading,
initialization, region-of-interest (ROI) selection, noise estimation,
interactive parameter optimization, and final batch processing.
Each step is automated as much as possible, and user interaction
is only required in the selection of the ROI and parameter set-
tings. DenoisEM is highly optimized and offers parameter tuning
at low latency due to a GPU accelerated back-end engine called
Quasar.

/\
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Process i
complete l\_lmsg
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®) QUASAR
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Algorithm and Initial
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Fig. 1 Graphical workflow of our proposed framework that includes a
human in the loop. An image is loaded and the computation backend is
prepared. Next, the user selects a ROI that is representative for the
complete data set. The noise level is automatically estimated to derive near
optimal parameter initialization (see “Parameter estimation” section in
Supplementary Figs. 16, 17). Next, the biological expert can optimize the
parameter settings at a low latency visualization of the results according to
their preferences (typically w.r.t. visualization and/or subsequent
segmentation of specific objects). Once the optimal parameters for a
specific algorithm are found, the complete data set is ready to be
processed. The computationally intensive parts of the workflow are GPU
accelerated and indicated with the Quasar logo3°.
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Intuitive and interactive user interface. DenoisEM guides the
user through the denoising process via a simple interactive user
interface (see Fig. 2) in a step-by-step procedure:

The user starts by opening a 2D or 3D image in Image].
During startup of the plugin, this image is assigned as the
reference image for restoration and all computational
resources (CPU and, if available, GPU) are prepared (Fig. 2a).
Next, the user can select a particular (2D) region-of-interest
(ROI) in the reference image that is representative for the data
set and for the analysis that follows restoration (e.g.,
visualization or segmentation of specific structures). This
can be intuitively performed using the available selection tools
in Image]. At this point, the noise level is automatically
estimated on the RO, so that initial parameter settings of the
available algorithms are at a favorable starting point for
further finetuning in the next step. For more details regarding
the noise and parameter estimation, we refer to the respective
“Methods” sections and Supplementary Figs. 16, 17.

The next step involves algorithm selection and interactive
finetuning of the parameter settings. For high-quality image
restoration this needs to be done carefully for each data set,
because EM data can be highly variable due to different
factors, like sample preparation procedures, acquisition
circumstances, cell type, etc. Moreover, each denoising
algorithm has its advantages and disadvantages and depend-
ing on the data and parameter settings the result can

vary significantly (see Supplementary Figs. 2-10). For
example, Gaussian filters are very effective in noise removal
at the cost of edge blurring (for large values of ), while the
nonlocal means filter is ideal for the data with many repetitive
patterns, but computationally intensive (for large window
sizes). Note that denoising inherently always boils down to a
trade-off between noise reduction and sharpness. For use
cases where sharpness is of high importance, we offer an
optional panel that estimates the sharpness of the image32.
A strong asset of DenoisEM is that different algorithms
(listed and briefly discussed in “Methods”), including recently
developed ones, can be found in one single tool and are
practical to use due to GPU acceleration. Switching between
algorithms is done by checking the corresponding box and
different parameters can be set by sliders. Typically, the
influence of different parameter settings is demonstrated at
low latency, which facilitates the finetuning process. When
visualization would lag, it is indicated by a red frame around
the denoised ROI. Tooltips indicate the influence of the
parameter on the result (e.g., noise reduction or sharpening).
When the user proceeds to a different algorithm or to the next
step, the previous parameters are cached, making it feasible to
switch back if necessary.
In the final step, the user can apply the desired denoising
algorithm and its corresponding parameters on the complete
image. A new image is generated and the user can then save

Bitdepth:
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Choose Deacising Agortm

Fig. 2 An overview of the user interface (Ul) of the DenoisEM plugin for ImagelJ. It is structured as a wizard that guides the user through the denoising
process in a sequence of steps. a In Image), the user loads an image or image stack for denoising and starts the DenoisEM plugin. The Ul wizard appears,
and the computational backend for parallel processing on the CPU/GPU (Quasar) is initialized. b In the next step, the user chooses any of the open images
for denoising and selects a ROl on which denoising will be previewed. ¢ Next, the main panel in the plugin appears. At the top it shows side-by-side the
noisy original as well as the denoised version of the selected ROI. In the bottom left corner, the user can select one of eight denoising algorithms. The
bottom right has controls for specifying the algorithm parameters. Typically, if the algorithm or its parameters are changed, the denoised ROI at the top is
updated virtually instantaneously. This allows the user to easily assess the effect of algorithms and parameter settings. d After optimal settings are chosen,
the user is shown a short summary and (for image stacks) can select the image slices that need to be denoised. During denoising, the user is shown
progress feedback. @ When denoising is finished, a new image or image stack is created and displayed. The original image (stack) is left untouched.
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the denoised image using ImageJ]. We recommend to save the
image in TIFF format in order to store the metadata that also
contain the information on the denoising algorithm and
parameters. These parameter values can then be applied
later on to new data sets.

We provide eight different denoising algorithms in DenoisEM:
Gaussian filtering, wavelet thresholding?433-37, anisotropic
diffusion38-40, bilateral filtering*!~43, Tikhonov denoising/decon-
volution**, total variation denoising?®>, Bayesian least-squares
Gaussian scale mixtures!4, and nonlocal means denoising/
deconvolution!®182546_ For more details about these algorithms,
we refer to the Methods section. Supplementary Figs. 2-10 show
the effect of applying each of these denoising algorithms under
several different parameters on the same noisy image patch. The
plugin user manual, available through Supplementary Note 3,
describes the different algorithms and the associated parameters
from a user perspective.

Because the DenoisEM plugin allows to select any image that is
open in the program, it allows for alternating with other
applications in Image]. After each step in the workflow, it is
possible to go back to previous steps and at no point the original
image is overwritten.

Improved visualization of 3D EM ultrastructure. We used
DenoisEM on SBF-SEM images of an Arabidopsis thaliana root
tip. The en bloc stained sample was prepared as described?748,
and a SBF-SEM data set was recorded with a Zeiss Merlin with
3View. The original image contained a significant amount of
noise and we used the DenoisEM plugin to test different
denoising solutions, under visual assessment by a biology expert.
Denoising was done by applying Tikhonov deconvolution (A =
1.5, 0=0.31, and N = 86 iterations), and Fig. 3 shows the result
of the denoising on four different ROIs from the data sets, and for
each ROI both an XY and a YZ orthogonal view is shown. In this
particular case, mild denoising was applied to avoid the loss of
structural details in the image. Nevertheless, there was an effect
on image quality and improved recognition of certain subcellular
structures, e.g., the nuclear membrane (Fig. 3b, ROI 1) or

endoplasmic reticulum (Fig. 3b, ROI 3). Note that the image
quality has also improved in the axial direction, even though the
plugin performs lateral slice-by-slice denoising. We found that
the noise level was decreased by two orders of magnitude (Fig. 3¢)
using a median absolute deviation noise level estimator.

In a next example, we used SBF-SEM images of mouse heart
tissue, prepared and imaged as described by Vanslembrouck
et al.#® Figure 4a shows an unprocessed 2D image of heart
smooth muscle cells. The sarcomeres can be recognized with the
A-bands as darker zones and the I-bands as brighter zones. We
applied the anisotropic diffusion algorithm (step size = 0.07, N
= 6 iterations and a diffusion factor x = 0.18) on this data using
DenoisEM. The effect of denoising is shown in Fig. 4b, while
Fig. 4e, f shows the corresponding intensity histogram before and
after denoising. Denoising is beneficial for the interpretation of
the sarcomere organization, since the A- and I-bands can be
better distinguished after noise removal. This is illustrated in
Fig. 4c, d, where intensity thresholding is used to generate a
magenta and green mask for the A- and I-bands, respectively.

Increased throughput of 3D EM imaging. Noise levels inversely
correlate with the acquisition dwell time, meaning that long dwell
times will always give a better result with respect to noise levels in
an image. However, for SBF-SEM, long dwell times have the
overall downside that the generation of a single data set can result
in multiple imaging days. In addition, this also leads to electron
charging artifacts and difficult slicing of the specimen. Ideally,
shorter dwell times should be used, without the trade-off of too
much noise in the image. Therefore, we acquired an image at 1 ps
dwell time and used DenoisEM to generate a denoised 1-pus image
and compared this to images acquired at longer dwell times of 2
us and 4 ps (Fig. 5). The general image quality of the fast denoised
image is improved, and for recognition of structures this can
correspond to the image that was acquired at 4 ps. This means
that the use of fast denoised images, instead of slower imaging,
has an impact on the general acquisition time. If data are gen-
erated at 10-nm pixels, with 100 nm slicing of a block of 100 x
100 x 500 um3, this means that 500x images are acquired and

b XY plane YZ plane

Raw/
restored

Restored

XY plane YZ plane
Image - — - - - - - - -——
Raw , Restored Raw | Restored
1 1405 | 1.9 11229 | 476
2 1551 1 21 12526 | 529
3 1957 | 18 11850 | 500
4 1696 1 22 13514 | 544

Fig. 3 An SBF-SEM section of an Arabidopsis thaliana root tip and four ROIs that show the denoising performance of DenoisEM. a The original image
and four annotated ROIs and b a qualitative comparison of the original and denoised cross sections. For each ROl we show an XY and YZ section to
illustrate that the image quality also improves along the Z direction, even though DenoisEM restores each XY slice independently. ¢ For each ROI, we
provide an estimation of the noise standard deviation o, ref. 51 in the raw and denoised patch to illustrate the image quality quantitatively. Note that the

noise level decreases by almost two orders of magnitude.
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Fig. 4 Influence of denoising on thresholding segmentation of A/I-bands in mouse heart tissue SBF-SEM data. a One image of an SBF-SEM datastack is
shown. The inset shows a zoom in the region indicated by the box. b The same image is shown after applying denoising. For visualization, thresholding was
applied for two ranges of intensity values and a magenta mask was used to indicate A-bands, a green mask to indicate I-bands. ¢, d show the masks for the
raw and denoised data, respectively. e, f show the intensity histograms that correspond to images (a) and (b), with indication in magenta and green of the

threshold values that were used to generate images (¢) and (d).

499 slicings are done. Each slicing event takes 18s, and the
acquisition of one image takes 640” at a dwell time of 4 ps,
leading to a general acquisition and slicing time of 58h. If
DenoisEM is applied to improve image quality, and 1-us dwell
time can be used, one image can be acquired in 1’40” and the
whole data set can be acquired in 16 h. Note that the additional
processing in the latter case is no bottleneck due to GPU accel-
eration. We employed Tikhonov deconvolution, which required
only slightly more than 5 min on a basic laptop workstation with
an NVIDIA Quadro P2000 GPU. This means that our plugin is
able to accelerate the throughput of EM imaging by a factor of 3.5
without sacrificing image quality.

Note that an alternative to increase the acquisition throughput
is to employ larger pixel sizes. However, this results in a
significant loss of resolution. DenoisEM is provided with state-of-
the-art denoising and deconvolution algorithms that reduce noise
without significantly affecting image sharpness. To show this, we
have acquired the same image as in Fig. 5d with a pixel size of 20
nm (i.e., a fourfold imaging acceleration factor, similar to Fig. 5b).
To analyze the resolution/sharpness of the image, we inspect the

Fourier spectrum (see Supplementary Fig. 11). The corresponding
spectrum shows significantly less high-frequency components, in
comparison with our proposed approach that includes Denoi-
sEM. This becomes even more clear after removing the low-
frequency components of the spectrum and applying the inverse
transform to the image domain. We note that the resulting edge
map contains significantly more structural detail in the proposed
method, whereas the image sampled at 20-nm pixel size is less
sharp and contains more noise.

Improved segmentation quality and faster image analysis.
Mouse heart tissue was prepared as in Vanslembrouck et al.4? and
imaged using FIB-SEM. In this particular data set, the lateral view
shows a transverse filament section (Fig. 6a). The noise in the
image is removed with DenoisEM by applying the nonlocal
means algorithm with damping parameter / = 0.23, half window
size B=6 and half search window size W =9 (Fig. 6d). For both
the raw and denoised data, a rendering mask was created by
intensity-based thresholding (Fig. 6b, e) with the Image] 3D
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Fig. 5 A comparison of short dwell times (+ denoising) and long dwell
times. An image acquired at a short dwell time, (a) before and (b) after
denoising, and images acquired at (c) two and (d) four times longer dwell
times. Notice how the noise level decreases and visualization of
ultrastructure improves as the dwell time increases. By including denoising
in the pipeline, we can benefit from both high-quality visualization and short
dwell times.

Viewer (Fig. 6¢, f). Denoising was crucial for the 3D visualization
of the filaments as separate objects. For counting these, we chose the
corresponding region in the raw and denoised image (Fig. 6g, i).
Two experts counted the number of filaments in these ROIs three
times, using the ImageJ Cell Counter plugin. Cell Counter allows
a user to identify an object with a mouse-click and indicates each
click on the image with a yellow pixel. When the experts per-
formed the counting, it was more straightforward to recognize
individual filaments in the denoised image, and the results in
Fig. 6k showed a lower count in the raw image, as compared with
the denoised image. As an alternative for counting objects, the
Image] Analyze Particles was used on a thresholded image. With
this automatic segmentation tool, the number of counted objects
in the denoised image corresponds to the manual counting,
especially when applying a watershed filter prior to Analyze
Particles (Fig. 6], k). The same analysis on the raw image, resulted
in values that are off by a factor of more than 1.7 compared with
manual counting (Fig. 6h, k). This demonstrates that the raw
images were not suited for automatic object counting, and that
the introduction of expert-guided denoising can prepare the
images for an automatic analysis workflow. Also timewise, there
was a clear benefit, since the analysis by thresholding, watershed,
and the Analyze Particles tool required 20 s per image on average,
while manual counting required at least 2.5 min.

To illustrate how our plugin can improve automated
segmentation quality, we have performed experiments with the
CREMI challenge data set (https://cremi.org/) where volumes of
serial section TEM of the adult fly brain are considered for
neuron reconstruction. We extracted the outer neuron mem-
branes by computing the edges between the different neurons
(using a Sobel filter) and dilating these edges by five pixels, the
mean membrane width in the data set. We use the pixel classifier

from the ilastik framework?? to predict neuronal membranes. The
prediction uses intensity, edge, and texture features and a random
forest pixel classifier combined with a small number of annotated
pixels: ~4000 and 7000 membrane and background pixels,
respectively (see top-left image in Fig. 7). To evaluate the
influence of noise and denoising, we simulate noise of variable
levels (i.e., o, = 0.01, 0.05, 0.1, 0.2) on the original (approximately
noise-free) data and denoised these noisy data sets with the
nonlocal means algorithm with a half window size B=4, half
search window size W=5 and damping parameter h=
0.05, 0.15, 0.4, 0.7, respectively. Expert intervention was necessary
to finetune the damping parameter such that neuronal mem-
branes were preserved for each noise level. Segmentation is
performed on both the noisy and denoised data sets using the
same annotated pixels. Figure 7 shows the generated probability
maps and segmentation masks, and Fig. 8 illustrates the
quantitative results in relation to the noise level by means of

the Dice coefficient (D = 2%, where P and S are the set of
predicted and true foreground/background pixels, respectively).
The results show that even a more advanced segmentation
algorithm such as random forests pixel classification is not robust
enough, as segmentation quality increases whenever denoising is
performed as a pre-processing step. This is especially notable for
higher noise levels, which is often the case when a short
acquisition time was used (e.g., due to time or sample
restrictions). Given that the pixel dwell time is inversely related
to the noise level o in the image, it can be inferred from Fig. 8 that
equal segmentation performance is achievable by accelerating the
image acquisition by a factor of 20 (0=0.01 vs. 0=0.2) and
including denoising. The segmentation results even improved for
a tenfold acquisition acceleration (¢ =0.01 vs. ¢= 0.1) when
denoising is included. Practically speaking, this implies that
acquisition times can be reduced from hours to minutes without
sacrificing segmentation quality. Note that the denoising itself
does not require a significant amount of overhead: e.g., the
processing time for nonlocal means on a single CREMI data set
volume (1250 x 1250 x 125 pixels) requires less than a minute
with a modern GPU.

Performance at low latency and easily extensible. In order to
allow for a user in the loop, it is necessary to compute restoration
results at a low latency, so that the user can test different para-
meter settings as fast as possible. The computational backend of
DenoisEM relies on a freely available programming framework
called Quasar3?, which reduces the complexity of heterogeneous
programming on CPUs and GPUs to programming in a high-
level language like MATLAB/Python without significant runtime
influence. Quasar is therefore ideal for development of novel
image processing algorithms, as prototyping is accelerated by
parallel computing on the GPU and/or CPU.

As the plugin’s host application (Image]) is implemented in the
Java programming language, we developed a bridge between Java
and Quasar to connect front and backend. This bridge uses the
Java Native Interface (JNI) to wrap Quasar objects and functions
in Java equivalents, providing an abstraction layer that separates
the complexity of the Quasar C++ API from the DenoisEM
plugin. The bridge is DenoisEM-agnostic and by itself a useful
general building block for other applications wishing to leverage
Quasar from within a Java environment. The DenoisEM plugin
and the source code for the plugin, the Java-Quasar bridge and
the denoising algorithms are freely available for noncommercial
use.

We have compared the Quasar algorithm implementations
available in DenoisEM to existing open-source implementations,
which are typically not GPU accelerated. Figure 9 shows a
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Fig. 6 Denoising influence on sarcomere segmentation and counting in mouse heart tissue FIB-SEM data. A 3D ROI from a FIB-SEM data set, acquired
at isotropic 5-nm resolution, from mouse heart tissue was used for denoising. a An XY view of 330 x 300 pixels of the raw image. b The image was used
for creating a mask (in green) by intensity thresholding. € This mask was used for 3D rendering with the ImageJ 3D Viewer. d The data were denoised with
DenoisEM, using the NLM algorithm, and e, f segmented by thresholding. g The ROl indicated in panel (@) was used for manual counting of sarcomeres
with the ImageJ Cell Counter Plugin. h Each item counted is indicated with a magenta dot. Panels (i) and (j) show the counting results on the denoised
data. k A graph showing the number of sarcomeres counted, either manual by three different individuals or by the ImageJ Analyse Particles tool on a

thresholded image, with or without watershed.

comparison for bilateral filtering*!, anisotropic diffusion38, BLS-
GSM14, and nonlocal means denoising!© (results of the remaining
methods can be found in the Supplementary Fig. 13). The results
show that the Quasar implementations are one to two orders of
magnitude faster than the classical CPU-based implementations.
Considering a latency threshold of 100 ms (ie., 10 FPS), this
allows real-time processing of megapixel images for the bilateral
filter, anisotropic diffusion and the more recently proposed
nonlocal means algorithm. State-of-the-art denoising algorithms
such as BLS-GSM used to take seconds to minutes for only a few
megapixel sized images, whereas our Quasar implementation
requires up to 1s for 16 megapixel images. This allows for much
faster parameter tuning by the expert. Note that this acceleration

can also be obtained by incorporating e.g., CUDA libraries in the
baseline implementations; however, this approach would require
more development time and we believe that the high-level nature
of Quasar is more scalable to this end. The high-level Quasar API
has been demonstrated to support rapid software development
without compromising performance in direct comparison with
other popular GPU development platforms such as CUDA (see
the work of Goossens et al.3%). In addition, we can observe that
the obtained GPU speedups increase for larger inputs, which is
desirable for large-scale computing. This is due to the fact that
more pixels can be processed in parallel, and bounded by the
amount of cores in the available GPU hardware.
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Fig. 7 Influence of denoising on pixel-classification-based membrane segmentation in TEM data. The first column shows the input, the top image
additionally shows a fraction of the labels that were used for training. The second column shows the probability output map of the random forest pixel
classifier from ilastik. The third column shows the segmentation result by thresholding the probability maps, and the fourth column the ground truth
segmentation (the Dice coefficient is shown in the upper left corner). Noise artifacts are clearly visible in the segmentation and can be avoided by
denoising as a pre-processing step. Notice that denoising can even improve the segmentation result.
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Fig. 8 Segmentation quality of the automated membrane segmentation in
the CREMI data set using ilastik. As the noise level in the data increases,
the segmentation quality is significantly influenced whereas denoising pre-
processing stabilizes (and even improves) the segmentation quality.

Discussion

There is an increasing need for higher throughput in volumetric
electron microscopy (EM) imaging. Faster acquisition typically
results in a higher noise level, which can impede ultrastructure
analysis. Consequently, to scale up 3D EM image acquisition,
there is a growing demand for fast and effective denoising algo-
rithms. Moreover, as the final purpose of 3D EM imaging can be
diverse (e.g., visualization, segmentation, counting, etc.), there is
no one-fits-all algorithm. This can be seen by the plethora of
algorithms that are currently applied in many 3D EM applica-
tions?0-23,

In this work, we present DenoisEM, an interactive and GPU
accelerated denoising tool for volumetric data (particularly 3D
EM), accessible through Image]. The broad range of denoising
possibilities offered in one solution, make DenoisEM very ver-
satile. Parameter tuning is efficient due to the GPU accelerated
backend, which allows for visualization of different parameter
settings at low latency. Reproducibility is also guaranteed by
saving the algorithm parameter settings as metadata. This can be
useful in a later stage, e.g., for other data sets that require exactly
the same processing.

We show that we can increase the throughput of 3D EM by a
factor of 4 without affecting image quality.

We validated the potential improvements that DenoisEM can
provide in 3D EM image interpretation by denoising SBF-SEM
image data of an Arabidopsis thaliana root tip. Experts confirmed
that structures such as the nuclear membrane and endoplasmic
reticulum were easier to recognize in the denoised data by opti-
mally tuning the denoising parameters. As a second use case, we
used DenoisEM on noisy SBF-SEM data of mouse heart tissue
and improved the visualization of sarcomeres as the A and
I-bands were better separated.

We assessed the effect of denoising on 3D EM data as a pro-
cessing step prior to automated segmentation, both intensity-based
thresholding and pixel-level higher-order feature classifiers. An
interesting conclusion is that segmentation quality does not sig-
nificantly decrease for denoised noisy inputs compared with those
that are noise-free. Consequently, the acquisition time can be
shortened to increase throughput or avoid overexposure, without
significantly affecting subsequent segmentation results obtained by
classical methods, such as thresholding or pixel classification.

An important note is that most denoising algorithms are
limited in performance by a trade-off between noise reduction
and edge blurring. Blur affects the resolving power of ultra-
structure boundaries and is therefore not desired in most
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Fig. 9 Computational performance comparison of Quasar-based and alternative available implementations. Absolute computational performance (in
milliseconds) of (a) bilateral filtering#!, (b) anisotropic diffusion38, (¢) BLS-GSM, and (d) nonlocal means denoising!® for different input sizes. A
comparison is made between our proposed GPU-based Quasar framework and alternative implementations that are available to the scientific community:
bilateral filter (ImageJ52 and MATLAB®3 based), anisotropic diffusion (Image)>* and MATLAB®S based), BLS-GSM (MATLABS6) and nonlocal means
denoising (ImageJ>” and MATLAB®8 based). For each algorithm, we consider inputs of 2562, 5122, 10242, 20482, and 40962 pixels. In general, our Quasar
implementation performs 10 to 100 times faster compared with the existing software packages. Notice that the obtained speedup increases as the input
image size increases due to the fact that GPUs are able to process more pixels in parallel.

experiments. The trade-off is typically moderated through (a
combination of) parameters and should therefore be tuned
properly in order not to “overprocess” data sets. We believe that
validation of the optimal parameter settings can only be per-
formed by experts. DenoisEM allows for fast comparison of dif-
ferent parameter settings and state-of-the-art algorithms through
its accelerated backend.

We believe that DenoisEM is a plugin, accessible to the life sci-
ence community, that can significantly improve the quality and
throughput of large-scale 3D EM imaging. Although we focus our
plugin on 3D EM data, it can also be used for any (2D/3D)
grayscale image producing modality (e.g., medical or astronomical
data). Future work will focus on predictive parameter optimization
based on regression models and correlation analysis between the
parameters of different algorithms. By keeping track of the EM
metadata (e.g., modality, cell type, acquisition time, etc.) and the
eventual objective (segmentation or visualization), we believe that
parameter optimization can be further automated. In addition, we
will also extend the DenoisEM framework to multichannel image
data to include the light microscopy community. Moreover, the
high-level nature of Quasar allows us to easily implement novel
restoration algorithms (e.g., based on convolutional neural net-
works) that could further improve the restoration quality.

Methods

Sample preparation. Animals were sacrificed for dissection. C57BL/6 wild-type
female mice of 8 weeks old were maintained in standard specific pathogen-free
(SPF) housing according to the European rules on animal welfare at the animal

facility of the Center for Inflammation Research at VIB (Ghent, Belgium). Mice
were anesthetized by intraperitoneal injection of ketamine/xylazine (70 mg of
ketamine and 10 mg of xylazine per kg of body weight) and perfused, first with PBS
containing heparin (20 units/ml) for 2 min, followed by 2% paraformaldehyde
(PFA; AppliChem, Darmstadt, Germany), 2.5% glutaraldehyde (Electron Micro-
scopy Sciences (EMS), Hatfield, PA USA) in 0.15M cacodylate buffer (Sigma-
Aldrich, Overijse, Belgium), pH 7.4, for 10 min. Next, heart muscle tissue was
isolated and fixed overnight using 2% PFA, 2.5% glutaraldehyde in 0.15 M caco-
dylate buffer, pH 7.4. Samples were thoroughly washed in 0.15 M cacodylate buffer,
pH 7.4, before small blocks were dissected to proceed with the staining protocol.
Post-fixation was performed by incubating tissue blocks in 1% osmium (EMS),
1.5% potassium ferrocyanide (EMS) in 0.15 M cacodylate buffer, pH 7.4.

For SBF-SEM, post-fixation with osmium was followed by incubation in 1%
thiocarbohydrazide (TCH; EMS) and subsequent washes in double-deionized water
(ddH20). Next, a second incubation in 2% osmium in ddH,O was performed.
Both TCH and the second osmication were repeated after this. The samples were
then washed in ddH,O and placed in 2% uranic acetate (UA; EMS). After the
following washing step, Walton’s lead aspartate staining was performed for 30 min
at 60 °C. For this, a 30 mM I-aspartic acid solution was used to freshly dissolve lead
nitrate (20 mM, pH 5.5) just before incubation.

For FIB-SEM, the fixed tissue blocks were washed in ddH,O for four
consecutive steps, refreshing the ddH,O after every step. Next, incubation in 1%
osmium in ddH,0O was followed by washing in ddH,O, incubation in 1% UA and
again washing steps with ddH,O.

After the final washing steps, samples for both FIB-SEM and SBF-SEM were
dehydrated using solutions of 50, 70, 90, and twice 100% ethanol. Samples were
then placed in 100% acetone and embedded in Spurr’s resin (EMS) by incubation
in 50% Spurr’s in acetone, followed by four incubations in 100% Spurr’s.
Polymeration was done overnight at 60 °C. Except for the Walton’s lead staining,
all steps were performed using a Pelco Biowave Pro Microwave Tissue Processor
(Tedpella Inc, Redding, CA, USA).

For SBF-SEM, the sample was mounted onto an aluminum pin, trimmed into a
pyramid shape using an ultramicrotome (Leica, Ultracut) and the block surface was
trimmed until smooth and at least a small part of tissue was present at the block
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face. Next, samples were coated with 5 nm of platinum (Pt) in a Quorum Q 150T
ES sputter coater (www.quorumtech.com). The aluminum pins were placed in the
Gatan 3View2 in a Zeiss Merlin SEM. For FIB-SEM samples were mounted on
Aluminum stubs (EMS) and coated with 10 nm of Pt.

Image acquisition. For SBF-SEM acquisitions, a Zeiss Merlin with Gatan 3View2
was used. Acquisition parameters for images of heart tissue were acceleration
voltage of 1.7 kV and 100 pA, dwell time of 1 ps. Images were collected at 8000 x
8000 pixels with a pixel size of 12.44 nm, and slicing was done at z-steps of 50 nm.
For image reconstructions, a ROI of 1500 x 1500 pixels was chosen and its 101
consecutive images. Acquisition parameters for images of Arabidopsis thaliana root
tips in Fig. 3 were collected at acceleration voltage of 1.6 kV and 80 pA, dwell time
of 1 ps. The pixel size was 13 nm, and the slice thickness 70 nm. For Fig. 5, a root
tip was imaged at 1.6 kV and 100 pA. A region of 2000 x 2000 pixels with 8-nm
pixel size was acquired with increasing dwell times of 1, 2, and 4 us. FIB-SEM
imaging of murine heart tissue samples was done with a Zeiss Crossbeam 540 at 5-
nm pixels and slicing at 5-nm sections.

Implemented restoration methods. In this section, we will give a brief overview
of the implemented algorithms. This includes the median absolute deviation
(MAD) noise estimator, least-squares parameter estimator, Gaussian filtering (GF),
wavelet thresholding (WT), anisotropic diffusion (AD), bilateral filtering (BF),
Tikhonov denoising/deconvolution (TIK-DEN/DEC), total variation denoising
(TV-DEN), Bayesian least-squares Gaussian scale mixtures (BLS-GSM), and
nonlocal means denoising/deconvolution (NLM/NLMD). The restoration methods
are complementary in terms of computation time and restoration performance:
e.g., algorithms such as BLS-GSM and NLMD are computationally more intensive
than, for example, GF and AD, but the former are more likely to outperform the
latter. This trade-off between computation time and image quality can be tuned by
the expert. In Supplementary Figs. 2-10, we illustrate the influence of the imple-
mented methods and their respective parameters on the restored image.

We will denote 3D images as vectors by stacking the pixels using slice-by-slice
raster scanning ordering. More specifically, the acquired image y € RN (where N is
the number of voxels in the image) is assumed to be degraded by blur and additive
noise:

y =Hx +n, (1)

where x € R is the underlying, degradation-free image, H € RN represents

the microscope point-spread function (PSF), and n € RY is a stochastic, noise
term. The noise term is assumed to be mean-zero and with a constant variance, i.e.,
[C;; = 0 (where C is the noise-covariance matrix).

Note that all the described denoising algorithms are independent of the
dimensionality of the data set. Consequently, all of these methods can be
implemented in 3D, which can improve restoration quality. However, this comes at
the cost of memory and compute time. As an illustration, we have implemented the
Gaussian filter, bilateral filter, and tikhonov denoising in 3D and concluded that
the small increase in denoising performance was not convincingly worth the
computational cost (typically 50% more) and memory overhead (typically overflow
at 0.5 GV images with a 4 GB GPU). For more details on this comparison, we refer
to Supplementary Fig. 14. For this reason, the described methods are implemented
in 2D, and volumes are processed in a slice-by-slice fashion. We do, however,
consider efficient 3D implementations as future work.

Noise estimation: This involves the task of estimating the noise variance ?
based on the acquired image y. The method that is implemented in our plugin is
the median absolute deviation (MAD) noise estimator:

& = med(ly — med(y)), @)

where med(-) denotes the median operator. The absolute difference of y and its
median value provides a pixel-wise, noise-robust measure of how much the signal
deviates from its expected value. Taking the median over these values therefore
gives a robust estimation of the noise standard deviation over the complete
image y.

Blur estimation: This involves the task of quantifying the amount of blur in an
image, i.e., a sharp image would have a metric of 0, and this value increases to 1 as
the amount of blur increases. The implemented approach explains blur as the
difference between the pixel variation of the original image y and a smoothened
version y = S,y, where S, is a horizontal smoothing kernel. The pixel variation is
defined as:

v, = max(0, D,y — D,y), ®3)

where D, expresses the variation along the x-axis (e.g., a first-order derivative
approximation). These pixel-wise variations are aggregated to a single value and
normalized as follows:

b — 2Dyl = 3
* 22Dyl
This value expresses the blur level along the horizontal direction. However, a

similar approach can be used to extract a blur estimation b, along the vertical
direction. The final blur metric is simply the maximum of both values.

4

Parameter estimation: Consider an algorithm fo( - ) with parameters 6 € R?
that maps a noisy image y onto a noise-free estimation X = fy(y). Based on the
estimated noise level ¢ (see Eq. (2)), we estimate the optimal parameter settings
through parameterized polynomial expressions w.r.t. a training data set of noise-
free benchmark EM images xy, for k=1, ..., K (K= 100 in our case). These
images were degraded with Gaussian noise of different levels o,, resulting in noisy
images .. The optimal parameters ,, € R? were determined for each noise level
0,, in least-squares sense:

0, —srgmin S [fts o
k

Next, the polynomial coefficient parameters a; € R were optimized with a least-
squares fit:

a = argmainz ([Om]j - Z [a]iﬂiy,> (6)

i

Finally, the estimated parameters that correspond to the estimated noise level ¢ are

computed as:
[é]j =3 fa]é" )

In practice, we concluded that, depending on the algorithm, a linear or quadratic
polynomial fit (g =1, 2) approximates the optimal parameters (in least-squares
sense) sufficiently close (see Supplementary Figs. 15, 16).

Gaussian filter: This is a special case of linear, smoothing filters which combine
pixel values linearly in a local neighborhood in order to restore a pixel value.
Practically, this comes down to a convolution of the noisy image y with a
convolution kernel G (which is Gaussian in this case).

Wavelet thresholding: Wavelet transforms separate image information across
multiple frequency scales and magnitudes. Noise tends to be spread among all the
transformed coefficients whereas the coefficients that represent actual
discontinuities typically stand out. Therefore, a popular method to reduce the
amount of noise in an image is to reduce the magnitude of the transformed
coefficients, this is also known as wavelet shrinkage. More specifically, the restored
image is found by transforming the image y to the wavelet domain, shrink the
noisy coefficients and transform back to the spatial domain:

x = W (z(Wy)), (8)

where W represents the used wavelet transform and WH is its Hermitian transpose.
The shrinkage function 7 is typically the soft-thresholding operator:

7(z) = sign(z) max(|z| — T,0), 9)

where all the functions operate component-wise and T 'is a thresholding parameter.

Anisotropic diffusion: The anisotropic diffusion filter, commonly used in the
context of EM image restoration, introduces nonlinearity by describing linear filters
in a partial differential equation (PDE) domain and extending it to a nonlinear
case. The true image x is embedded in a family of images x,, obtained by
convolving the image x with Gaussian filters with a variance that increases with ¢.
This diffusion process can be described by the so-called linear diffusion heat
equation:

ox,

5 = Vo (V=)
where V represents the gradient operator with respect to the spatial coordinates.
This isotropic diffusion method ignores edge information and consequently blurs
edges. The anisotropic diffusion filter mitigates this by integrating a gradient
magnitude weighting function:

(10)

ox
5=V (elVx],) V) (11)
Two nonlinear gradient regularization functions are commonly used:
5\2
o =e(~(2)"). (12)

1

1+ (3"

where «x > 0 is a parameter that offers a trade-off between noise reduction and edge
preservation. The idea is that the function ¢( - ) returns small values for large
gradient magnitudes and vice versa such that edges are less diffused (i.e., blurred)
and only in the direction of the edge (e.g., to avoid that horizontal edges will be
blurred in the horizontal direction).

Bilateral filter: It is argued that local linear filters (such as the Gaussian filter)
tend to oversmooth image edges and require nonlinearities in order to obtain a
better restoration estimate. In former EM research, the bilateral filter is used as an
alternative: this is a locally adaptive spatial filter that avoids oversmoothing by
averaging less aggressively along edges. More specifically, the restored ith pixel [X];

o(s) = (13)
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is computed as:

[x; = Zfim(l[Y]i - [Y]jl)fsp<||Pi - Pj”z)[Y]j? (14)
J

where f,,.f, : R — R are kernel functions that weigh the intensity and spatial

distance, respectively, and p; € R? represents the 3D spatial position vector that
corresponds to the index i. Similar to the Gaussian filter, pixels [y]j nearby the

reference pixel [y]; will be assigned larger averaging weights through f,,. However,
pixel intensities that differ very much from the reference pixel (typically edges) are
assigned low-weight values through f;,, which leads to less blurring along edges.

Tikhonov deconvolution: Tikhonov restoration exploits the fact that images
generally consist of many smooth regions separated by a much smaller amount of
edges. As a consequence, the total edge magnitude in the restored image should be
penalized, in other words:

x = argmin |y — Hx]|; + A|[Lx]|3, (15)
where L is typically a matrix that acts as a gradient or Laplacian operator in order
to quantify edges in the image (we use the Laplacian).

Total variation deconvolution: The total variation prior (TV) assumes that
natural images x should consist of flat regions delineated by a relatively small
amount of edges. Mathematically, this is expressed as minimizing the total
variation of the image:

X = argmxin lly — Hng +AZ \/[DXX]? + [Dyx]f + [sz]f, (16)
where D,, Dy, and D, are matrices that express the variation of the image along the
x, , and z-axis, respectively (e.g., first-order derivative approximations).
BLS-GSM: The BLS-GSM method decomposes the image into J scales and K

oriented pyramid subbands, denoises the high-pass subbands and inverts the
pyramid transform. An M x M neighborhood around a reference coefficient [v], of
a subband is considered and represented as a vector v, by column stacking. These
coefficients are then modeled as Gaussian Scale Mixtures (GSM), i.e., the product

of a Gaussian distributed vector u< A’ (0,C,) (where £ indicates distribution
equality) and the square root of an independent, positive scalar random variable z:

vz, (17)
such that a noisy neighborhood patch w is described by:
W=V+n,

(18)

d . . .
where n=N\(0,C,,) are the noise coefficients. Based on this model, the reference
coefficient is approximated using the Bayesian least-squares (BLS) estimator which
reduces to:

W= /0 " P(ew)E [V w.2] dz,

where P(z|w) is found with Bayes’ rule, and E[v|w, z] is computed as a local linear
Wiener estimate:

(19)

E[v|w, z] = zC,(2C, + C,) 'w. (20)

Mainly due to accurate statistical noise modeling, BLS-GSM has become the state-
of-the-art in multiresolution-based denoising.

Nonlocal means denoising: Since the introduction of the nonlocal means
(NLM) filter, self-similarity denoising approaches gained a lot of interest because of
their high performance. More specifically, the NLM algorithm estimates the noise-
free image pixels as weighted averages of acquired pixel values:

2 Wij

The self-similarity constraint turns up in the way the weights w;; are computed:
these should be large (respectively, small) for similar (respectively, dissimilar)
pixels i and j. Pixel similarity is defined along a local pixel neighborhood, and
searched for in both a local and nonlocal region:

IHYN‘ _YNJH;
W;; = exp R —

where yy denotes a local neighborhood N; of the acquired pixel [yl and his a
similarity damping parameter.

It has been shown that the NLM algorithm can be equivalently expressed by
means of a Bayesian estimator with nonlocal image prior. An NLM deconvolution
algorithm can be derived by extending the Bayesian estimator with nonlocal prior
to a deconvolution estimator:

[&]; (1)

(22)

N-1

N . 2 2
% = argmin [y — Hx[[3 + 2 w;|[x]; — [x];|1-
ij=0

(23)

where A is a regularization parameter and H is the estimated PSF of the
microscope.

Image restoration settings for the experiments. Most image restoration
methods have parameters that may affect computational performance: e.g., search
windows, block sizes, number of iterations, etc. For computational comparison, we
selected parameter settings that corresponded to those that were most frequently
preferred by biological experts during our experiments. In particular, we only
report the parameters that affect computation time:

Gaussian filter: window size 7 x 7 (fixed in the plugin)

Wavelet thresholding: 3D dual-tree complex wavelet transform, 6 scales
Anisotropic diffusion: N=5 iterations

Bilateral filter: window size 15 x 15 (fixed in the plugin)

Tikhonov denoising: N = 10 iterations

Total variation denoising: N =100 iterations

BLS-GSM: ] =3 scales, window size 3 x 3 (fixed in the plugin)

Nonlocal means denoising: half window size B = 4, half search window size W
=5

Nonlocal means deconvolution: half window size B = 4, half search window
size W= 5, N =20 iterations

The algorithms were implemented in Quasar and compared to open-source
MATLAB-based and Image]-based implementations if available. The experiments
were performed with an Intel(R) Core(TM) i7-4930K CPU @ 3.40 GHz and an
NVIDIA GeForce GTX 1070 GPU and repeated for various sizes of 2D input
images (2562, 5122 up to 40962). For more details, we refer to Supplementary
Fig. 13.

SBF-SEM images, acquired with the Zeiss Merlin and Gatan 3View2 detector,
are originally generated as 16-bit images. All image restoration techniques
(denoising, registration, segmentation) were performed with floating point
precision. The mouse lung artery data were restored using wavelet thresholding
with a threshold value of T'=0.08. The Arabidopsis thaliana root tip was restored
using Tikhonov deconvolution with the following parameters: A = 1.5, ¢ =0.31,
and N = 86 iterations. The murine heart tissue data set was processed with
anisotropic diffusion with a step size v =0.07, N = 6 iterations and a diffusion
factor x = 0.18. Image] was used to apply thresholding on the raw and denoised
image. The values of the selected intensities for the A-bands (shown in red in
Fig. 4) were [30300, 30700] and [30589, 30674] for the raw and denoised image,
respectively. The values of the selected intensities for the I-bands (shown in green
in Fig. 4) were [30800, 31300] for both the raw and denoised image. The mouse
heart tissue was denoised using nonlocal means with damping parameter h = 0.23,
half window size B =6 and half search window size W =19. A reference area of
340 x 340 pixels and 117 sections was cropped and used in local template matching
for registration. Reconstruction was performed similarly as with the murine heart
tissue, using threshold values from the interval [32, 78]. As a final step, a
conversion to 8-bit was always done before exporting to PNG, to allow for final
visualization. Graphics design was performed using Matlab, GIMP, Inkscape, and
MS Office.

Statistics and reproducibility. All denoising and segmentation experiments
were repeated for at least ten times on different regions of interest on the data,
and similar results were validated. Experiments that involved counting were
repeated for three times by two independent investigators, and similar results
were obtained. Timing experiments were repeated for 20 times with a similar
outcome as a result. Supplementary Note 2 provides a data reproducibility
statement on this paper.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The DenoisEM plugin is available on our webpage (https://bioimagingcore.be/
DenoisEM) and figshare (https://doi.org/10.6084/m9.figshare.9929201). A user manual is
provided on the webpage (http://bioimagingcore.be/DenoisEM/user-manual.pdf, https://
doi.org/10.6084/m9.figshare.9929888). The raw data that was used for this paper are
located on our webpage (https://bioimagingcore.be/DenoisEM/data, https://doi.org/
10.6084/m9.figshare.9929183). The source data underlying Figs. 1-9 and Supplementary
Figs. 1-17 are provided as a Source Data file (https://doi.org/10.6084/m9.
figshare.9929216).

Code availability

We stimulate the community to build on our work by open-sourcing DenoisEM (https://
github.com/vibbits/EMDenoising) and the Java-Quasar bridge that (https://github.com/
vibbits/JavaQuasarBridge). Supplementary code for the automated parameter estimation
is provided on figshare (https://doi.org/10.6084/m9.figshare.9929228).
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