FIOOOResearch

F1000Research 2020, 9(F1000 Faculty Rev):88 Last updated: 06 FEB 2020

REVIEW

'.) Check for updates

Regulation of E3 ubiquitin ligases by homotypic and heterotypic
assembly[version 1; peer review: 2 approved]

Vishnu Balaji'!, Thorsten Hoppe ' 1.2

TInstitute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of

Cologne, Cologne, Germany

2Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany

First published: 06 Feb 2020, 9(F1000 Faculty Rev):88 (
https://doi.org/10.12688/f1000research.21253.1)

Latest published: 06 Feb 2020, 9(F1000 Faculty Rev):88 (
https://doi.org/10.12688/f1000research.21253.1)

vi

Abstract

Protein ubiquitylation is essential for the maintenance of cellular
homeostasis. E3 ubiquitin ligases are key components of the enzymatic
machinery catalyzing the attachment of ubiquitin to substrate proteins.
Consequently, enzymatic dysfunction has been associated with medical
conditions including cancer, diabetes, and cardiovascular and
neurodegenerative disorders. To safeguard substrate selection and
ubiquitylation, the activity of E3 ligases is tightly regulated by
post-translational modifications including phosphorylation, sumoylation,
and ubiquitylation, as well as binding of alternative adaptor molecules and
cofactors. Recent structural studies identified homotypic and heterotypic
interactions between E3 ligases, adding another layer of control for rapid
adaptation to changing environmental and physiological conditions. Here,
we discuss the regulation of E3 ligase activity by combinatorial
oligomerization and summarize examples of associated ubiquitylation
pathways and mechanisms.
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Introduction

The covalent attachment of ubiquitin to substrate proteins is
essential for the maintenance of organismal homeostasis by
regulating diverse cellular signaling processes and protein
quality control'. Substrate ubiquitylation is usually mediated
by the sequential activity of ubiquitin-activating enzymes (E1),
ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3).
The E3 ubiquitin ligases form the largest group with more than
600 members in humans, which provide a central role in catalyz-
ing ubiquitin conjugation to internal lysine residues of specific
substrates and thereby defining their fates’. Depending on the
mechanism by which ubiquitin is transferred from the E2 enzyme
to the substrate, E3 ligases are classified into Really Interesting
New Gene (RING) finger domain-, Homologous to E6-associated
protein C Terminus (HECT) domain-, or RING Between RING
(RBR) domain-containing ubiquitin ligases’. While RING E3s
facilitate the direct transfer of ubiquitin from E2~ubiquitin
intermediates to the target protein, HECT and RBR E3s
contain an active-site cysteine that forms a thioester with ubig-
uitin before transferring it to the substrate’™. Despite a plethora
of structurally unrelated proteins, their ubiquitylation is highly
selective owing to the high number and the distinctive nature of
E3 ligases. Usually, one E3 ligase can target and regulate sev-
eral substrate proteins®. Therefore, the expression, activity, and
turnover of E3 ligases is tightly regulated to prevent cellular
dysfunctions®’. E3 expression undergoes spatiotemporal control
regulated by tissue-specific gene expression, gene imprinting,
the cellular microenvironment, and levels of substrate protein®''.
Moreover, the activity and abundance of E3 ligases are defined
by both post-translational modifications and binding of cofac-
tors and/or adaptor molecules'*"*. Besides these well-known
control mechanisms, recent structural work identified an addi-
tional layer of regulation provided by homotypic and heterotypic
combination of E3 ligases into oligomeric ubiquitylation
complexes™'>'°.  However, despite recent reports describ-
ing oligomer formation of E3 ligases, the underlying regu-
latory mechanisms and the physiological relevance largely
remain unclear. Here we provide an overview on homotypic and
heterotypic assembly of E3 ubiquitin ligases and potential
implications in drug discovery and therapeutic interventions'’.

Oligomer formation: a shared principle of E3
ubiquitin ligases

Oligomer formation specifically modulates the catalytic activity
of RING finger and HECT type E3 ubiquitin ligases (Figure 1
and Table 1)>'*". The HECT ligases SMURFI, NEDD4.1,
and HUWEL1 are negatively regulated by oligomerization, which
limits the accessibility of the catalytic cysteine residues for ubig-
uitin binding>'%"”. Conversely, oligomerization can also pro-
mote the catalytic function, which was shown for the HECT
ligase E6AP and the RING ligases BIRC7, cIAP, TRAF6,
RNF4, and Mdm2-Mdmx*>*!%22!E3 ubiquitin ligases form
different types of oligomers including homotypic interactions
where one monomer binds to one or more of its respective coun-
terparts either symmetrically, as observed for SMURFI1 and
E6AP'®?, or asymmetrically, as reported for the RING/U-box
ligases Rad18 and CHIP**. In contrast, heterotypic oligomers
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are formed between different E3s, such as the RING ligases
Brcal-Bardl and Mdm2-Mdmx (Figure 1)»%. Likewise, the
multi-subunit Cullin-RING E3 ubiquitin ligases (CRLs) form
complex oligomeric assemblies for nuanced regulation of
their activity and effective substrate recruitment”—".

Oligomer formation of E3 ligases is mechanistically regulated
by post-translational modifications including phosphoryla-
tion, sumoylation, and even ubiquitylation (Figure 1)*'“31%2 For
example, the HECT ligase E6AP is active in its trimeric form
whereas monomerization inhibits its catalytic function, which is
triggered by c-Abl kinase-dependent phosphorylation’*”. This
phenomenon is intriguingly different from other HECT ligases,
which are inactive as oligomers. Ronchi ef al. reported that most
HECT ligases contain a conserved o-helix, which inhibits oli-
gomerization but is absent in E6AP immediately N-terminal
to Asn*’. Adding evidence to this structural condition, increas-
ing concentrations of the o-helix-related peptide abrogate the
oligomerization and catalytic activity of E6AP*. However, the
HECT domain of E6AP is also observed to be a monomer in
solution®. Therefore, further studies are required to shed light
on the role of monomers and oligomers as well as the stimuli
for their molecular switch. Alternatively, the yeast and human
HECT ligases RspS and NEDD4 adopt auto-inhibitory homo-
trimer conformations upon ubiquitylation’'. Trimerization is
achieved by exposure of a hidden oligomeric interface due to
the attraction of the conjugated ubiquitin to a ubiquitin-binding
patch at the other side of the HECT domain. This allosteric
mechanism restricts an essential motion between the N-terminal
and the C-terminal lobes of the HECT domain®. Similarly,
dimer-dependent activation of the RING ligase Cbl-b is mediated
by ubiquitin binding®. The RING domain-containing SUMO-
targeted ubiquitin ligase (STUbL) RNF4 is predominantly
monomeric and inactive under normal conditions. Upon proteo-
toxic stress, poly-SUMO chains accumulate and recruit RNF4,
which facilitates its dimerization and activity®.

Besides post-translational modifications, homotypic and het-
erotypic interaction between E3 ligases is supported by adaptor
proteins and specialized cofactors (Figure 1). For instance,
homodimerization of SMURF1 mediates auto-inhibition, which
is disrupted upon allosteric interaction with CDH1 and CKIP*.
Another E3 ligase, HUWEI, has a distinct oligomerization
mechanism where its active and inactive states are promoted by
intramolecular and intermolecular interactions'’. One monomer
of HUWEI is auto-inhibited upon dimerization, which might
trigger overall inhibition of its catalytic function'”. Interest-
ingly, HUWEI usually counteracts its auto-inhibitory state by
an intramolecular interaction with a segment located 50 residues
upstream of the dimer-binding region to remain active. HUWEI1
inhibitors like pl4ARF have been reported to bind to this seg-
ment and promote the auto-inhibitory dimeric conformation™'”.
In contrast, the dimerization interface of cIAP1 stays in a
closed inactive conformation until it is bound and stabilized
by IAP antagonists such as SMAC mimetics, which open up
the interface and facilitate dimerization-dependent cIAP1
activation™~. Adaptor proteins can also fine-tune the balance
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Figure 1. Different types of E3 ligase regulation and assembly. E3 ligase A is inactive (red) as an oligomer and converted into an active
monomer (green) upon post-translational modification or binding to adaptor molecules, indicated with orange, yellow, black, and violet
circles, representing phosphate (P), sumo, ubiquitin (Ub), and adaptor molecules, respectively. Conversely, E3 ligase B is inactive as a
monomer and activated upon dimerization. Heterotypic interaction of inactive E3 ligase C and active E3 ligase D results in the formation of
a multimeric E3 ligase complex, which is able to target oligomeric substrates for ubiquitylation. Upon substrate degradation, the remaining,
active ligase D undergoes auto-ubiquitylation and turnover. The different substrates are indicated in other shapes.

between dimer and oligomer assemblies of E3 ligases, as seen in
CRL3. Here, the adaptor protein SPOP, which is a positive regu-
lator of oligomerization, teams up with the negative regulator
SPOPL in controlling the catalytic activity of the E3 ligase™’.

Regulatory mechanisms and physiological relevance
of E3 ligase assembly

The dimerization of the E3 ligase TRAF6 occurs via its RING
domain, which primes for oligomerization via the coiled-
coil (CC) region. This elegant assembly supports binding
of the RING domains to numerous E2~ubiquitin molecules
and formation of extended poly-ubiquitin chains. In addition, the
CC domain of TRAF6 fosters recruitment and on-site recharg-
ing of E2 with ubiquitin without complete dissociation from the
E3 ligase. This effective mechanism further increases the rate
of polyubiquitin chain formation'®*. Binding of E2~ubiquitin

by RING domains is also required for the backside binding of
E2s like the UBCHS family, which provide a specialized
role in polyubiquitylation of substrate proteins'**'.

Regarding the homodimeric RING E3s BIRC7, RNF4, cIAP, and
IDOL, both the monomer subunits are intrinsically capable of
interacting with E2 enzymes*'>**. Whereas for the heterodimeric
RING ligases BRCA1-BARDI1 and RINGI1B-Bmil, only one
of the monomer subunits is able to interact with the E2 enzyme;
the other one is mostly inactive while serving to stabilize the
complex, target substrates, and support the enzymatic activity”.
Remarkably, Mdm2 and Mdmx assemble both Mdm2-Mdm?2 and
Mdmx—Mdmx homodimers in vitro, but when mixed together they
prefer to form Mdm2-Mdmx heterodimers*****. The Mdm2-Mdmx
heterodimer has the potential to form tetramers, especially to tar-
get the putative substrate p53, which is primarily a tetramer**.
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Table 1. List of E3 ubiquitin ligases forming oligomers.

S No E3ligase Class Oligomeric state References
1 SMURF1  HECT Inactive Wan et al.*®
2 NEDD4.1 HECT Inactive Attali et al.*'
3 HUWE1 HECT Inactive Sander et al.””
4 E6AP  HECT Active Ronchi et al.**
5 BIRC7  RING Active Dou et al.”!
6 clAP1 RING Active Mace et al.*
7 TRAF6  RING Active Yin et al.*®
o AN ANG e fectmoodea
9 MDM2 RING Active Poé“r:g;]’;kgtif/.?j'g;
10 RAD18  RING Active Huang et al.**
11 Brcail RING Active Brzovic et al.*
12 Cbl-b RING Active Peschard et al.®
13 IDOL RING Active Zhang et al**
14 SIAH1 RING Active Hu G and Fearon ER"
15 CHIP U-box Active Zhang et al.**

For the E3 ligases MDM2 and SIAHI, homo-oligomerization
might also provide a role in auto-degradation'’. Remarkably,
upon degradation of their substrates, the increased cellular level
of these ligases triggers homo-dimerization and subsequently
pushes the equilibrium towards auto-ubiquitylation in trans and
subsequent proteasomal degradation (Figure 1) This
mechanism removes the excessive E3 ligase molecules and
thereby regulates the level of the enzyme. Especially in the case
of Mdm?2, the stringent control of E3 ligase level seems to be
important to prevent tumorigenesis*~"'.

As described before, the RING domain has a direct role in
binding E2~ubiquitin conjugates. Interestingly, dimers of the
RING ligases RNF4, cIAP, and BIRC7 have higher affinity to
E2~ubiquitin than their monomeric counterparts””. RING dim-
ers preferentially bind charged E2~ubiquitin rather than E2
alone’’. Most monomeric RING E3 ligases possess a conserved
tryptophan residue, which is critical for binding to E2~ubiquitin
conjugates and optimal ligase activity, while the dimeric RING
E3s present different residues at this position. Strikingly,
RING dimers, when endowed with this tryptophan residue, are
hyperactive™. During the course of evolution, this particular
tryptophan residue seemed to be modified in dimeric E3 ligases
to prevent aberrant functioning and to enable regulation of the
catalytic activity only by oligomer formation®”. It has been dem-
onstrated that RNF4 is present in a basal inactive monomer form
and only proteotoxic and genotoxic stress conditions increase
polySUMO chain levels to potentially induce dimer formation and
enzymatic activation®’”. As a common feature, dimeric ligases are

critical for several signaling pathways and their misregulation
results in cellular defects and cancer progression®**>,

Interestingly, the conserved U-box domain protein Ufd2p/UFD-2
functions as both an E3 and an E4 ligase™. Unlike the U-box con-
taining E3 ligase CHIP, which forms an asymmetric homodimer,
UFD-2 exists as a monomer”. The structure of UFD-2 shows
that it can readily bind to E2~ubiquitin conjugates as a mono-
mer in a similar fashion to dimeric CHIP>**°. The question of
why some proteins exist as monomers while some are dimers
is addressing an interesting aspect considering that UFD-2 teams
up with CHIP to enhance polyubiquitylation of the myosin
assembly chaperone UNC-45 in Caenorhabditis elegans. There-
fore, it is interesting to speculate that UFD-2 and CHIP form a
heterodimeric complex providing altered substrate specificity
and processing”’.

Conclusion

E3 ubiquitin ligases regulate a myriad of proteins and therefore
their expression and activity need to be tightly controlled to pre-
vent dysfunction and toxicity®. Besides multiple regulatory prin-
ciples, oligomerization appears to be a key mechanism in the
adaptation of E3 ligase activity to cellular requirements’’***>°,
Ubiquitylation results in either proteolytic or non-proteolytic
fates of conjugated substrates'’. Therefore, it is intriguing to
speculate that oligomeric E3 ligases promote polyubiquitylation
and proteasomal degradation, whereas oligomer disassem-
bly supports monoubiquitylation and non-proteolytic substrate
regulation”’. Depending on the concentration, Mdm2 is able
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to polyubiquitylate or monoubiquitylate p53, which results
in proteasomal degradation or nuclear export’. Conclusively,
oligomer formation provides an elegant mechanism, which
defines E3 ligase function.

Studying the underlying regulation involves various chal-
lenges. For many E3 ligases, the regulation and physiological
relevance of oligomer formation is not completely understood
because of the limitation of methods to follow the dynamic
(dis)assembly of E3 ligase complexes in vivo. Indeed, many
studies were performed under non-physiological conditions
by analyzing the structure of recombinantly expressed protein
domains in vitro or transgenic overexpression in cellulo, where
the dynamic regulation is different compared to endogenous
conditions. For example, studies on the yeast Radl8 RING
domain or Zebrafish CHIP U-box domain suggested a sym-
metric homo-dimer assembly and altered E2 binding in contrast
to results obtained for both full-length proteins'>**°*. Another
limitation is that some E3 ligases exist in a monomer—dimer
transition state in solution", suggesting that binding of E2,
adaptor molecules, or chaperones is able to modulate the
equilibrium'®*. In addition, the expression of E3 ligases is often
tissue-specifically regulated and can trigger concentration-
dependent changes in oligomer formation”.

The regulatory role of homotypic and heterotypic combina-
tion of E3 ligases appears to be an attractive mechanism to
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target for drug discovery. Indeed, IAP antagonists are known to
promote cIAP dimerization and activity for treating cancer'>-*.
Similarly, homo- or hetero-Proteolysis-Targeting Chimeras
(PROTACsS) are synthetic small molecules that promote dimeri-
zation of specific E3 ligases. For example, the homobifunctional
compounds CML1 and 15a induce effective dimerization of the
CRL2 subunits VHL and CRBN, respectively, which results in
the self-degradation of VHL and CRBN'"". Alternatively, the
heterobifunctional compounds 14a and CRBN-6-4-5-5-VHL,
synthesized to target both VHL and CRBN, preferentially
degrade CRBN over VHL®'*. In the case of the E3 ligase CHIP,
specific peptides were shown to inhibit its dimerization and E3
ligase activity®’. More studies and technological advances will
provide better insights and understanding of the oligomerization
mechanism, which will help to design compounds to manipulate
E3 ligase assembly for therapeutic applications.
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