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Abstract

Structural variation in the human genome has emerged as a major cause of disease as genomic 

data have accumulated. One of the most common structural variants associated with human 

disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. 

This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The 

PMP22 gene is highly induced in Schwann cells during development, although its precise role in 

myelin formation and homeostasis is still under active investigation. The PMP22 gene can be 

considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, 

and the complex is allosterically regulated by transcription factors that respond to intracellular 

signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the 

major therapeutic targets of therapy development, and this review summarizes those approaches as 

well as efforts to characterize the regulation of the PMP22 gene.

Copy Number Variants in the PMP22 Locus and Charcot-Marie-Tooth 

Disease

There are >100 genes that are mutated in CMT or syndromic conditions involving peripheral 

neuropathy (Rossor et al., 2017). However, the most common subtype of CMT, called CMT 

Type 1A (CMT1A), accounting for 40-50% of genetically diagnosed CMT cases results 

from a 1.4 Mb duplication on chromosome 17, which includes the myelin gene Peripheral 

Myelin Protein 22 (PMP22) (Lupski et al., 1991; Patel et al., 1992; Raeymaekers et al., 

1991; Snipes et al., 1992). The reciprocal 1.4 Mb deletion is also linked to a second distinct 

disease (see Figure 1), Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) 

(Chance et al., 1993). Transgenic studies linked aberrant Pmp22 expression to peripheral 
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neuropathy in rodent models of CMT1A (Huxley et al., 1996; Magyar et al., 1996; Sereda et 

al., 1996) and studies of knockout alleles revealed symptoms in the Pmp22 heterozygotes 

that resemble aspects of HNPP (Adlkofer et al., 1995; Adlkofer et al., 1997; Guo et al., 

2014). Furthermore, reduction of the Pmp22 transcript has been shown to ameliorate the 

symptoms of neuropathy in rodent models of Pmp22 overexpression (Passage et al., 2004; 

Perea et al., 2001; Sereda et al., 2003; Zhao et al., 2018), indicating that transcriptional 

regulation is a valid target of therapies for CMT1A.

Pathomechanisms Caused by the CMT1A Duplication

The development of rodent models of CMT1A have enabled studies of how Pmp22 

overexpression causes neuropathy. Some of the mechanisms are thought to be downstream 

of the PMP22 duplication, such as formation of PMP22 aggregates (Fortun et al., 2003), 

imbalanced ERK/AKT kinase regulation (Fledrich et al., 2014), altered lipid metabolism 

(Fledrich et al., 2018), and elevated calcium through P2X7 channels (Nobbio et al., 2009). 

Despite a number of significant advances, several issues have been raised regarding the 

validity of rodent models (Jouaud et al., 2019; Li, 2017). One important point is that 

transgenic insertion of even the large genomic clone in the C3, C61, and C22 models 

(Huxley et al., 1998) likely does not recapitulate all of the genomic/epigenomic effects of 

the tandem duplication of the 1.4 Mb segment on chromosome 17. For example, there are 

other transcripts (including microRNAs or long noncoding RNAs) within the interval, which 

could play a role. In this respect, it is thought that studies of CMT1A-derived induced 

pluripotent stem cells could provide a superior model (Juneja et al., 2019; Mukherjee-Clavin 

et al., 2019), although challenges remain in obtaining fully differentiated Schwann cells.

Recently, an alternate hypothesis for CMT1A has been presented, in which the chromosome 

17 duplication causes destabilized PMP22 transcription due to disruption of long range 

intra- and inter-chromosomal interactions (Li, 2017). It is possible to address the hypothesis 

that the duplication per se causes CMT1A rather than gene dosage, since patients have been 

analyzed that have a co-occurring HNPP-associated deletion on one copy of chromosome 17 

and the CMT1A-associated duplication on the other copy of chromosome 17 (Hirt et al., 

2015). These patients therefore have the correct gene dosage but still have the duplication, 

and the absence of the typical CMT1A neuropathy symptoms strongly suggests that gene 

dosage is the critical factor.

Analysis of rodent models do not clearly show overexpression of PMP22 protein, and in fact 

some report decreased levels of PMP22 protein, although this could be due to the lack of 

PMP22 stabilization that occurs when it is not efficiently incorporated into healthy myelin 

(Pareek et al., 1997). Transcript measurements do show elevated Pmp22 mRNA in animal 

models, but this is also dependent upon the stage at which it is measured (Fledrich et al., 

2014). In human samples, immuno-EM studies have shown elevated levels of PMP22 

protein in the myelin of dermal nerves in CMT1A skin biopsies, although these levels are 

quite variable and do not correlate with the severity of symptoms (Katona et al., 2009). 

Other quantitative RT-PCR studies in human skin samples have not shown a clear elevation 

of PMP22 transcript in CMT1A compared to controls (Nobbio et al., 2014). As detailed 

below, reduction of PMP22 transcript levels in CMT1A animal models has been successful 
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in resolving the neuropathy, but the therapeutic validity of lowering PMP22 in human 

CMT1A has not yet been demonstrated.

PMP22 Gene Regulation

PMP22 is most highly expressed in peripheral nerve, and its transcripts are among the most 

abundantly expressed genes in mature Schwann cells after a dramatic induction during 

myelination. Initial studies of Pmp22 regulation had focused on Pmp22 promoters (Suter et 

al., 1994). The two major promoters P1 and P2 drive expression of two alternate noncoding 

exons (1A or 1B respectively) and these transcripts are approximately in 3:1 ratio in rodents 

and 1:1 ratio in human Schwann cells (as recently confirmed in gtexportal.org). The P1 

promoter is expressed exclusively in myelinating Schwann cells, although both P1 and P2 

transcripts are induced during myelination. In other tissues where Pmp22 is expressed at a 

lower level, the P2 promoter is the major transcription start site. Subsequent transgenic 

analysis identified an enhancer region upstream of the P1 promoter (Maier et al., 2002; 

Maier et al., 2003), known as the late myelinating Schwann cell enhancer (LMSE). 

However, neither the promoters nor the LMSE could recapitulate the large developmental 

induction of Pmp22 in transgenic assays.

To perform a more comprehensive analysis of Pmp22 regulation, chromatin 

immunoprecipitation (ChIP) techniques were used to map binding sites of EGR2 and 

SOX10 (Jones et al., 2011; Srinivasan et al., 2012), which are required for myelination and 

high level expression of PMP22. Peripheral nerve is an excellent substrate for ChIP analysis: 

the sciatic nerve contains no neuronal nuclei, and is highly enriched in Schwann cells, which 

selectively express Pmp22. Most Schwann cells, moreover, are myelinating, whereas the 

remaining nonmyelinating Remak Schwann cells do not express high levels of myelin genes. 

Our analysis identified binding sites for EGR2 and SOX10 within an intronic regulatory 

element in Pmp22. The intronic site responds to EGR2 and SOX10 activity in transient 

transfection assays, and also drives tissue-specific expression to peripheral nerve in mouse 

transgenic assays (Jones et al., 2011).

Extension of this approach with ChIP-seq identified a super-enhancer domain upstream of 

Pmp22 (Jones et al., 2012; Lopez-Anido et al., 2016; Pantera et al., 2018). Super-enhancers 

are large genomic regions containing multiple enhancer elements (Whyte et al., 2013). The 

enhancers within these domains display hallmarks of enhancer status and activity (e.g. the 

presence of the enhancer-associated histone mark H3K27 acetylation, H3K27ac) at levels 

greater than those observed at typical enhancers. The major elements of this super-enhancer 

(labeled A, B, C in Figure 2) have several characteristics of Schwann cell-specific enhancer 

elements (Jones et al., 2012). First, all three show binding of EGR2 and/or SOX10 and have 

conserved consensus binding sites for these factors. Second, the three genomic segments 

show EGR2- and/or SOX10-dependent activity in reporter assays. Third, chromatin structure 

analysis of the Pmp22 locus revealed that regions A, B, and C bear chromatin modifications 

typically found in regulatory regions (Hung et al., 2015; Lopez-Anido et al., 2016), such as 

H3K27 acetylation. This H3K27ac signature is lost at these elements following nerve injury, 

an event that coincides with loss of Pmp22 transcription (Figure 2) (Hung et al., 2015; 

Welcher et al., 1991). Interestingly, Pmp22 is much more highly expressed in Schwann cells 
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compared to oligodendrocytes, and Sox10 binding and H3K27ac modifications in the super 

enhancer are present in peripheral nerve but not in ChIP assays of spinal cord 

oligodendrocytes (Lopez-Anido et al., 2015). Finally, deletion of this super-enhancer in the 

S16 Schwann cell line significantly reduced Pmp22 transcription in these cells, with a larger 

impact on transcription from the Schwann cell-specific P1 promoter (Pantera et al., 2018).

The regulatory elements identified thus far are highly conserved between rodents and 

humans. Interestingly, the orthologous human super-enhancer resides within two 

independent duplications (of <200 kb) identified by copy number variation (CNV) analysis 

of patients with a mild form of CMT (Weterman et al., 2010; Zhang et al., 2010). In these 

patients, only the super-enhancer is duplicated, not the PMP22 gene itself. The two 

duplicated regions overlap by 168kb and encompass not only the super-enhancer, but also 

the intervening TEKT3 gene, which is primarily expressed in testis. The Tekt3 gene is 

inactive in Schwann cells (Jones et al., 2012), and therefore is not likely the target of these 

enhancers. Our data are consistent with the possibility that the upstream duplications alter 

PMP22 regulation by inserting an extra set of enhancers upstream of the gene, stimulating 

increased expression of the gene. The upstream super-enhancer is not absolutely required for 

Pmp22 expression, since genomic clones of Pmp22 lacking this domain have been used to 

make transgenic models of CMT1A (Sereda et al., 1996; Sereda and Nave, 2006). However, 

the lack of the upstream cluster in these genomic clones may explain why several copies 

(>3) of the locus must be inserted in order to significantly increase PMP22 mRNA levels.

Since Pmp22 regulation appears to involve several enhancers, several of which are remote, 

we used genome editing to embed reporters in the endogenous Pmp22 locus, so that 

reporters would reflect the long range enhancers and also epigenetic regulation (e.g. 

chromatin structure, microRNA regulation) of the Pmp22 gene. We used TALEN-mediated 

recombination to insert reporters in the S16 rat Schwann cell line as a fusion within the 

endogenous Pmp22 gene with an intervening 2a self-cleaving sequence so that reporter 

protein(s) are not fused to PMP22 (Dranchak et al., 2018; Inglese et al., 2014; Jang et al., 

2012). The S16 Schwann cell line is unique among Schwann cell lines in having a high level 

of PMP22 expression, which is comparable to that found in vivo (Hai et al., 2002), and our 

ChIP studies have consistently found transcription factor binding patterns are similar in S16 

cells and rat sciatic nerve (Jones et al., 2011; Jones et al., 2012; Lopez-Anido et al., 2016; 

Srinivasan et al., 2012).

As one of the first examples of a drug screen employing a genome edited reporter, this 

approach was able to identify candidate compounds that were not identified using single 

Pmp22 enhancer constructs (Dranchak et al., 2018; Inglese et al., 2014; Jang et al., 2012). 

These studies identified PKC activators and HDAC inhibitors as regulators of Pmp22 
expression; HDAC 1/2 inhibitor romidepsin was a particularly potent inhibitor of expression. 

Other studies showed that while HDAC1/2 inhibitors could reduce Pmp22 expression, 

HDAC8 inhibition had no effect and HDAC3 inhibition increases expression of several 

myelin genes including Pmp22, demonstrating that specific HDAC subtypes are involved 

(He et al., 2018). Histone deacetylases often work within large complexes, and we had 

previously found a reduction of Pmp22 mRNA and protein levels in mice with a Schwann 
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cell-specific deletion of the CHD4 subunit of the NuRD (nucleosome remodeling and 

deacetylase) complex that also contains HDAC1/2 (Hung et al., 2012).

Other lines of evidence have highlighted the growth-regulating Hippo signaling pathway as 

an important regulator of Schwann cell differentiation and myelin gene expression (Deng et 

al., 2017; Lopez-Anido et al., 2016; Poitelon et al., 2016). This pathway features a kinase 

cascade that, when active, inhibits nuclear localization and transcriptional activity of its 

terminal effectors, the co-activators YAP and TAZ. The YAP/TAZ complex, along with other 

coactivators including the TEAD family of transcription factors, drive expression of genes 

involved in cell growth and proliferation (Chen et al., 2010; Deng et al., 2017; Zhao et al., 

2010). Following the discovery that TEAD binding motifs were enriched in peripheral nerve 

SOX10-bound enhancers (Lopez-Anido et al., 2015), including enhancers associated with 

Pmp22, we examined whether TEAD1 might be an important regulator of Pmp22 
transcription (Lopez-Anido et al., 2016). Our analysis in primary rat Schwann cells and the 

S16 cell line showed that siRNA-mediated knockdown of Tead1 reduces Pmp22 
transcription, as does loss of the YAP/TAZ co-activators in vivo. Furthermore, ChIP assays 

detected TEAD1 binding at multiple Pmp22 enhancers, including the intronic element and 

the B and C elements within the distal super-enhancer, both in the S16 cell line and in 

peripheral nerve. Mutational analyses of luciferase constructs bearing the sequences of the 

B, C, or intronic elements suggested that many of the TEAD binding sites within these 

elements are important for activation of those enhancers. Similarly, examination of TAZ 

ChIP-seq data (Figure 2) generated from purified newborn rat Schwann cells (Deng et al., 

2017) indicated TAZ binding at the enhancers previously shown to bind TEAD1 (Lopez-

Anido et al., 2016). Together, these data point to YAP/TAZ and TEAD1 being important 

direct regulators of Pmp22 expression. Other potential direct regulators of PMP22 

expression are the LXR transcription factors, which are proposed to mediate the effects of 

oxysterols on myelin genes (Makoukji et al., 2011).

In addition to transcriptional regulation, transcript levels are also subject to post-

transcriptional regulation through microRNAs (Gokey et al., 2012; Svaren, 2014), and 

several studies have identified microRNAs that appear to modulate Pmp22 expression. One 

of the earliest analyses of microRNAs identified miR-29a as a modulator of Pmp22 levels 

(Verrier et al., 2009). PMP22 levels decrease after nerve injury, which correlates with 

increased levels of miR29a (Arthur-Farraj et al., 2017; Verrier et al., 2009; Viader et al., 

2011). Another microRNA, miR-381, was identified as being down in the C22 mouse model 

of CMT1A, and was subsequently found to reduce PMP22 RNA and protein levels in 

transfection experiments. Intraneural injection of lentivirus expressing miR381 resulted in 

downregulation of PMP22 protein and improved myelination in the C22 model (Lee et al., 

2019).

Modifiers of CMT1A

Recent studies have begun to identify modifier loci that modulate the severity of CMT1A. 

For example, polymorphisms in regulatory elements of the SH3TC2 gene—which is itself 

mutated in CMT4C--were shown to correlate with various parameters in a carefully 

phenotyped cohort of ~400 CMT1A patients (Brewer et al., 2014). Some modifier genes 
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could directly modulate the levels of PMP22 transcripts. One potential microRNA modulator 

of PMP22 was identified through genetic analysis of a polymorphism in miR149 that 

correlated with age of onset and severity of CMT1A patients. Analysis of the polymorphism 

in miR149 suggested that it may affect its ability to repress PMP22 and possibly other 

myelin genes (Nam et al., 2018). In addition, a study of genetic modifiers in 907 CMT1A 

patients identified several polymorphisms in the SIPA1L2 gene that correlate with foot 

dorsiflexion weakness (Tao et al., 2019). The function of this gene is unknown, although the 

encoded protein has predicted GTPase domains and was shown to interact with actin and 

MYH9. Interestingly, SIPAl2 is itself regulated by SOX10 and EGR2, and siRNA-mediated 

depletion of the SIPA1L2 gene in the S16 Schwann cell line resulted in loss of PMP22 

expression along with other myelin genes.

Therapeutic Agents that Reduce PMP22 Expression.

Ascorbic acid.

Based on its important role in promoting in vitro myelination (Eldridge et al., 1987), 

ascorbic acid (AA) was evaluated as a potential therapy to restore myelination in the C22 

mouse model. In these mice, high-dose AA administration at 57 mg/kg suppressed the 

human PMP22 transcript, improved locomotor function, and partially rescued defects in 

myelination (Passage et al., 2004). A follow-up study suggested that this AA-induced 

suppression of the PMP22 gene was mediated by inhibition of adenylate cyclase and 

reduction of cyclic AMP levels in Schwann cells (Kaya et al., 2007). However, several 

clinical trials in which patients were given AA over one or two years did not find evidence 

that AA is effective at ameliorating neuropathy in CMT1A patients (Gess et al., 2015; Lewis 

et al., 2013; Pareyson et al., 2011).

Progesterone antagonists.

Following the discovery that progesterone and progesterone derivatives could activate the 

Schwann cell-specific P1 promoter and drive transcription of Pmp22 in rats (Desarnaud et 

al., 1998; Melcangi et al., 1999), the progesterone/glucocorticoid receptor antagonist 

onapristone was evaluated for its potential as a therapeutic in CMT1A rats (Sereda et al., 

2003). Administration of 20 mg/kg onapristone from P5 to seven weeks of age led to 

specific down-regulation of the Pmp22 gene, while CMT1A rats administered the same dose 

of progesterone displayed elevated transcription of both Pmp22 and Mpz. Onapristone-

treated rats displayed improved motor performance, an increase in the number of axons, and 

proportion of myelinated axons compared to rats given progesterone. A follow-up study 

evaluating the effects of longer-term onapristone treatment in older CMT1A rats found 

similar beneficial outcomes (Meyer zu Horste et al., 2007). Rats treated with onapristone at 

20 mg/kg/day from 5 weeks to 26 weeks of age showed improved CMAP amplitudes and 

reduction in loss of large-caliber axons, and skin biopsies from rats at 26 weeks showed 

reduction in Pmp22 mRNA compared to rats on placebo (Meyer zu Horste et al., 2007). 

Despite these outcomes, concerns over toxicity of current progesterone antagonists have 

precluded trials in CMT1A patients, and therefore the efficacy of progesterone receptor 

inhibition as a CMT1A therapy is still unknown. Interestingly, no differences in overall 

severity have been found between men and women with CMT1A (Fridman et al., 2014; 
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Swan et al., 2007). Mechanistically, it is not known if progesterone (and/or glucocorticoids) 

would regulate Pmp22 through direct binding of its receptor to the PMP22 gene, or rather 

through regulation of EGR2/SOX10 (Magnaghi et al., 2007).

PXT3003.

A small molecule therapy in clinical trials for CMT1A is a cocktail of three approved drugs: 

the GABAB agonist baclofen, the opioid receptor antagonist naltrexone, and D-sorbitol. 

These drugs were identified in a systems biology screen intended to single out compounds 

capable of acting on different G protein-coupled receptors to influence a wide swath of 

signaling pathways upstream of myelin gene regulation (Chumakov et al., 2014). While all 

three individual drugs proved capable of improving myelination in DRG co-cultures from 

CMT1A model rats, the PXT3003 cocktail displayed synergistic improvement both in 

myelination and in selective down-regulation of Pmp22 transcription in vitro and in vivo, 
with rats displaying improved motor function at nine weeks of treatment and improved 

myelination and nerve conduction velocity at four months of treatment. Concurrent trials in 

patients with mild-to-moderate CMT1A showed similarly promising results (Attarian et al., 

2014). Patients given PXT3003 daily for one year, particularly at the trial’s high dose, 

demonstrated improvements to both motor function and electrophysiological parameters 

associated with neuropathy. Inspired by these results, more recent work sought to evaluate 

whether PXT3003 treatment has a lasting protective effect on promoting healthy Schwann 

cell differentiation when administered early in life, from postnatal day six to postnatal day 

18 in CMT1A rats (Prukop et al., 2019). In this study, rats were segregated into groups 

treated with three different doses of PXT3003 and examined for longterm changes to the 

CMT1A phenotype at the age of three, nine, or 12 weeks. While there were persisting 

improvements to some functional measurements (e.g. hindlimb strength) and reduction in 

Pmp22 transcript particularly in the high-dose group, other measures including nerve 

conduction velocity and CMAP were not improved by treatment. Similarly, while there was 

a shift toward maintenance of larger-caliber axons, the total number of myelinated axons 

was not significantly improved compared to CMT1A controls.

Antisense oligonucleotides.

One of the emerging platforms for therapeutic reduction of disease-associated transcripts is 

the use of antisense oligonucleotides (ASOs) that hybridize with and promote RNAse H-

dependent degradation of their target mRNAs, thus suppressing effective expression of the 

target. Recent work in CMT1A rodent models evaluated the efficacy of ASO therapy 

targeting Pmp22 transcription (Zhao et al., 2018). In this study, five-week-old C22 mice 

received weekly injections of a PMP22 ASO at 25, 50, or 100 mg/kg for nine weeks and 

demonstrated dose-dependent reduction of both the human transgene and endogenous 

Pmp22 mRNA. This reduction in mRNA was accompanied by improved motor function and 

partial rescue of both motor nerve conduction velocity and CMAP amplitude, as well as 

improvement in the proportion of myelinated axons and reduction of onion bulb formation. 

The ASO approach was similarly effective in CMT1A rats, showing significant reduction of 

Pmp22 mRNA, improvements in CMAP amplitude and proportion of myelinated axons, and 

rescue of nerve conduction velocity changes in this model. While small molecule therapies 

operate via broader mechanisms more susceptible to off-target effects, successful application 
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of ASO therapy to CMT1A patients could be a safer, more focused method of treating the 

disease.

Measuring PMP22 levels as a Marker of Target Engagement

If reducing PMP22 levels is a valid therapeutic target, the assessment of PMP22 levels as a 

target engagement assay is an important gap in developing effective clinical trials. As noted 

above, treatment-induced decreases in Pmp22 transcripts can be detected in rodent skin 

(Meyer zu Horste et al., 2007; Zhao et al., 2018). In humans, dermal skin biopsies allow for 

the relatively non-invasive evaluation of myelinated nerve fibers innervating structures such 

as Meissner’s corpuscles (Li et al., 2005), compared to the more invasive sural nerve 

biopsies. While quantitative PCR measures of PMP22 measurements have been employed in 

clinical trials for CMT1A, they unfortunately did not show changes in the ascorbic trials, 

and in fact do not discriminate CMT1A patients from controls (Katona et al., 2009; Lewis et 

al., 2013; Nobbio et al., 2014; Pareyson et al., 2011). Lack of consistency may be attributed 

to loss of dermal nerve fibers that has been documented in CMT1A patients (Manganelli et 

al., 2015; Nolano et al., 2015), which may require a robust normalization strategy to account 

for variation in Schwann cell content in skin biopsies. Levels of PMP22 in immuno-EM of 

CMT1A patient skin samples were elevated, although the levels were more variable than in 

non-CMT1A samples (Katona et al., 2009; Li et al., 2005).

In our recent study, a pilot RNA-seq analysis from skin biopsies from nine CMT1A patients 

and seven controls showed that PMP22 levels are ~1.55 fold higher in CMT1A samples than 

in control samples (p=0.016). Because a more digital method of RNA detection—compared 

to quantitative PCR used in previous studies (Nobbio et al., 2014)—revealed an elevated 

level of PMP22 (Svaren et al., 2019), we therefore sought to develop a method to normalize 

to variations in Schwann cell content. With the ultimate goal of developing a clinically 

applicable platform for analysis of skin biopsies, we employed Nanostring detection, which 

uses a unique barcode-based probe design to digitally count numbers of transcripts in 

biological samples (Geiss et al., 2008). Since no amplification or cDNA synthesis is 

involved, the precision of the assay is substantially better than qPCR techniques.

For Nanostring analysis, we assembled a pilot 50+ gene panel of Schwann cell genes that are 

a) dysregulated in CMT1A, or b) Schwann cell-specific genes that are relatively stable and 

therefore will serve as normalization controls. Several resources are available to identify 

Schwann cell-specific genes, including expression profiles of peripheral nerve development 

and response to injury (Araki et al., 2001; Arthur-Farraj et al., 2012; Barrette et al., 2010; 

Bosse et al., 2006; Kim et al., 2012; Nagarajan et al., 2002; Schneider et al., 2001), as well 

as profiling of sorted cell types in mouse embryonic skin (Sennett et al., 2015) and the recent 

RNA-seq profiling of >400 human tibial nerve samples along with many other tissues 

(Broad Institute, gtexportal.org). Using these resources, we identified a series of Schwann 

cell-specific genes that are relatively unchanged in nerve injury and CMT1A models. Using 

a set of CMT1A and control skin biopsies and normalizing to two Schwann cell-specific 

genes, the results are shown as a volcano plot in Figure 3, in which gene expression changes 

in the upper right quadrant show increased levels (y-axis) in CMT1A samples compared to 

controls plotted against the significance of the changes (negative log p value). Using 
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Nanostring probes to detect total PMP22 mRNA and also the two major transcripts (exon1a 

and exon1b, driven by P1 and P2 promoters, respectively), PMP22 levels were elevated in 

CMT1A vs. control (i.e. log2=~1). The levels of PMP22 were more variable in CMT1A 

samples compared to controls, which was consistent with the earlier immuno-EM analysis 

(Katona et al., 2009), but levels of PMP22 did not correlate with age nor with severity of the 

neuropathy (Svaren et al., 2019). To address the variability of PMP22 levels in CMT1A, we 

also employed two independent punches from each patient, and found that PMP22 levels 

were fairly consistent within a patient if they were normalized to Schwann cell-specific 

genes. In addition, we also saw changes in L1CAM and NGFR/p75, which have been shown 

to be elevated in rodent models of CMT1A (Hanemann et al., 1996; Klein et al., 2014; 

Magyar et al., 1996; Niemann et al., 2000). The increase in PMP22 levels is also apparent in 

unnormalized data, or after normalization to other Schwann cell-specific genes (Svaren et 

al., 2019). Overall, our data suggest that employing more digital methods of analysis 

coupled with normalization to appropriate genes can create a more reliable and precise 

method for measuring PMP22 levels in skin biopsies for clinical trials.

The ultimate use of this technique would presumably not be restricted to target engagement, 

but perhaps to also inform the appropriate dosing. One might expect that a therapeutic 

agent’s effect on PMP22 transcript levels in a clinical trial could be measured in skin within 

a few weeks of administration, although that remains an important question. With regard to 

dosing, one potential risk is that over-suppression of PMP22 could cause HNPP or even 

more significant symptoms associated with biallelic loss of PMP22. On this point, it is not 

yet clear that the myelin abnormalities or conduction block in HNPP patients and rodent 

models (Guo et al., 2014) arises from PMP22 deficiency during myelin development or is 

dependent upon ongoing depletion of PMP22 in mature Schwann cells. Therefore, it is 

possible that PMP22-lowering therapies may be more tolerated in mature myelin, but this 

has not been tested in a quantitative fashion in rodent models.

Conclusion.

As one of the more abundant myelin genes in Schwann cells, the PMP22 gene is important 

to understanding the integration of all the pro-myelinating signaling pathways that culminate 

in the large induction of this gene and the myelin gene network during myelination. In 

addition, the modulation of PMP22 transcript levels remains a target of therapeutic 

development for CMT1A, and new tools are available to assess target engagement in future 

clinical trials.
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Highlights

The most common cause of the hereditary neuropathy known as Charcot-Marie-Tooth 

disease is a structural variant in chromosome 17 that consists of a duplicated 1.4 Mb 

segment encompassing the PMP22 gene, which is classified as CMT1A.

Animal models overexpressing PMP22 recapitulate several aspects of neuropathy, and 

experimental interventions that reduce PMP22 show benefit in preclinical studies.

Therapeutic agents that reduce PMP22 are in development for clinical trials for CMT1A.

Several aspects of PMP22 gene regulation have been identified, including transcription 

factors SOX10 and EGR2 among others that activate PMP22 transcription through an 

upstream superenhancer.

Recent biomarker studies have identified novel means to measure PMP22 in dermal 

nerves of skin biopsies, which will allow assessment of target engagement and dosing in 

clinical trials.
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Figure 1. 
Genomic rearrangement on 17p11.2 leads to distinct inherited peripheral neuropathies.

Misalignment of sister chromatids at highly-homologous CMT1A-REP regions (white bars) 

during meiosis enables an unequal crossing over event. This results in a tandem duplication 

of a 1.4 megabase region including the PMP22 gene (black bars) on one sister chromatid and 

the reciprocal deletion of the same region on the second sister chromatid. Inheritance of the 

chromatid possessing the tandem duplication leads to development of CMT1A, while 

inheritance of the chromatid possessing the deletion leads to HNPP. Colors in chromatid 

segments are added to ease visualization of the rearrangement.
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Figure 2. 
Chromatin structure of a dosage-sensitive myelin gene.

The diagram shows ChIP-seq data for the Pmp22 gene, which is duplicated in the most 

common form of CMT, known as CMT1A. The rat Pmp22 gene is shown by the bold arrow 

and the tracks show ChIP-seq data for the Sox10, Egr2, and Taz transcription factors, along 

with a marker of actively engaged enhancers, histone H3K27 acetylation. Enhancers that 

lose H3K27 acetylation following peripheral nerve injury are shaded blue, and the super-

enhancer domain labelled Pmp22-SE containing several of these enhancers is indicated by 

the purple bar. While the normal duplication in CMT1A is 1.4 Mb surrounding the entire 

PMP22 gene, there have been smaller duplications associated with mild forms of CMT, 

indicated by a red bar, which would duplicate the super-enhancer. Other genes partially 

included in this smaller duplication, Cdrt4 and Tekt3, are transcriptionally silent in Schwann 

cells.
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Figure 3. 
Nanostring measurements of PMP22 in skin biopsies

These data were published as part of a recent study(Svaren et al., 2019). Punch biopsies 

were collected from distal forearm (9 cm from ulnar crease). Equal amounts of skin biopsy 

RNA’s were applied to the custom Nanostring panel. After normalizing to two Schwann 

cell-specific genes, Nanostring results from skin biopsies are summarized in the volcano plot 

with levels (log 2, y-axis) plotted against the significance of the changes (x-axis, negative 

log10 p value). The most statistically significant changes between control and CMT1A skin 

biopsies are in the upper right quadrant.
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