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Abstract Sea-level rise sits at the frontier of usable climate climate change research, because it
involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example,
many of the measures to adapt to sea-level rise involve infrastructure and land-use decisions, which can
have multigenerational lifetimes and will further influence responses in both natural and human systems.
Thus, sea-level science has increasingly grappled with the implications of (1) deep uncertainty in future
climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of
slow trends and high-frequency variability (e.g., tides and storms) that give rise to many of the most
relevant impacts; (3) the effects of changing sea level on the physical exposure and vulnerability of
ecological and socioeconomic systems; and (4) the challenges of engaging stakeholder communities with
the scientific process in a way that genuinely increases the utility of the science for adaptation decision
making. Much fundamental climate system research remains to be done, but many of the most critical
issues sit at the intersection of natural sciences, social sciences, engineering, decision science, and political
economy. Addressing these issues demands a better understanding of the coupled interactions of mean and
extreme sea levels, coastal geomorphology, economics, and migration; decision-first approaches that
identify and focus research upon those scientific uncertainties most relevant to concrete adaptation
choices; and a political economy that allows usable science to become used science.

Plain Language Summary The impacts of sea-level rise pose growing threats to coastal
communities, economies, and ecosystems, and decisions made today—in areas like land-use policies,
coastal development, and infrastructure investment—will affect exposure and vulnerability for gen-
erations to come. Thus, the usability of sea-level science is a pressing concern. Ensuring usability
requires grappling with deep uncertainty in long-term sea-level projections, the relationship
between long-term trends and the impacts of short-lived extreme events, and the ways in which the
physical coast, as well as people and ecosystems along the coast, respond to increasingly frequent flooding.
At the same time, it also requires more extensive and deliberate stakeholder engagement throughout the
scientific process, as well as cognizance of the political economy of linking stakeholder-engaged science to
action.

1. Introduction
Climate change is inherently a long-term phenomenon: Under the classical definition of “climate” as the
statistics of weather over 30-year periods (e.g., Arguez & Vose, 2011), it can only be seen amid more rapid
variability from a multidecadal perspective. Thus, climate change science—as opposed to the meteorology
or physical oceanography of climate variability—becomes actionable primarily in the contexts of catalyzing
overdue adjustments to past trends and of managing future long-term risks. The feasibility of long-term risk
management depends on a variety of psychological, social, economic, and institutional factors (Shwom &
Kopp, 2019). Whether climate science is actionable, however, depends not only on a favorable context but
also on the shape of the science itself—even in a welcoming psychosocial environment, science cannot be
used if it does not address questions relevant to the decisions being made (e.g., Hinkel et al., 2019).
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As global temperatures and sea level have climbed, climate science has slowly expanded from an original pri-
mary focus on fundamental understanding to include a significant emphasis on usability (Dilling & Lemos,
2011). This transition happened first with the science of the global climate and its implications for miti-
gation, where “usability” is primarily in the context of national and global target setting and institutional
design. The recognition of a clear human fingerprint in modern warming and the development of concepts
such as “carbon budgets” have made a clear and direct impact on the shape of the global climate negotiations
(e.g., Allen et al., 2009; Friedlingstein et al., 2014; Matthews & Caldeira, 2008; Matthews et al., 2018).

Given a particular course of global emissions, however, many actions to manage climate risk, especially with
regard to adaptation, will be decided on and implemented at a more local level. With respect to science for
climate adaptation, the study of sea-level change has been at the frontier of the usability transition. This
pole position is due to two main reasons. First, like temperature change but unlike many other climate
stressors (e.g., changes in precipitation or weather systems), sea-level change is univariate and, in most of
the world, monotonic on climatological timescales: The multidecadal-average sea level is inexorably rising.
It is thus more straightforward for decision makers to understand and react to than multivariate changes of
ambiguous direction. Second, whereas for temperature-related impacts, many of the relevant adaptations
(e.g., behavioral change and air conditioning) can be implemented rapidly, and for sea-level-related impacts,
many of the relevant adaptations involve infrastructure and land use. Thus, decisions made today affect the
coastal risk faced by subsequent generations.

The tie between near-term investments and long-term vulnerability can be seen in retrospect. In the after-
math of Hurricane Sandy, for example, about 90% of the New Jersey customers of the Public Service Electric
and Gas Company (PSE&G) lost power, many for more than a week. Fourteen of PSE&G's major switching
stations were affected (Calore, 2013). Seven of the switching stations were located at sites of generation sta-
tions or substations that had been sited prior to 1911 (Electric Railway Journal, 1911, p. 590). In other words,
siting decisions made by Thomas Alva Edison and his contemporaries had a fairly direct effect on the vul-
nerability of the New Jersey electric grid during a storm more than a century later. The vulnerability of their
great-grandchildren's electric grid to coastal flooding was surely not among their top design considerations;
but with climate change and sea-level rise amplifying exposure, in some cases dramatically, it has become
increasingly urgent to be more forward-looking.

This paper provides an overview of the sea-level science relevant to decision makers and communities
developing forward-looking coastal adaptation strategies. Ultimately, such strategies must identify ways to
combine the four basic approaches to coastal adaptation (e.g., Haasnoot et al., 2019; Sengupta et al., 2018):
(1) accommodation of more frequent flooding through social (e.g., improved emergency response), eco-
nomic (e.g., flood insurance), and engineering changes ; (2) defense against flooding; (3) advance (i.e., the
reclamation of land from the ocean); and (4) relocation (e.g., through autonomous or planned migration).
Determining how to combine these approaches requires consideration of the physical hazards associated
with sea-level change and the autonomous responses of individuals to their changing environment, as well
as the decision science approaches that can help construct strategies that are robust to uncertainty and the
political and sociological barriers to their effective use.

Sections 2–4 examine the physical drivers and hazards associated with sea-level change. Section 2 briefly
reviews projections of future sea-level change, highlighting key uncertainties that are relevant for decision
making. More detailed reviews are available in several recent papers and assessment reports (e.g., Church
et al., 2013; Clark et al., 2015; Oppenheimer et al., 2019; A. J. Garner et al., 2018; Horton et al., 2018; Jevrejeva
et al., 2019; Slangen et al., 2017). Section 3 examines the translation of future sea-level change to extreme
sea levels and related attempts to assess flooding on the current coastline. Section 4 examines the dynamics
of the physical response of the coast to changing mean and extreme sea level. Section 5 then examines the
dynamic socioeconomic response of coastal communities, primarily through migration, focusing on how the
autonomous actions of individuals affect community exposure and vulnerability to flooding. Sections 6 and
7 turn to planned adaptation choices. Section 6 examines decision frameworks for incorporating sea-level
science into coastal planning even in the presence of scientific deep uncertainty, while section 7 examines
the practice of planned coastal adaptation. Section 8 concludes by identifying some key pathways forward
to advance the physical, social, and decision science of sea-level change.

In the paper, we follow the standardized definitions of concepts and terminology related to sea-level change
and variability adopted by Gregory et al. (2019). By relative sea level (RSL) change, we refer to the local change
in the time-average height of the sea-surface (mean sea level) above the sea floor. Where not otherwise spec-
ified, we take mean sea level to be a mean of an 18.6-year tidal cycle, averaging out shorter-term variability.
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Figure 1. (a) Evolution of 21st century GMSL rise projections for high-emissions scenarios. Reproduced from Garner
et al. (2018). Bar and point colors correspond to the methodology used by each study: top-down semiempirical (pink),
bottom-up literature synthesis (red), bottom-up model hybrid (orange), bottom-up model synthesis (yellow), bottom-up
probabilistic (green), bottom-up expert judgment (cyan), other (blue), and IPCC reports (purple). Tan-shaded regions
and dashed lines represent the ranges of GMSL rise from the IPCC reports. (b and c) Cumulative distribution functions
of (b) 2050 and (c) 2100 GMSL rise projections under RCP 8.5 (orange) and a low emissions scenario (either RCP 2.6 or
2◦C stabilization, blue). Solid, dashed, and dot-dashed lines represent CDFs of bottom-up projections using ice-sheet
projections from Kopp et al. (2014) [K14]; Kopp et al. (2017) using the AIS projections of DeConto and Pollard (2016)
[K17+DP16], and Bamber et al. (2019) [B19]. Dotted lines represents the top-down semi-empirical projection of Kopp,
Kemp, et al. (2016), calibrated using the paleo-temperature reconstruction of Mann et al. (2009) [K16].

By global mean sea level (GMSL) change, we refer to change in the volume of the ocean divided by the surface
area of the ocean, which is equivalent to the average of RSL change over the surface area of the ocean.

2. Projections of Relative Sea Level Change
Going back to its 19th-century roots, sea-level science has long been informed by inferences from the geo-
logical record, observations of modern sea level, and predictions of theoretical, analytical, and numerical
models. Coming from a paleo perspective, Croll (1867) recognized the relationship between ice-age variabil-
ity in land-ice volume and GMSL change. He also noted the effect of ice-volume changes on RSL via changes
in Earth's gravitational field (Sugden, 2014), which Woodward (1888) correctly derived for the case of a rigid
Earth. (The derivation was not extended to a non-rigid Earth for almost a century, until the work of Far-
rell and Clark (1976) and Clark and Lingle (1977)). Johnson (1929), writing for the U.S. National Research
Council, synthesized what was known about the drivers of spatial variability in mean sea level, highlighting
effects of freshwater input, wind, Earth rotation, and tidal channel geography. Gutenberg (1941) compiled
data from 69 tide gauges around the world (excluding gauges undergoing post-glacial uplift) and identified
a centennial-scale GMSL trend of about 1.1 mm/year. Fairbridge and Krebs (1962) added thermosteric and
halosteric density effects to Johnson's (1929) list of key processes and noted meteorological variability in
sea level associated with the Southern Oscillation and the North Atlantic Oscillation. From tide-gauge data,
they inferred a long-term GMSL rise beginning in about 1890, with an average rate of 1.2 mm/year from
1900 to 1950. Drawing in part on paleo-sea level data, Mercer (1978) highlighted the instability in the West
Antarctic Ice Sheet (WAIS) that would result from loss of fringing ice shelves and warned that CO2-induced
warming could lead to deglaciation and 5 m of GMSL rise.

2.1. Advances in Sea-Level Projections
The first modern projections of sea-level change were developed in the early 1980s (e.g., Gornitz et al.,
1982), triggered by the growing concern about the potential instability of WAIS (e.g., Clark & Lingle,
1977; Hughes, 1975; Mercer, 1978; Schneider & Chen, 1980). (See Figure 1a and Garner et al., 2018 for
a compilation of subsequent projections.) In general, projections can be categorized as either “top-down”
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or “bottom-up.” Top-down methods utilize observed relationships between global-mean temperature and
GMSL, often assuming that there is an equilibrium GMSL for each temperature to which realized GMSL
converges at a rate dependent on degree of disequilibrium (e.g., Gornitz et al., 1982; Kopp, Kemp, et al., 2016;
Rahmstorf, 2007; Rahmstorf et al., 2012). Bottom-up methods aggregate the contributions of each of the key
driving processes contributing to GMSL and RSL change. Advances have been made using both approaches
over the past three and a half decades.

Advances in top-down projections have been driven by increasing statistical sophistication and longer,
higher quality global mean temperature and GMSL reconstructions. For example, GMSL reconstructions
are now informed by satellite altimetry measurements of sea-surface height (e.g., Nerem et al., 2018; WCRP
Global Sea Level Budget Group, 2018), by tide-gauge records stretching back in some locations to the 18th
century (e.g., Holgate et al., 2013; Talke et al., 2018), and by geological reconstructions that in some cases
achieve decimeter-scale vertical resolution and multidecadal-scale temporal resolution stretching back up
to four millennia (e.g., Kemp et al., 2018; Kopp, Kemp, et al., 2016).

Interpretation of these records has been advanced in part by increasingly sophisticated statistical approaches
(Ashe et al., 2019), which include not just pooling individual tide gauges to construct regional averages
(e.g., Dangendorf et al., 2017; Gornitz et al., 1982; Johnson, 1929; Jevrejeva et al., 2014) but also the use of
empirical orthogonal functions (EOFs) constructed from satellite altimetry data to capture expected spatial
variability of tide-gauge data (Calafat et al., 2014; Church & White, 2006, 2011; Dangendorf et al., 2019),
Gaussian-process models that incorporate the spatio-temporal correlations expected from different driving
processes (Hay et al., 2015; Kopp, 2013), and state-space models that explicitly model the evolution of dif-
ferent driving processes over time (Dangendorf et al., 2019; Hay et al., 2015). Gaussian-process models have
also been used to fuse tide-gauge and geological data (e.g., Kemp et al., 2018; Kopp, Kemp, et al., 2016), allow-
ing the reconstruction of the last three millennia of GMSL change and showing the extraordinary nature
of 20th century GMSL rise. Notably, however, no current reconstruction directly combines satellite data
with tide-gauge or geological data. Further, the only reconstruction approach yet used to indirectly combine
satellite and tide-gauge data (the EOF-based approach) has been shown to yield biased reconstructions of
either GMSL or higher-frequency variability (Calafat et al., 2014). Dangendorf et al. (2019) worked around
this limitation by combining a reconstruction of high-frequency variability from the EOF method with a
reconstruction of lower-frequency changes from a state-space model.

Advances in bottom-up projections have been driven by an increasingly sophisticated understanding of rel-
evant physical processes, including those that cause local RSL changes to differ from GMSL changes (e.g.,
Kopp et al., 2015; Milne et al., 2009; Figure 2a). GMSL rise is driven by the decreasing density of the warming
ocean (global mean thermosteric sea level rise) and the addition of mass to the ocean (barystatic sea-level rise),
primarily from glaciers and ice sheets and secondarily from the land hydrosphere. RSL changes are driven
by many additional processes. For example, changes in atmosphere-ocean heat, buoyancy, and momentum
fluxes, and resulting changes in ocean circulation, drive a highly spatially variable pattern of ocean density
and mass changes (e.g., Stammer et al., 2013). River discharge can also be an important driver of interan-
nual sea-level variability (Piecuch et al., 2018). Shifting mass between the cryosphere, land hydrosphere,
and ocean gives rise to gravitational and rotational effects that alter the height of the sea surface and also
deform the Earth's crust, affecting the height of the land; the processes together are examples of gravita-
tional, rotational, and deformational (GRD) effects (e.g., Clark & Lingle, 1977; Mitrovica et al., 2011). The
ongoing response of the Earth's mantle to past changes in loading gives rises to additional GRD, known as
glacial-isostatic adjustment (GIA; e.g., Farrell & Clark 1976; Lambeck et al., 2014; Peltier et al., 2015). The
height of the land also changes in response to processes such as sediment compaction (in some cases, accel-
erated by anthropogenic groundwater or hydrocarbon withdrawal) (e.g., Keogh & Törnqvist, 2019), tectonics
(e.g., Tanaka & Heki, 2014), and mantle dynamics (Rowley et al., 2013).

Important advances have been made in the integration of these processes (and related collaborations across
research disciplines). As recently as the last decade, studies by ocean modelers often ignored the potential
importance of GRD effects (e.g., Hu et al., 2009; Stammer, 2008), though the latter dominate the spatial
patterns associated with ice-sheet melt once net losses exceed a couple decimeters sea-level equivalent (Kopp
et al., 2010). Conversely, studies of GRD effects generally assumed that freshwater input to the ocean would,
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Figure 2. (a) Factors driving GMSL and RSL change. Bold labels identify
process that drive GMSL change, with approximate average contributions
over 1993–2017 shown (Mouginot et al., 2019; Rignot et al., 2019; WCRP
Global Sea Level Budget Group, 2018; Zemp et al., 2019). Adapted from
Milne et al. (2009). (b) Difference between median RSL and median
GMSL projection under RCP 8.5 in 2100, based on the projections of
Kopp et al. (2014).

apart from GRD effects, be uniformly distributed and did not consider
how the dynamic effects of freshwater input might modulate this assump-
tion (e.g., Mitrovica et al., 2001). Meanwhile, long-term sea-level recon-
structions from the geological community often assumed that GIA and
geological processes like tectonics were the only drivers of deviations
between GMSL change (often called “eustatic sea level” change in this
literature) and RSL change (e.g., Engelhart et al., 2009).

To our knowledge, Milne et al. (2009) offered the first major review
calling for an integrated approach, and Kopp et al. (2010) was the first
global study to couple dynamic and GRD effects associated with ice
sheet mass changes, albeit in a highly idealized setting. Driven by the
needs both for relevant, comprehensive local sea-level projections and to
interpret increasingly detailed current observations and past reconstruc-
tions, the past decade has seen a dramatic increase in the integration of
sea-level fields (e.g., Jackson & Jevrejeva, 2016; Katsman et al., 2011; Kopp
et al., 2014; Slangen et al., 2014). This integration is essential for adaption
planning, which requires comprehensive, localized, projections.

This holistic approach is reflected in current bottom-up projections, in
which RSL at location x and time t, under forcing scenario F, is viewed
as the sum of different contributing factors, for example:

RSL (x,F, t) = GMTSLR (F, t) + DSL (x,F, t) + …
∑

i
𝑓i(x,F, t)GLAC i(F, t) +

∑

𝑗

g𝑗(x,F, t)IS𝑗(F, t) + …

∑

k
hk(x, t)LWS k(t) + GIA (x, t) + VLM (x, t)

.

(1)
Here, GMTSLR represents global mean thermosteric sea-level rise, and
DSL represents ocean dynamic sea level (the height of the sea surface

above the geoid, with the inverse barometer correction applied). GLAC, IS, and LWS represent different
glacial regions, ice-sheet sectors, and terrestrial water reservoirs (with regions denoted by the i subscript),
while f, g, and h represent their respective normalized GRD spatial patterns (often called “fingerprints”).
GIA represents the (VLM and geoidal) effects of GIA, and VLM represents contributions to vertical land
motion not otherwise incorporated into GRD fingerprints or GIA. The GMTSLR and DSL terms affect only
the height of the sea surface (also known as geocentric sea level); VLM affects only the height of the land,
while the remaining processes affect both the surfaces defining RSL.

Many sources of information have been employed to quantify each term in equation (1), including novel or
published model outputs, informal or structured expert judgement, and statistical extrapolation of observa-
tions. GMTSLR and DSL terms are often derived directly from the output of global climate models (GCMs;
e.g., Yin, 2012), while glacier projections typically come from mass balance models forced by downscaled
GCM projections of temperature and precipitation (e.g., Marzeion et al., 2012). Diverse approaches have
been used to estimate LWS, including both process models of groundwater withdrawal (e.g., Konikow, 2011;
Wada et al., 2012) and semi-empirical relationships among parameters like dam construction, groundwater
withdrawal, and population (e.g., Rahmstorf et al., 2012; Kopp et al., 2014).

Ice sheet projections generally rely significantly on informal or structured expert judgement (SEJ; e.g., Bam-
ber & Aspinall, 2013; Bamber et al., 2019; Church et al., 2013), informed by but often not strictly tied to
the state of the art in modeling of ice-sheet melt, accumulation, and discharge. SEJ is a formal method
that calibrates experts based on their ability to estimate accurately their own uncertainty regarding rel-
evant questions in their field of expertise. It penalizes both ignorance and overconfidence and has been
shown to perform well in a variety of contexts (Oppenheimer et al., 2016; Colson & Cooke, 2018). It yields a
probabilistic estimate while avoiding some of the biases that arise in consensus-based expert judgements.

The GRD fingerprint terms come from geophysical models solving the so-called “sea-level equation” (e.g.,
Mitrovica et al., 2011). GIA typically either comes from a geophysical model (e.g., Lambeck et al., 2014;
Peltier et al., 2015) or is incorporated into an empirical estimate of slowly changing background processes
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(e.g., Kopp et al., 2014). The latter estimate also includes other forms of slow VLM; projections that do not
take this approach generally ignore forms of VLM not associated with fingerprints or GIA. Recent efforts
have also adapted top-down methods to project temperature-dependent RSL contributions by component,
with associated fingerprints (Bakker, Wong, et al., 2017; Mengel et al., 2016).

In general, historically calibrated top-down methods must be complemented by bottom-up methods if local
RSL projections are required. However, top-down methods provide useful context for interpreting bottom-up
projections (Figures 1b and 1c). Projected future GMSL from top-down projections calibrated against the
tide-gauge record (e.g., Grinsted et al., 2010; Schaeffer et al., 2012) are generally systematically higher than
bottom-up projections (e.g., Church et al., 2013). For example, Schaeffer's (2012) semi-empirical model pro-
jected a 90% credible interval of 64–121 cm of 21st century GMSL rise under a moderate emissions pathway
(Representative Concentration Pathway [RCP] 4.5); by contrast, the bottom-up approaches used by the Inter-
governmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) projected an ∼66% credible
interval of 35–70 cm. A semi-empirical model calibrated against two millennia of geological reconstruc-
tions of GMSL and global-mean temperature (Kopp, Kemp, et al., 2016) yields lower projections, in good
agreement with IPCC AR5 (Church et al., 2013; an ∼66% credible interval of 39–69 cm). The agreement
between these two different approaches may increase confidence in both. However, since the top-down pro-
jections are based on a time period (the last two millennia) that likely involved a far smaller role for ice-sheet
changes than is expected in the future, this agreement might alternatively be interpreted as a warning sign
for possible implicit historical biases in AR5's bottom-up projections.

2.2. Key Unanswered Questions in Sea Level Projections
Despite significant progress, there remain important unanswered questions that affect the usability of mean
sea level projections.
2.2.1. Deep Uncertainty in Sea-Level Projections
“Deep uncertainty,” also known as “ambiguity” (Ellsberg, 1961), refers to a situation in which in which there
is limited scientific agreement on key conceptual models and parameters (Lempert, 2002). Ellsberg's (1961)
classic example refers to a gamble involving drawing balls from a urn containing a mixture of red and black
balls, with a $100 award for a red ball and no award for a black ball. In the shallow uncertainty urn, there
is a known number of red and black balls (say 50 of each); in the deeply uncertain urn, the total is known
but the ratio is not. In general, all else being equal, humans exhibit a preference for the less ambiguous
gamble. In sea-level rise projections, deep uncertainty is reflected in the spread among different probabilistic
projections—where there is substantial deep uncertainty, differing but comparably justifiable approaches
can yield substantially different probabilistic projections (Bakker, Louchard, & Keller, 2017; Le Cozannet et
al., 2017; Wong et al., 2017).

One source of deep uncertainty in future sea-level rise is the uncertainty in anthropogenic emissions. There
is no clear way of estimating the relative probability of different emissions futures, given the political,
economic, and technological complexities involved. For one context where such relative probabilities are
necessary—estimation of the social cost of carbon dioxide—National Academies of Sciences, Engineering,
and Medicine (2017) recommended the use of SEJ. But for sea level projection, such an approach is not
necessary; projections conditional upon a plausible range of emissions scenarios serve adequately. Recent
projections have generally been conditioned upon the RCPs (Van Vuuren et al., 2011) used in CMIP5, while
new projections will likely increasingly use the CMIP6 ScenarioMIP RCP/Shared Socioeconomic Pathway
pairings (O'Neill et al., 2016). A few studies have also looked at 1.5◦C and 2.0◦C temperature stabilization
scenarios (see Horton et al., 2018, for a review).

Less avoidable is the deep uncertainty in ice sheet physics, especially that associated with potential instability
of the Antarctic ice sheet. Two increasingly well understood forms of ice-sheet instability are Marine Ice
Sheet Instability (MISI) and Marine Ice Cliff Instability (MICI). The potential for MISI arises when an ice
sheet sits below sea level on a reverse-sloped bed (i.e., a bed that gets shallower toward the edge of the
ice sheet; Pattyn, 2018; Schoof, 2007; Weertman, 1974). In MISI, the ice sheet becomes destabilized when
ocean waters penetrate underneath the buttressing ice shelf, causing the grounding line to retreat onto the
reverse-sloped area. Because of the reverse slope, as the grounding line retreats, it gets deeper and the ice
flux increases, accelerating the rate of retreat. This instability proceeds until the grounding line becomes
pinned by a change in bed slope. Such a process may already be underway in parts of the Amundsen Sea
Embayment, West Antarctica (Joughin et al., 2014; Rignot et al., 2014).
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While as of AR5 the degree of ambiguity surrounding MISI led the IPCC to conclude that “theoretical
considerations, current observations, numerical models, and paleo records currently do not allow a quantifi-
cation of the timing of the onset of such an instability or of the magnitude of its multi-century contribution”
(Church et al., 2013, p. 1174), the process has subsequently become increasingly well represented in ice-sheet
models. A statistical model calibrated to observed grounding-line changes and projected basal and surface
melt changes under a moderately high emissions scenario projected a 95th percentile Antarctic ice sheet
contribution to GMSL of 30 cm in 2100 and 72 cm in 2200, with modes of 10 cm in 2100 and both 6 and 49 cm
in 2200 (Ritz et al., 2015). Studies using the Parallel Ice Sheet Model, which incorporates MISI, found 0.1-
to 0.4-m GMSL contribution under a high emissions scenario (RCP 8.5; Golledge, 2015), with a more recent
version incorporating an ocean dynamic feedback projecting 14 cm under the same scenario (Golledge et al.,
2015). Similarly, considering only MISI as a potential instability mechanism, the Penn State Ice Sheet Model
(DeConto & Pollard, 2016) found a modal projection of 15 cm and a 5th–95th percentile range of 0.1–0.4 m,
while Ruckert et al. (2017) estimated 0.1± 0.1 m (1𝜎). Thus, it appears extremely likely that—given current
understanding of the climate changes experienced by ice sheets—MISI alone cannot raise the 21st century
Antarctic GMSL contribution above about 0.4 m.

By contrast, MICI is currently shrouded in deeper uncertainty. The potential for MICI arises from two pro-
cesses: ice-shelf hydrofracturing and the gravitational instability of ice cliffs. Hydrofracturing, driving by the
pooling of rain or meltwater on ice shelves, may lead to rapid loss of buttressing ice shelves and expose cliffs
of ice that are tens of meters tall directly to ocean water. Above a certain height, currently unknown but
apparently exceeding the highest observed ice cliffs on the planet today (∼100 m, Parizek et al., 2019), the
cliffs become gravitationally unstable. Cascading collapse can then drive rapid ice-sheet retreat. The first
continental-scale ice-sheet model to incorporate MICI found the potential (under RCP 8.5) for a 21st cen-
tury Antarctic contribution to GMSL rise exceeding 1 m (DeConto & Pollard, 2016), but crucial parameters
in this model—such as the rate of susceptibility of ice shelves to hydrofracturing and the maximum possible
retreat rate of collapsing ice cliffs—are poorly constrained by paleo-data (Edwards et al., 2019).

At present, MICI remains the primary driver of deep uncertainty in sea-level rise projections. This deep
uncertainty is particularly manifest in projections for high-emissions scenarios for late in this century and
beyond (Figures 1b and 1c). For example, Kopp et al. (2017) constructed projections of GMSL and RSL
change using either Antarctic projections consistent with the assessment of the IPCC AR5 (Church et al.,
2013) [labeled as K14] or the MICI-incorporating projections of DeConto and Pollard (2016) [labeled as
DP16]. The K14 projections had a median Antarctic contribution for RCP 8.5 in 2100 of 4 cm; the DP16
projections had a median contribution of 71 cm. Overall, the two sets of GMSL projections differed little
in 2050 (90% credible ranges of 0.2–0.4 m under RCP 8.5 and 0.2–0.3 m under low emissions [RCP 2.6] for
K14; 0.2–0.5 m for RCP 8.5 and 0.2–0.4 m under DP16) and in 2100 under low emissions (0.3–0.8 m for
K14 and 0.3–1.0 m for DP16), for which MICI was not a significant factor. However, under high emissions
for 2100 and beyond, the 90% credible intervals for K14 and DP16 exhibited much less overlap: for 2100,
0.5–1.2 m for K14 and 0.9–2.4 m for DP16; for 2200, 0.9–3.8 m for K14 and 5.6–9.6 m for DP16. The experts
participating in a recent SEJ study, informed by the literature debate about MISI and MICI, appeared to split
the difference: for a high-emissions scenario, their 90% credible range in 2100 was 0.6–2.4 m, with a median
of 1.1 m reflecting a strong skew toward higher values in their assessment (Bamber et al., 2019).

Scientific progress will likely reduce the uncertainty and ambiguity associated with MICI, but ice sheets
are complex systems whose continental-scale behavior intimately depends on their fine-scale physics. Even
if it turns out that MICI is a danger for farther in the future than indicated by early studies, there is no
guarantee against the scientific discovery of new modes of instability. The sensitivity of Antarctic projections
to the inclusion of just two previously omitted processes thus highlights the presence of deep uncertainty,
especially under high-emissions futures (Bakker, Louchard, & Keller, 2017; Bakker, Wong, et al., 2017; Kopp
et al., 2017; Wong et al., 2017).

Increasing scientific grappling with ice-sheet instability and other potential sea-level-related surprises is
reflected in the history of GMSL projections (A. J. Garner et al., 2018). The earliest projections (e.g., Schnei-
der & Chen, 1980) were simply scenarios of ice-sheet instability, with no probabilities associated with them.
The IPCC's First Assessment Report in 1990 presented a range of high-emissions 21st century GMSL pro-
jections from 0.3 to 1.1 m. With increasing scientific (over)confidence, this range narrowed over time, such
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that the Fourth Assessment Report in 2007 presented a 5th–95th percentile range for a high-emissions sce-
nario of 0.3 to 0.6 m. The report acknowledged the potential for dynamic ice-sheet instability to increase
this range by up to 0.2 m, but this possibility was not incorporated in the bottom-line total and often lost in
citing literature. In response to criticism and with growing understanding of MISI, the upper end of 2013's
AR5 likely (at least 66% credible) range for RCP 8.5 reached 0.8 m, with buried textual language noting the
potential for MISI to contribute several decimeters more. Overall, this pattern suggests that the narrowing
ranges of the IPCC's first 17 years reflected “negative learning” (Garner et al., 2018; Oppenheimer et al.,
2008) leading to overconfidence and a lack of clarity, with key caveats present in the text but not in the tables
that serve as a key resource for many users.
2.2.2. Robustness of Bottom-Up Projections
Bottom-up projections rely upon the underlying models used to calculate each term in equation (1). The
challenge of determining appropriate models, and the difficulty in uncertainty assessment, is heightened
with respect to the ice sheet contribution, as noted in the previous section. However, difficulties also arise
in other terms. For example, it is generally assumed that GCM ensembles, such as those produced by model
intercomparison projects, provide a sufficient representation of uncertainty in GMTSLR and DSL. Much has
been written about the validity of probability distributions derived from climate model ensembles in other
contexts (e.g., temperature and precipitation fields), given that models are not independent or equally plausi-
ble (e.g., Tebaldi & Knutti, 2007). Techniques have been proposed to deal with issues of model independence
and quality (e.g., Knutti et al., 2017; Sanderson et al., 2015), but it is unclear whether these techniques are
applicable to GCM-derived sea level change projections (Collins, 2017). Some assessments have introduced
expert judgement-based broadening of GCM-based probability distributions in order to account for these
issues; for example, AR5 interpreted CMIP5-based central 90% ranges as “likely” (at least 66% probability).

Related questions apply to GIA and VLM projections. Various approaches have been taken to account for
these terms to date, including GIA models and extrapolation of the linear signal from tide gauge and/or GPS
records. Approaches that use the former method generally rely on the assumption that GIA is captured by
one or a small number of forward simulations, often employing an over-simplified one-dimensional repre-
sentation of the interior structure of the Earth, and can be treated as linear over time periods of interest. In
certain regions, including the U.S. East Coast, substantial spread in present-day GIA predictions arises due
to uncertainty in GIA model parameters and ice histories (Piecuch et al., 2018). The assumption of linearity
is valid in most regions on centennial timescales, but in regions with low upper-mantle viscosity, such as
West Antarctica (Barletta et al., 2018; Hay et al., 2017), Alaska (Sato et al., 2012), and Iceland (Auriac et al.,
2013), GIA rate changes can be significant on a multidecadal timescale. The failures of this assumption
also has important implications for GRD patterns, which in integrated projections are generally assumed
to reflect purely elastic processes and to be constant on centennial timescales. In many cases, integrated
projections also do not fully account for changes in the within-region pattern of mass change (e.g., which
parts of Greenland are losing mass), with potential implications for population centers (Larour et al., 2017;
Mitrovica et al., 2018).

Projections that extrapolate observed trends to estimate VLM (e.g., Kopp et al., 2014) can account for
non-GIA VLM but assume centennial-timescale linearity for both GIA and non-GIA VLM. This assump-
tion is severely limited for non-GIA VLM due to processes that are stochastic, such as tectonics, or directly
anthropogenic, such as subsidence due to groundwater and/or hydrocarbon extraction (e.g., Keogh &
Törnqvist, 2019; Tanaka & Heki, 2014).

Considerations involved in the combination of different terms have, in general, received less attention rela-
tive to the models applied to each component. However, bottom-up projections must also make an assump-
tion about the covariance (or dependence) of the terms in equation (1). These dependencies, and their
treatments to date, are reviewed by Le Bars (2018), who find that assumptions have varied widely, ranging
from complete dependence to complete independence across terms. Several recent studies (de Winter et al.,
2017; Kopp et al., 2014; Le Bars, 2018; Little et al., 2013; Oppenheimer et al., 2016) show that high inter-term
dependence can substantially increase high-end projections.

However, understanding and quantifying the physical basis for dependence is difficult. Individual terms
may be correlated via climate sensitivity (i.e., if climate warms faster than expected, it is reasonable to expect
a higher contribution from many sea level components). This correlation could be accounted for by calcu-
lating each term on a GCM-specific basis, for those components which are represented by climate models
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(e.g., GMTSL and DSL, or GMTSL and the glacier contribution, if the glacier contribution is derived from a
GCM-specific forcing). A quantitative accounting for correlations is more difficult for terms that cannot be
directly traced to a GCM.

Correlations (either positive or negative) may also arise due to interactions and feedbacks between terms
that are unrepresented and/or poorly represented in models. Two examples are interactions between GIS
mass loss and US East Coast DSL change (e.g., Kopp et al., 2010) or Antarctic mass loss and climate sensitiv-
ity (e.g., Bronselaer et al., 2018). To date, there has been little attempt to address these missing feedbacks in
bottom-up projections. Coupling ice-sheet models to GCMs (e.g., Golledge et al., 2019) will help in character-
izing these feedbacks, but the computational expense of fully coupled GCMs poses a challenge to uncertainty
quantification, so offline calculations (e.g., Howard et al., 2014) and reduced-form representations of these
relationships will remain useful for the foreseeable future. Dependencies can also extend to components
of high-frequency sea level variability (next section), either due to common drivers (e.g., Little et al., 2015)
and/or interactions (such as nonlinear interactions between RSL, tides, surge, and waves; e.g., Arns et al.,
2017; Lewis et al., 2019).
2.2.3. The Utility of Probabilistic Approaches
Based in large part on the underlying epistemic goal, Horton et al. (2018) distinguish between three cat-
egories of bottom-up projections. Central-range projections focus on characterizing a central tendency of
sea-level rise, generally represented by a median and an upper and lower quantile, conditional upon an
assumed emissions scenario. High-end projections focus on characterizing physically plausible, high-end
scenarios of sea-level rise. Probabilistic projections attempt to serve both epistemic goals at once, by
estimating a full probability distribution of future sea-level change, conditional upon an emissions scenario.

Probabilistic projections have become increasingly common in both the academic literature (e.g., Grinsted
et al., 2015; Jackson & Jevrejeva, 2016; Jackson et al., 2018; Kopp et al., 2014; Kopp et al., 2017; Nauels et al.,
2017; Rasmussen et al., 2018) and in assessment reports (e.g., Boesch et al., 2018; Callahan et al., 2017; Dal-
ton et al., 2017; Douglas et al., 2016; Griggs et al., 2017; Miller et al., 2018; Kopp, Broccoli, et al., 2016; Horton
et al., 2015), motivated by a few key perceived benefits. First, they provide a useful framework for summariz-
ing and synthesizing existing knowledge regarding the different driving processes, including nontraditional
methods that can be used in the presence of deep uncertainty, such as SEJ. Second, they align with the
increasing ubiquity of imprecise probabilistic language in assessment reports, such as the IPCC's use of the
term “likely” to mean “at least 66% probable” and “very likely” to mean “at least 90% probable.” Third, they
appeal to a specific class of stakeholders, namely, those oriented toward benefit-cost analysis and financial
risk analysis (e.g., Houser et al., 2015; New York City Panel on Climate Change, 2013). In this last regard,
it is notable that some of the users of early probabilistic projections included a New York City govern-
ment led by Michael Bloomberg (New York City Panel on Climate Change, 2013) and a nongovernmental
“risk committee” led by Bloomberg and two other senior statesmen with finance backgrounds (Bloomberg
et al., 2014).

Despite these perceived benefits, probabilistic projections are conditional upon emissions, and, more gen-
erally, the methodological assumptions employed in the construction of the probability distribution. For
processes subject to deep uncertainty, alternative justifiable approaches to constructing a probability distri-
bution can yield quite divergent answers (e.g., Bakker, Louchard, & Keller, 2017; Le Cozannet et al., 2017).
One approach to tackling ambiguity is to employ multiple probability distributions, which can be inter-
preted as representing the informed judgement of different idealized experts. The weighting of the different
experts could be based on performance, as in SEJ, but might also depend upon characteristics of the relevant
decision makers, such as their degree of ambiguity aversion (e.g., Le Cozannet et al., 2019).

Despite techniques that attempt to address these limitations, there remain questions about the usability
of probabilistic approaches (Hinkel et al., 2019). The most useful approaches to summarizing scientific
knowledge may not always be the most useful approaches for decision makers, and—though probabilistic
projections have been welcomed by some—they have also led to some anxiety. Behar et al. (2017) suggest that
some stakeholders prefer scenarios (sometimes informed by probabilistic projections) rather than the direct
use of probabilistic projections (e.g., Sweet et al., 2017). Range-spanning deterministic scenarios remain
commonplace and are a valid approach for many decision makers. Some end users may be better served by
putting the focus on critical thresholds of exposure and then working backwards to assess likelihoods over
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time rather than starting with scenarios of sea level over time, but this approach requires closer integration
of sea-level science and decision making (see section 6).

3. Projections of Extreme Sea Level Change and Associated Flooding
The effects of RSL rise are initially felt primarily not through permanent inundation but through increases in
the frequency of extreme sea levels (ESLs). ESLs arise through the superposition of mean RSL, tides, storm
surges, and lesser-magnitude processes operating over a range of frequencies. Where tidal ranges are small,
as along the U.S. Gulf of Mexico, wind-forced surge is typically the dominant driver of ESLs (Merrifield et al.,
2013); where narrow continental shelves inhibit sizable storm surges from forming (Tebaldi et al., 2012), like
along island coasts, wave effects and/or higher astronomical tides during high sea level anomalies become
dominant drivers (Serafin et al., 2017; Rueda et al., 2016). The severity of impacts—whether through over-
land flooding or through indirect effects like infiltration or degradation of wastewater (Flood & Cahoon,
2011), freshwater supplies (Sukop et al., 2018), or stormwater (Obeysekera et al., 2011) systems—varies
accordingly.

Statistical models based upon parametric distributions estimated from long-term tide-gauge measure-
ments are a primary source for location-specific probabilistic ESL hazard assessments. Most studies fit a
three-parameter extreme-value distributions, such as the generalized extreme value or generalized Pareto
distribution (Tebaldi et al., 2012; Wahl et al., 2017), to tide-gauge observations. For example, Figure 2 shows
a generalized Pareto distribution fit to historical ESLs at the Battery, New York City, USA (Buchanan et al.,
2016). Compared to two-parameter distributions, such as the Gumbel distribution (J. Hunter, 2010, 2012),
three-parameter distributions allow for more realistic estimates of rare-event frequency and the associated
uncertainty (Buchanan et al., 2017). Heavy-tailed distributions are common in tropical-cyclone prone loca-
tions, where storm surge estimates associated, for example, with a 1% average annual probability event can
be extremely large (Hall et al., 2016; Wahl et al., 2017). Regional frequency analysis has occasionally been
used with tide-gauge data to estimate ESL probabilities while overcoming some of the spatial limitations
inherent to the global tide gauge network (Hall et al., 2016), but to our knowledge more sophisticated spa-
tiotemporal extreme value methods (e.g., Reich & Shaby, 2012) have not yet been employed in this context.
Recent advances using satellite altimetry show promise in the ability to complement tide-gauge observations
by predicting coastal ESLs using offshore ESL observations combined with continental shelf characteristics
(Lobeto et al., 2018; Woodworth & Menéndez, 2015).

Dynamic ocean circulation models can also be used to simulate storm tides and estimate historical and cur-
rent ESL probabilities. These models are typically driven by global atmospheric reanalyses and, in regions
not impacted by tropical cyclones, yield ESL distributions similar to those estimated from tide gauges (Muis
et al., 2016). Higher-resolution atmospheric fields are needed to simulate the low-probability storm-tide
heights associated with historical tropical cyclones (Vousdoukas et al., 2018). Dynamic simulations have
three potential advantages over statistical methods. They can (1) provide predictions for locations where
there are no tide gauges, (2) better resolve rare-event probabilities and overcome record length limitations
by simulating large numbers of synthetic storms under a specified climatology (Haigh et al., 2014; Lin et al.,
2012), and (3) physically account for non-stationarity associated with climate variability and climate change.
Dynamic simulations can also incorporate high-frequency wave effects (Vitousek et al., 2017; Vousdoukas
et al., 2018), which have not traditionally been measured by tide gauge records (but see Sweet et al., 2015)
but are of particular concern in areas where erosion is primarily driven by waves rather than by surge, as
along the U.S. West Coast (Serafin et al., 2017; Sweet et al., 2015). On the other hand, dynamic simulations
are subject to the limitations of the driving reanalysis data sets and ultimately must rely on tide-gauge obser-
vations for validation. Dynamic approaches are commonly used in the private sector, for example, by risk
analysis companies serving the insurance sector (e.g., Hsiang et al., 2017).

In addition to long-term trends, ESL probabilities exhibit seasonal and long-tidal cycles and climate mode
covariability (e.g., Aucan et al., 2012; Haigh et al., 2011; Marcos et al., 2015; Menéndez & Woodworth, 2010;
Wahl & Chambers, 2016; Woodworth & Menéndez, 2015), which can enhance flooding when contribut-
ing processes align (Sweet et al., 2016; Thompson et al., 2019). Diagnosing contributory processes within
statistical ESL models can provide a degree of predictability if the processes are deterministic in nature or
predictable to some degree by climate models (Menendez et al., 2009; Menéndez & Woodworth, 2010; Sweet
& Park, 2014; Sweet et al., 2018; Widlansky et al., 2017). Given the limited length of the tide-gauge record
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Figure 3. Extreme sea level distributions for the Battery, New York, in
(a) 2050 and (b) 2100, under six RSL probability distributions
corresponding to the six GMSL probability distributions in Figure 1. Cyan
boxes show historical ESLs, placed by empirical frequency over the tide
gauge record; black shows the historical expected ESL distribution (grey
indicates 17th–83rd percentile credible range). Blue curves represent
low-emissions projections (RCP 2.6); orange curves represent
high-emissions projections (RCP 8.5). Solid, dashed, and dot-dashed lines
represent expected values using ice-sheet projections from Kopp et al.
(2014), Kopp et al. (2017) using the AIS projections of DeConto and Pollard
(2016), and Bamber et al. (2019).

and thus the limited sampling of rare events like landfalling tropical
cyclones, however, identifying changes in the tail shape of an extreme
value distribution is exceptionally challenging, pointing to the value of
synthetic tropical cyclones generation in estimating historical and cur-
rent probabilities. Paleostorm records (e.g., Brandon et al., 2014) can
complement and extend the tide-gauge records by centuries, but there
has so far been insufficient analysis to determine the quantitative utility
of such records in improving return-period estimates.

Future ESL frequencies and impacts depend upon local RSL rise and
changes in the characteristics of coastal storms, tides, and waves, as
well as their possible interdependencies (e.g., Arns et al., 2017; Lewis
et al., 2019; Little et al., 2015). Projections based upon statistical mod-
els typically assume that RSL change is the only driver of changes in
the ESL distribution (e.g., there are no changes in storm surge char-
acteristics or tidal range; e.g., Buchanan et al., 2016; Buchanan et al.,
2017; Hall et al., 2016; J. Hunter, 2012; Kopp et al., 2014; Tebaldi et al.,
2012). For example, Figure 3 shows the change in the expected frequency
of ESLs at the Battery under different probability distributions for RSL
change corresponding to the GMSL projections shown in Figures 1b
and 1c. Observations and dynamic simulations confirm that RSL change
is increasingly the dominant driver of ESL change but also show the
limitations of the assumption that the ESL distribution is otherwise sta-
tionary. Historically, although attribution is difficult, there is evidence of
regional changes in storm activity, such as increasing North Atlantic hur-
ricane activity since the 1970s (Kossin et al., 2017). While most historical
changes in ESL have tracked changes in mean sea level (Menéndez &
Woodworth, 2010), there are exceptions, such as within major estuaries
important to shipping from harbor-channel deepening (Familkhalili &

Talke, 2016; Talke et al., 2014). Model simulations under future climate and RSL conditions find evidence
of regional changes in tidal ranges and storm surge (Schindelegger et al., 2018; Vousdoukas et al., 2018).
Tropical cyclone intensity is projected to increase globally (Emanuel, 2013; Knutson et al., 2010; Knutson
et al., 2015), but it is unclear whether the overall number of hurricanes will decrease (Knutson et al., 2015;
Walsh et al., 2014) or increase (Bhatia et al., 2018; Emanuel, 2013). Projected changes in storm tracks fur-
ther complicate inferences about associated changes in tropical cyclone-driven ESLs at specific locations
(A. J. Garner et al., 2017). These analyses indicate that, while adding projected RSL changes to historical
ESL probabilities provides a good first approximation of ESL changes, in some areas this approach will lead
to an underestimate of the associated hazard and its impacts (Hsiang et al., 2017).

Two useful metrics for planning and communications, derived from combining probabilistic RSL projections
and extreme value distributions, are frequency amplification factors and sea-level allowances. A frequency
amplification factor is an estimate of the change in the expected frequency of a particular water level
(Buchanan et al., 2017; Garner et al., 2017; Hunter, 2010; Vitousek et al., 2017). For example, if a current 10%
average annual probability ESL is projected to have a frequency amplification factor of 3 in 2050, this means
that—integrating across uncertainty in RSL projections—it is expected with 30% average annual probability
in 2050. In Figure 3, frequency amplification factors are reflected in the vertical distance between the his-
torical curve and the projected curves. Sea-level allowances are the height adjustments that maintain the
current annual expected probability of flooding of a particular ESL (Buchanan et al., 2016; Hunter, 2012). The
shape of the extreme value distribution (in particular, the approximately log-linear relationship between the
expected number of events and ESL height) implies that, with an uncertain RSL distribution, an estimated
sea-level allowance will always be greater than the expected RSL rise (Buchanan et al., 2016). In Figure 3,
sea-level allowances are reflected in the horizontal distance between the historical curve and the projected
curves. However, both of these metrics should be used by decision makers with care, as they are often derived
from a single estimated probability distribution for RSL. In the presence of deep uncertainty, consideration
of multiple probability distribution—yielding multiple amplification factors and allowances—is a more cau-
tious approach (Buchanan et al., 2016). Figure 3 shows that, at the Battery, the frequency amplification of
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the largest historical ESL (2.6 m, associated with Hurricane Sandy in 2012) is relatively well-constrained
for 2050 (1.9–2.5x) but poorly constrained for 2100 (6–85x under low emissions; 290–11,000x under high
emissions), reflecting the deep uncertainty in the associated sea-level projections.

While ESLs are often a valid proxy for coastal flooding, they do not tell a complete story. ESLs provide only a
one-dimensional measure for a three-dimensional (depth and inland extent) impact. While “bathtub” mod-
els represent flooding extent by projecting ESLs, as measured at tide gauges, onto topography (e.g., as mea-
sured via high-resolution LIDAR) without accounting for local atmosphere/ocean dynamics or the frictional
interference of the natural or built environment to determine extent of flooding, hydrodynamic models
accounting for of the flow of water in the ocean and onto land reveal a more complex story (Deb & Ferreira,
2017; Lin et al., 2010, 2014; Orton et al., 2015; J. Wang et al., 2012). Nonlinear hydrodynamic responses
vary spatially as a function of coastal topography, land use, and storm characteristics (Atkinson et al., 2013;
Anarde et al., 2018; Barnard et al., 2019; Ding et al., 2013; Ferreira et al., 2014; Glass et al., 2018; Mousavi
et al., 2011; Passeri et al., 2018; Smith et al., 2010; Wang et al., 2012; Woodruff et al., 2013; Zhang et al.,
2013). Most studies using hydrodynamic models have focused on the effects of storm surge (e.g., Muis et al.,
2016), though in some areas precipitation-driven flooding is of crucial importance (Wahl & Chambers, 2015;
Wright et al., 2019). Storm surge and upland riverine forcing acting together can lead to higher extreme
water levels (Moftakhari et al., 2017). Elevated groundwater tables are and will be an increasingly impor-
tant factor for future flood risk (Anderson et al., 2018), and in developed areas, flooding also depends on the
flow of stormwater through drainage networks (Obeysekera et al., 2011).

“Bathtub” models are often used to assess coastal flood exposure (e.g., Strauss et al., 2012), and they are well
suited for assessing exposure to permanent inundation induced by RSL rise. For example, Rasmussen et al.
(2018) found that about 30–110 million people around the world currently live on land would be exposed to
permanent flooding by 2150 under a 1.5◦C stabilization scenario, compared to 30–140 million under a 2.0◦C
scenario. The “total water level” approach to assessing exposure associated with ESLs treats transient events
the same as a permanent flooding event. Using such an approach and assuming adaptation measures that
maintained a constant average annual probability of flooding, Hallegatte et al. (2013) found that 20 cm of
GMSL rise would increase average annual global flood losses by $60 billion. However, the total water level
approach is not always adequate; Gallien (2016) found in one case study that the important role of wave
action in coastal flooding in California led to its systematic failure. Hydrodynamic models are used in both
the academic literature and the private sector to provide more accurate exposure estimates. For example,
Aerts et al. (2013) combined synthetic tropical cyclones (Lin et al., 2012), a hydrodynamic model of coastal
surge, a spatial database of buildings, and a flooding depth damage function to estimate the return period
of different levels of coastal flood damage at New York City. A similar approach was taken by Hsiang et al.
(2017), who incorporated the sea-level rise projections of Kopp et al. (2014) into a hydrodynamic model to
assess average annual tropical and extratropical cyclone losses along the U.S. Atlantic and Gulf Coasts under
future sea level and climate, assuming the current distribution of people and property. They found that—in
the absence of adaptive measure—GMSL rise currently increases expected annual tropical and extratropical
cyclone damages in the United States by about 0.1% of GDP per meter GMSL rise, increasing to about 0.15%
per meter at 1 m of GMSL rise. Accounting for projected changes in tropical cyclone intensity approximately
doubles the damage for RCP 8.5 toward the end of the 21st century.

4. Coastal Flooding in a Dynamic Physical Environment
The coast is not simply a static background over which water flows, though most studies of coastal flood
hazards treat it as such. It instead exhibits dynamic growth and destruction of land and ecosystems (Anarde
et al., 2018; Barnard et al., 2019; Glass et al., 2018; Le Cozannet et al., 2019; Passeri et al., 2018). Waves,
currents, and tides redistribute sediment along and across the coastal zone, resulting in shoreline dynamics
significantly different than would occur in a static coastal landscape (Ashton et al., 2008; Murray et al.,
2009; Paola et al., 2011; Payo et al., 2016). Such departures from the static coast assumption are particularly
evident in low-lying environments, such as barrier islands and fluvial deltas, both among the most dynamic
landscapes on Earth.

Barrier islands are composed of three regions: the shoreface, continuously reworked by waves and tides; the
subaerial portion, typically a few meters above sea level; and the back-barrier environment, which gener-
ally comprises salt marshes, lagoons, and tidal flats (Figure 4a). In order for barrier systems to persist and
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Figure 4. Conceptual sketches for both barrier (a and b) and deltaic systems (c and d) illustrating the difference in
shoreline change under passive flooding (Δxs,p) and dynamic landscape (Δxs,d) scenarios. In barrier island systems, the
shoreline can retreat faster in the dynamic landscape scenario (i.e., Δxs,d ≫> Δxs,p) as overwash and tidal fluxes move
sediment from the ocean side to the lagoon side of the barrier (b). In the case of fluvial deltas, when riverine sediment
supply is large enough, the shoreline can migrate seawards despite sea-level rise (d).

migrate under RSL rise, shoreface sediment must be transported onto and behind the barrier (Figure 4a).
Storm-induced flood-tidal delta formation and overwash fan deposition are the two most significant mech-
anisms that transport sediment to the back-barrier environment (Carruthers et al., 2013; Dillon, 1970;
Donnelly et al., 2006; Fitzgerald et al., 1984; Matias et al., 2008; Nienhuis & Ashton, 2016; Pierce, 1970;
Rogers et al., 2015). This onshore sediment movement by tides and overwash events, as well as offshore
sediment movement into deeper waters from the upper shoreface (Bruun, 1962; C. Donnelly et al., 2006;
Leatherman, 1983; Lorenzo-Trueba & Ashton, 2014), enhances barrier shoreline retreat beyond what would
be expected from just passive flooding (Figure 4b).

Similar to that of barrier islands, the cross-shore geometry of deltaic environments can be conceptualized
in terms of coupled and adjacent environments (Lorenzo-Trueba et al., 2009; Paola et al., 2011; Parker et al.,
2008; Swenson et al., 2000). Connected at the shoreline, these environments include a deltaic plain, which
generally exhibits low topographic relief (i.e., ∼1/10,000), and an offshore region with typically steeper gra-
dients (Figure 4c). The shoreline can migrate either seawards or landwards as a function of the magnitude
of riverine sediment supply, wave energy, RSL rise rate, and the fraction of sediment that deposits on the
deltaic plain vs. the offshore region (Parker et al., 2008; Paola et al., 2011; Swenson et al., 2000, 2005). To
illustrate how shoreline behavior can substantially deviate from that captured by passive flooding, consider
two different scenarios in terms of sediment supply. Under sufficient sediment supply, the shoreline can
advance seaward, which in turn results in the expansion of the deltaic plain despite RSL rise (Figure 4d). In
contrast, under a shutdown in sediment supply caused by dam construction, flow diversions from the estab-
lished river, or artificial embankments that prevent sediment exchange between the river and its floodplain,
the deltaic plain progressively inundates as sea level rises. Given the low topographic relief, inundation of
the deltaic plain can result in rapid rates of shoreline retreat (Figure 4c), and the abandoned deltaic lobe can
be reworked at very fast rates (Komar, 1973; Nienhuis & Ashton, 2016; Rodriguez et al., 2000).

The sketches in Figure 4, although highly simplified, emphasize that RSL rise can do more than just passively
inundate the landscape. In fact, the evolution of coastal environments is the result of a complex interplay
between different regions, both landwards and seawards of the shoreline.

For instance, previous work suggests that two-way feedbacks between barrier islands and their associated
backbarrier environments can result in threshold behaviors that can in turn lead to a whole-scale reorgani-
zation of the barrier system (Carrasco et al., 2016; Deaton et al., 2017; FitzGerald et al., 2018; Lauzon et al.,
2018; Lorenzo-Trueba & Mariotti, 2017; Walters et al., 2014). RSL rise and wave action can cause not only
barrier shoreline retreat but also drastic changes in backbarrier marsh vegetation, including marsh loss
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(J. P. Donnelly & Bertness, 2001; Kirwan & Megonigal, 2013; Lorenzo-Trueba & Mariotti, 2017; Mariotti &
Fagherazzi, 2013). The loss of marshlands would change the hypsometry of the backbarrier, increasing tidal
exchange between the ocean and backbarrier and enhancing the rate of barrier landward migration, which
in turn could accelerate barrier disintegration and drowning (FitzGerald et al., 2018; Lorenzo-Trueba &
Mariotti, 2017). In general, this work highlights that backbarrier environment characteristics that are
typically not directly related to barrier evolution—such as the extent of marsh platforms, lagoon fetch, sus-
pended sediment concentrations in the lagoon, and the mainland slope—could play a major role in the
long-term barrier response to RSL rise.

Fluvial deltas are also complex systems that involve a complex web of coupled biologic and physical pro-
cesses (Day et al., 2008; Paola et al., 2011). Plant matter accumulation, which in addition to river sediment
supply contributes to maintaining the deltaic plain above sea level (Day et al., 2007; Paola et al., 2011), can
be significantly reduced by a lowering of the water table elevation (Gambolati et al., 2006; van Asselen et al.,
2009) or a shift in the location of the freshwater-saltwater boundary. Such a reduction in organic matter
accumulation on the deltaic plain during sea-level rise can in turn amplify the speed of shoreline retreat
(Lorenzo-Trueba et al., 2012).

With the presence of coastal communities, human responses to coastal change provide additional feed-
backs to coastal environments, suggesting the possibility of emergent interactions at multidecadal time
scales (Jin et al., 2013; Lazarus et al., 2016; Miselis & Lorenzo-Trueba, 2017; Werner & McNamara, 2007).
Human responses intended to preserve coastal buildings and infrastructure—such as building seawalls,
constructing groynes, nourishing beaches, stabilizing inlets, or armoring updrift headlands—have accumu-
lated to the point where the evolution of coastal landscapes cannot be considered to be caused by nature
alone (Hapke et al., 2013; Lazarus & Goldstein, 2019; Lazarus et al., 2016; Nordstrom, 1994; Werner &
McNamara, 2007). The natural dynamics described in Figure 4 are still at play but are heavily affected by
human activities, development, and land-use changes. Typically, engineering activities on developed barrier
islands prevent or counteract overwash, thereby reducing barrier islands' average elevation above sea level
(Miselis & Lorenzo-Trueba, 2017; Rogers et al., 2015). Additionally, developed barrier stretches are more
likely to present steeper shorefaces, often associated with beach nourishment activities, and deeper back-
barrier lagoons due to dredging activities (Miselis & Lorenzo-Trueba, 2017). Looking to the future, a key
question is whether such human responses may make drowning of barrier systems more likely (Miselis &
Lorenzo-Trueba, 2017; Rogers et al., 2015). The same question applies to fluvial deltas, which often experi-
ence a reduction in sediment supply to their floodplains due to the construction of dams and levees, as well
as an increase in subsidence rates in the deltaic plain due to water and hydrocarbon extraction (Paola et al.,
2011; Syvitski & Saito, 2007; Syvitski et al., 2009).

Overall, in order to assess future flood risks in low-lying coastal areas, analyses must go beyond passive
flooding models discussed in section 3; models of the coupled evolution of coastal landscapes and human
activities over multidecadal time scales are needed. A significant challenge in this regard is the need to
consider the cumulative effect of short-lived events (e.g., single storms). Engineering approaches have made
significant progress in assessing the vulnerability of residential structures to storm surge over single storm
events (Hatzikyriakou et al., 2016; Lin et al., 2010, 2014; Orton et al., 2015). The X-Beach model (Roelvink
et al., 2009), which couples hydrodynamics and sediment transport to quantify morphological change, has
been used to reproduce barrier changes during individual storm events (Almeida et al., 2017; Lindemer
et al., 2010; McCall et al., 2010). Such modeling efforts, however, are highly calibrated and are difficult to
extrapolate over multiple storms.

On the other end of the spectrum, long-term geologic models for coastal change no longer use
laboratory-validated sediment transport relationships but rather use conceptual relationships between bar-
rier geometry and barrier island movement (Cowell et al., 1995; Lorenzo-Trueba & Ashton, 2014; Masetti
et al., 2008; Moore et al., 2010; Stolper et al., 2005; Storms, 2003; Wolinsky & Murray, 2009). The initial,
“morphokinematic” wave of these models is based upon the conservation of mass and maintenance of an
equilibrium configuration (Cowell et al., 1995; Moore et al., 2010; Stolper et al., 2005; Wolinsky & Murray,
2009). The second, “morphodynamic” wave of models accounts for sediment fluxes along the shoreface
and overwash processes (Lorenzo-Trueba & Ashton, 2014; Masetti et al., 2008; Storms, 2003). Although
quantitative understanding of the relative roles of overwash fluxes, shoreface dynamics, and backbarrier
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sedimentation processes in the response of barriers to environmental change remains lacking, the sim-
plicity of some of these models (e.g., Lorenzo-Trueba & Ashton, 2014; Nienhuis & Lorenzo-Trueba, 2019)
allows for model extensions that incorporate additional physical and biological processes, as well as human
interactions.

Further work is needed to bridge the gap between engineering and geologic approaches and construct mor-
phodynamic models that can integrate over multiple storm events and include post-storm recovery and fair
weather action that occurs between storms. Models also need to account for the complex interplay of the
different regions or environments—from the onshore subaerial and lagoonal components, through the surf
zone, and seawards onto the continental shelf itself—as well as for feedbacks between natural processes and
human activities (Lazarus & Goldstein, 2019; Lazarus et al., 2016; Werner & McNamara, 2007).

5. Coastal Flooding in a Dynamic Human Environment
Just as physical and ecological coastal systems are dynamic, not simply static recipients of flooding, so too is
the human coast. Socioeconomic analyses of future impacts that treat the distribution of people and capital
as static provide useful first-order information to inform risk assessment. However, these analyses over-
look crucial dynamics, such as those associated with the movement of capital (e.g., shifts in investment,
employment opportunities, and the availability of amenities such as schools) and people (e.g., immobility,
temporary displacement, and permanent migration) to and from the coast. RSL change, coastal flooding,
and ensuing physical and ecological changes interact with these human dynamics in complex ways. Planned
adaptation strategies that seek to reduce exposure and vulnerability need to be responsive to these dynamics
and recognize their own role in shaping the future evolution of the coast (e.g., Haer et al., 2017).

Globally, coastal areas, which contain many of the largest cities, are highly concentrated areas of population
and wealth and continue to attract increasing populations (Neumann et al., 2015). At the same time, coastal
areas are already seeing increasing hazards from RSL rise, with populations with differential resources and
vulnerability undertaking both autonomous and planned adaptations (Hinkel et al., 2018). These adapta-
tions, and their interactions with other drivers of migration, can exhibit complex, non-linear dynamics,
and thresholds. For example, delta communities have been carefully investigated with respect to expo-
sure, vulnerability and adaptation efforts (Suckall et al., 2018). These efforts have highlighted the critical
role of migration as an adaptation strategy, as well as the importance of aligning planned adaptation with
autonomous efforts. These dynamics can also be observed in modeling efforts, such as agent-based mod-
els of household defensive expenditures, which show near-term investments followed by abandonment at
some critical risk threshold (e.g., McNamara & Keeler, 2013).

Simple economic models might predict a shift of investment away from frequently flooded coastlines. Empir-
ical evidence shows that being hit by a tropical cyclone causes a multidecadal reduction in economic output
(Hsiang & Jina, 2014), an effect that computable general equilibrium (CGE) modeling indicates is consis-
tent with the diversion of investment to replace damaged capital (Hsiang et al., 2017). One might expect
that repeated flooding might lead to a shift of investment to less exposed areas and that the exposed popula-
tion might likewise emigrate. Indeed, some evidence suggests that increasing minor tidal flood frequencies
affect housing prices within coastal markets (Keenan et al., 2018), depressing demand for housing subject to
repetitive flooding and increasing demand for higher-elevation housing through a process referred to as “cli-
mate gentrification.” However, higher-elevation properties may still have significant exposure to infrequent
major flooding, and there is no clear evidence for migration out of flood-exposed markets. There is also evi-
dence that decisions about adaptation to RSL rise is related to the degree of belief in and understanding of
climate change (Lata & Nunn, 2012).

Some autonomous responses to decisions to protect coastal properties can even paradoxically increase expo-
sure or vulnerability. In the United States, the historical increase in tropical cyclone damages appears to be
primarily tied to a shift of population and wealth toward the exposed coast (Klotzbach et al., 2018). In fact,
recent observations suggest that subsidized coastal protection and infrastructure development in exposed
areas inflate property values, in turn stimulating further housing and infrastructure development, and thus
an associated migration toward the coast (Armstrong et al., 2016; McNamara et al., 2015). Moreover, coastal
development often destroys natural buffers against flooding, such as marshes and mangrove ecosystems
(Barbier et al., 2011; Temmerman et al., 2013), which further increases the flood hazard.
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Understanding the response of coastal economies and populations to sea-level rise is thus intimately bound
with understanding the factors that influence migration decision making in general and more specifically
in response to climatic stressors (e.g., Adams & Kay, 2019). Migration is the movement from one location
to another. This movement can be categorized by time scale (e.g., temporary vs. permanent), spatial scale
(e.g., internal to a country vs. international), purpose (e.g., economic vs. distress), and the degree of agency
in the decision to move (e.g., voluntary vs. forced; International Organization for Migration, 2019). Recent
reviews related to environmental migration have frequently employed the term “displacement,” especially
when the reason for migration is a sudden or progressive change in environmental conditions (McLeman
& Gemenne, 2018).

Decisions to migrate and observed mobility patterns differ by degree of vulnerability, with substantial
heterogeneity in destination, timing of the movement, and the potential to return (Fussell et al., 2014). The-
ories to explain observed migration have shifted from individual economic decision making to recognize
the importance of households and social capital. In neoclassical economic migration theory, migrants are
drawn primarily by more favorable conditions in receiving than in sending areas. These forces are often
summarized as “push” and “pull” factors (Lee, 1966). Individuals are represented as agents who react
to these conditions and opt to migrate based upon their ability to take advantage of these differentials.
More recent theories have elaborated the social context of the individuals who undertake a migration. The
New Economics of Labor Migration (NELM) recognizes that migration is a decision made at the house-
hold or community level rather than the individual level. Households overcome imperfections in local
markets—primarily economic, but also political and social—through the migration of individuals who are
best suited to the efforts. These individuals then return a portion of their earnings through remittances
(Stark & Bloom, 1985). Social capital theory further emphasizes that the decision is made within the context
of migration systems. In this framing, individual decisions about whether and where to migrate are facili-
tated by information that spreads through a group via social capital (Massey & España, 1987). Both of these
theories perform well when explaining observed flows; however, there are still challenges to explaining the
initiation of migration in any given community.

The role of environmental pressures in migration decisions has taken on increased salience with respect to
climatic stressors such as RSL rise. Simpler conceptual models that either draw on neo-Malthusian concepts
about scarcity and population pressures or emphasize the socioeconomic context as a dominant determinant
have been largely replaced by a more integrated models incorporating complex interactions between envi-
ronmental and non-environmental factors (Hunter et al., 2015). The model elaborated in the Government
Office for Science (2011) report highlights the interplay of multiple macro-level influences—sociocultural,
political, and economic, in addition to environmental—with individual and household characteristics that
combined lead to a decision to migrate or stay.

Thus, “environmental” migration may resemble other forms of migration. Migrants may be primarily oppor-
tunity driven or may be fleeing a proximate disaster. The significance of environmental or natural resources
among the other factors in their decision may range from large to insignificant (Black et al., 2011). Addition-
ally, environmental migration is more likely to augment but not fundamentally alter the migration patterns
that are currently observed. In other words, climate- and sea-level-driven migration is primarily a statisti-
cal phenomenon: While some individuals (e.g., residents of small island states rendered uninhabitable by
RSL rise) may self-identify as climate migrants, most migration influenced by climate change may only be
identifiable in the statistical aggregate and not at the individual level (Mayer, 2016).

Extending environmental migration to climate change, both macro- and micro-level features are important
when considering the implications for climate change and migration. Migration in the context of climate
change can be understood as an adaptation strategy within a social context, rather than a direct impact of
environmental change (Black et al., 2011; McLeman & Smit, 2006). Thus, the type of exposure (e.g., sud-
den vs. slow onset) and the vulnerability of the population to these changes may jointly influence observed
migration flows (Gibbons & Nicholls, 2006). For example, Adger et al. (2018) propose that sudden events lead
to temporary displacement, while slow onset changes lead to more permanent displacement. Both of these
forms of displacement can shift to migration as responses to the climatic stressors become more proactive
(Adger et al., 2018).
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Models of coastal exposure and migration are evolving from more static representations of populations at
risk toward agent-based models that capture decision making and interactions with socioeconomic con-
ditions and adaptation decisions. (To date, all of these models neglect the geomorphological dynamics
discussed in the previous section.) The former, more static models use different measures of physical expo-
sure to sea-level changes and their effects to estimate the population at risk of being displaced, employing
either present-day or future population scenarios with and without some measures of adaptation. Early work
focused on identifying present-day populations at risk. Strauss et al. (2012) evaluated population exposed
in the United States at different elevations above the high-tide line, while Haer et al. (2013) evaluated U.S.
population under a set of RSL rise scenarios. Extending such an approach globally and employing proba-
bilistic RSL projections, Kopp et al. (2017) and Rasmussen et al. (2018) considered respectively the effects
on estimated population exposure of different assessments of Antarctic ice-loss potential and the difference
between 1.5◦C and 2.0◦C global-mean warming scenarios.

More complex models have incorporated population changes alongside RSL change. For example, looking
at RSL rise projections and scenarios for future coastal populations, Hinkel and Klein (2009) developed the
Dynamic and Interactive Vulnerability Assessment (DIVA) tool, which assesses exposure and vulnerability
with an estimate of the cost of population displacement from permanently inundated and intermittently
flooded land (Hinkel & Klein, 2009). Using DIVA, a set of standard socioeconomic scenarios (the Shared
Socioeconomic Pathways, or SSPs) and a set of bottom-up RSL projections, Hinkel et al. (2014) estimated
that, in 2100, 0.3–1.2 m of GMSL rise would, in the absence of adaptation, lead to annual flooding of 0.2–4.6%
of the global population. Neumann et al. (2015) further elaborated on this effort by extending the popula-
tion distribution in the SSPs to account for the differential growth of the coastal populations. These risk
assessments, however, incorporate, at most, limited human decision making. Hinkel et al. (2014) included
scenarios incorporating what could be interpreted as a decision to remain in place with a single possible
adaptation measure. In these scenarios, perfect dikes are constructed and elevated around all coastal areas
in a nominally benefit-cost optimal manner, thus reducing the exposed population by about two orders of
magnitude.

Another set of models have integrated representations of migration in response to RSL rise alongside other
adaptation measures. Along each coastal segment in DIVA, Diaz (2016) models an economic rational rep-
resentative agent, who makes a decision in the face of RSL rise and storm surge to “do nothing,” protect up
to a benefit-cost optimal elevation threshold, or relocate all the population below an elevation threshold.
This approach begins to generate a more accurate representation of population at risk, as it dynamically
considers adaptation, including migration. However, like the other exposure models, it does not consider
a complete migration with destination, and it does not consider the complex range of factors involved in
individual decision making.

A few efforts have considered migration flows with an origin and a destination. Most of these studies do
not consider how population growth along the coast would be changed through interactions with RSL rise,
instead applying a RSL scenario to either current population or an exogenously specified population sce-
nario. Using localized, observed migration rates and patterns, Curtis and Schneider (2011) estimated the
migration patterns from a few coastal counties in the United States due to 1 m of RSL rise and to 4 m of
extreme storm surge. Hauer et al. (2016) expanded on this approach, using household-level rather than
county-level data to assess U.S. population vulnerability to RSL rise under 0.9- and 1.8-m RSL rise scenarios.
Hauer (2017) then modeled the likely destinations of these migrants, assuming that these flows augmented
existing migration patterns. Rigaud et al. (2018) modeled internal migration flows in sub-Saharan Africa,
Asia, and Latin America, using a population gravity model to simulate the demographic effects of RSL rise
and other climatic impacts. Looking at people and economic consequences in a neoclassical framework,
Desmet et al. (2018) applied a highly resolved dynamic spatial economic model to the RSL projections of R.
E. Kopp et al. (2014), focusing on displacement due to permanent flooding by RSL rise. They find that sub-
stantial economic losses in coastal communities are partially offset by enhanced economic growth in regions
that receive displaced populations, with real GDP losses (as a percentage of the global economy) peaking in
the middle of the 22nd century.

Currently, there is an emphasis on developing data and models that can capture more aspects of individ-
ual decision making around migration (Curtis & Bergmans, 2018). Agent-based models may present a way
forward (e.g., Kniveton et al., 2012), with one recent effort (Adams & Kay, 2019) incorporating nonmaterial
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preferences (intrinsic mobility and satisfaction with place) into migration decision making. However, to our
knowledge, there are no agent-based models that jointly consider RSL rise, coastal population mobility, and
other adaptation measures at a spatial scale larger than an individual community (e.g., Adams & Kay, 2019;
McNamara & Keeler, 2013).

Another consideration with modeling how RSL rise will affect migration is that the current record of
migration does not generally have an appreciable RSL rise signal, such that it is challenging to develop empir-
ical evidence. Indeed, there has been movement to the coast, especially in wealthier and urban locations
(Hallegatte et al., 2013). Thus, studies of coastal populations and migration have focused on observations
of existing environmental stressors that are either indicative of or worsened by RSL rise, such as both
acute (storm-driven) and chronic (minor tidal) flooding, as well as increases in groundwater or soil salin-
ity, especially in agricultural settings. Most studies of existing stressors related to RSL rise also emphasize
the interplay between exposure and vulnerability in forming migration decisions. For example, Chen and
Mueller (2018) found that the type of impact matters for migration decisions: Soil salinity drives internal
and international migration from agricultural regions of Bangladesh, while flooding alone has little effect.
Another stream of research that is associated with RSL rise focuses upon disasters. While RSL rise does not
influence the frequency of storms, it does increase the frequency of ESLs and and acute flooding (section 3).
The now-iconic example of Hurricane Katrina and New Orleans highlights the multifaceted physical aspects
of RSL rise, demonstrating how early displacement, relocation, and recovery may influence the future
vulnerability of a coastal area (Fussell et al., 2014; Fussell, 2018).

Regardless of the magnitude of RSL rise, some amount of coastal land will be fully inundated and thus unin-
habitable. In order to conceptualize the scope of the challenge of migration due to RSL rise and its associated
impacts, it is necessary to understand household- and population-level responses. Through both acute and
chronic changes, migration as an adaptation will change the number and composition of people in coastal
regions, thus altering vulnerability. For example, these dynamics may lead to undesireable futures, with
urban and richer areas fortifying the coasts encouraging further population growth and even more catas-
trophic consequences in the case of failure (Hinkel et al., 2018). In this process, some migration streams will
be eliminated and new ones will emerge. This has led to concerns that some populations may be “trapped”
in these vulnerable areas; however, more recent work has suggested that these populations may equally be
expressing strong location attachment and thus prefer to remain (Zickgraf, 2018).

Migration in the context of RSL rise and its impacts as a proactive strategy to avoid risk (Piguet et al., 2011)
will interact with the perceived desirability of migration in general. These preferences will be influenced
by other amenities, such as employment and educational opportunities, as well as other policies, such as
zoning, emergency response, and insurance, such that any plans must be part of an integrated strategy
(Nicholls & Cazenave, 2010). Regardless, developing policy strategies to alleviate social and cultural pres-
sures and accommodate those who must move will go a long way to managing what will in many regions
be a permanent relocation away from the coasts (Mayer, 2016; Warner, 2010).

6. Decision Frameworks
While risk has been ubiquitous throughout human history, rapidly changing scenarios, deep uncertainty,
and global risks associated with problems like climate change have contributed to the emergence of new
risk-based decision frameworks (e.g., Mofazali & Jahangiri, 2018). Expanding upon the classical analysis
of risk, which focuses more narrowly on technical and economic dimensions (Renn, 2008), the risk gover-
nance perspective encompasses the processes of identifying, framing, assessing, characterizing, managing
and communicating risks (Rosa et al., 2013). The risk governance perspective emphasizes that risk is in part
a social construct, depending not only on the facts of hazard, exposure, and vulnerability but also on the
values of the broad variety of public and private actors affected and involved (Renn, 2008).

Considering future SLR projections, within changing coastal environments, deep uncertainty poses many
challenges for decision makers seeking to anticipate, identify, manage, and communicate risks (Ramm et al.,
2018a, 2018b). Uncertainty arises not only from emissions and ice-sheet physics, as discussed above, but
also from other physical, biological, and socioeconomic elements of the coastal system and their responses
to sea-level change. Economic and population growth, urban and agricultural development, technological
innovation, and the evolution of societal preferences, perceptions, and values, as well as the interaction
among these processes, all contribute (Hallegatte, 2009; Haasnoot et al., 2013; Wilby, 2010; Kwakkel,
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Haasnoot, & Walker, 2016). These uncertainties have direct implications for the formulation of adequate
adaptation and mitigation measures and add to the challenges of risk governance across different landscapes
and constituencies (Adger et al., 2007; Dessai et al., 2018; Wilby, 2010).

Over the past few decades, different approaches have emerged to assist policymakers in the formulation of
adaptive decision mechanisms in changing coastal environments (Bhave et al., 2016). These efforts have con-
centrated on understanding the nature of uncertain hazards, exposure, and vulnerability—which together
constitute risk in the sense used by the Intergovernmental Panel on Climate Change (Lavell et al., 2012)—as
well as the translation of research into practice (Bhave et al., 2018; Dessai et al., 2018; Hallegatte, 2009). Deci-
sion frameworks fall into two major categories: traditional “prediction-first” economic perspectives, such as
benefit-cost analysis, cost-effective analysis, and multi-criteria analysis; and more policy-driven approaches,
such as robust decision making and Dynamic Adaptive Policy Pathways (Dittrich et al., 2016; Gorddard et al.,
2016; Haasnoot et al., 2013, 2019; Lempert et al., 2003; Lempert, 2014; Wise et al., 2014).

“Prediction-first” decision models begin with a probability distribution of future risks as a function of
some choice variables and aim to optimize these choice variables to maximize expected utility (possibly
subject to some specific target, as in cost-effective analysis, or using a multivariate utility function, as in
multi-criteria analysis). Many of the challenges of estimating such a distribution for RSL rise, ESL, or coastal
flooding were discussed above; this prediction step constitutes a major challenge in applying traditional
decision models in the climate context (Hallegatte, 2009; Lempert, 2002; Lempert et al., 2006; Ramm et al.,
2017; Weber & Johnson, 2009). Even in the absence of changes in ESL distributions and ignoring the phys-
ical and social dynamism of the coast, deep uncertainty in RSL projections challenges the traditional use of
“prediction-first” approaches like benefit-cost analysis for decisions with consequences lasting into the sec-
ond half of this century and beyond. (Consider the three orders of magnitude uncertainty in expected ESL
frequency in 2100 shown in Figure 3.)

A number of economic approaches appropriate for use under deep uncertainty rely upon the use of mul-
tiple alternative probability distributions, effectively treating these distributions as different probabilistic
scenarios, and aim to optimize some objective function across these different probabilistic scenarios (Heal
& Millner, 2014). For example, these distributions may represent different non-probabilistic assumptions
about factors such as emissions, ice-sheet physics, and the interactions among different processes that
drive sea-level change. Maximin expected utility seeks a policy that maximizes the minimum expected
utility across all the considered distributions. The smooth ambiguity model assigns subjective weights to
the different distributions, while penalizing ambiguity (i.e., the levels of disagreement) when averaging
expected utilities across distributions. The multiplier preference model identifies a “best estimate” distri-
bution and penalizes distributions based on their distance from the “best” distribution and then seeks to
maximize the minimum of the penalized expected utility. Such approaches may be particularly valuable for
sea-level-related decisions in contexts where a decision must be made now and has consequences that last
into a time period with sizably deep uncertainty, and yet there is little opportunity for revisiting the decision
into the future.

To our knowledge, however, these “multiple prior” approaches have rarely or never been formally applied
in the sea-level context; traditional benefit-cost analysis is more common. Yet benefit-cost analysis is not
well suited for deep uncertainty, and it also often struggles with the the practical assessment of costs and
benefits of adaptation within nonmarket sectors (Dittrich et al., 2016). It can lead to a tendency towards
the quantification of technical solutions to the detriment of other nontechnical management strategies, as
the former are generally easier to define in policy contexts. In other cases, the application of economic and
financial decision tools to adaptation studies is contentious given the lack of a uniform methodology for
carrying out assessments (Watkiss et al., 2015). As a consequence, the use of “prediction-first” economic
decision-making tools is increasingly being challenged (Dawson et al., 2018; Ramm et al., 2018b).

In terms of decision support, the unpredictability of future conditions creates many plausible and often
competing alternatives, each with potentially salient repercussions for local constituencies that need to be
considered at any given time (Kwakkel, Haasnoot, & Walker, 2016; Kwakkel, Walker, & Haasnoot, 2016).
This requires experts not only to anticipate unexpected events that may result from the behavior of the sys-
tem but also to account for the different values, perspectives, and interests of relevant actors in integrated
management solutions (Dewulf et al., 2015; Dittrich et al., 2016; Herman et al., 2014). Accommodating a
variety of stakeholders with diverging frames of reference, knowledge, and opinions can be achieved through
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processes of active participation, iterative knowledge development, learning, and negotiation (Bhave et al.,
2016; Dewulf et al., 2005; Seijger et al., 2014). Yet anticipating future adaptation solutions implies a sys-
tematic exploration of a vast set of potential outcomes along with the timely adjustment of responses and
planning strategies that are executed by a diverse set of parties (Gorddard et al., 2016; Kwakkel, 2017).

Robust decision-making (RDM) methods employ a “decision-first” approach that inverts the traditional
“prediction-first” framework. They begin by identifying potential policy options and considering their
robustness under a broad range of possible futures (Dessai et al., 2018; Lempert et al., 2003; Ramm et al.,
2018a). As a decision support method, RDM relies on modeling strategies to explore decision scenarios and
candidate actions for adaptation (Kwakkel, Haasnoot, & Walker, 2016). The main principle behind RDM
is that, under conditions of deep uncertainty, a range of different models of the system can better repre-
sent available information about plausible futures rather than a smaller set of mathematical formalizations
(Herman et al., 2014; Lempert, 2002). Unlike traditional approaches, where the emphasis is on converg-
ing towards an optimal solution, robustness is defined by the identification of mechanisms that can show
satisfactory performances under different initial conditions, assumptions about prior probability distribu-
tions, and models of the system (Lempert et al., 2006; Lempert & Collins, 2007). Implemented through
computational simulations assisted by scenario-based planning and adaptive management, the RDM pro-
cess allows decision makers to work with stakeholders in the identification of vulnerabilities, opportunities,
and trade-offs among possible adaptation responses (Haasnoot et al., 2013, 2019; Lempert, 2002).

Dynamic Adaptive Policy Pathways are a flavor of robust decision making that is particularly well suited for
decisions—like many adaptation decisions—that are not one-off decisions but rather decisions that can be
revisited and modified over time. Often called Flexible Adaptation Pathways in the sea-level context (e.g.,
Rosenzweig & Solecki, 2010), Dynamic Adaptive Policy Pathways rely upon the identification of different
policy options and the possible pathways linking them together. They consider the range of possible future
scenarios under which different options and pathways are viable, identify indicators (e.g., RSL crossing a
specific threshold) that would trigger a choice between different branching pathways, and establish a mon-
itoring system so that those charged with the implementation of the pathways know when to act (Haasnoot
et al., 2013, 2019). Idealized economic and engineering analyses indicate that adaptive approaches, such as
Flexible Adaptation Pathways, can lead to dramatically lower costs than approaches that do not allow for
iterative refinement (G. G. Garner & Keller, 2018; Lickley et al., 2014). Flexible Adaptation Pathways are
recommended in guidance in a number of jurisdictions, including New York City (New York City Mayor's
Office of Resiliency and Recovery, 2019) and California (California Natural Resources Agency & California
Ocean Protection Council, 2018), and have been used for plans including the U.K. Thames Estuary 2100
plan (Ranger et al., 2013) and the Dutch Delta Programme (Delta Programme, 2015). Haasnoot et al. (2019)
developed archetypal adaptation pathways for different coastal terrains (e.g., rural open coast and urban
estuary). However, the development of Flexible Adaptation Pathways has generally focused narrowly on
engineering approaches, such as storm barriers and levees, and has not considered the dynamic coevolution
of human and natural coastal systems.

7. Coastal Adaptation Decisions in Practice
While idealized decision frameworks do inform actual coastal decisions, the real world is a messier place, full
of capacity and political constraints. Recognizing this complexity, the risk governance perspective entails a
broader exploration of the diversity of processes, rules, and actors involved in decision making, including the
complexity of societal and institutional practices and realities that underlie risk management (Renn, 2008).

State-of-the-art science can make it fairly quickly into assessment reports written to inform decision makers,
such as those of the Intergovernmental Panel on Climate Change and numerous national and subnational
panels. In the United States, for example, subnational sea-level assessments in different localities have
undergone four overlapping waves that reflect the evolving perspectives within the sea-level science com-
munity (Hall et al., 2019). A variety of studies from 2008 to 2015 relied upon discrete scenarios with no
assigned likelihoods and considered local RSL change to differ from GMSL only due to VLM (e.g., Califor-
nia and Maryland in 2008, Connecticut in 2013, Florida in 2011 and 2015, and Louisiana in 2012). A second
wave, from 2010 to 2017, gave more careful attention to uncertainties and to the spatial patterns associated
with different processes (e.g., New York City in 2010, Maryland in 2013, and the U.S. Pacific Coast in 2012).
A third wave, which began in 2013, relied upon probabilistic approaches (e.g., New York City in 2013 and
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Oregon in 2017), while a fourth wave, begun in 2016, is giving more careful attention to deep uncertainties
associated with ice-sheet physics (e.g., California in 2017, Maryland in 2018, and New York City in 2019).
Based on the personal experience of the authors, in the absence of an adequate national climate service capa-
ble of fulfilling subnational demands (e.g., Le Cozannet et al., 2017), much of the coherency among these
waves of U.S. subnational assessments has been driven by the repeated involvement of overlapping groups
of academic experts in different localities.

State-of-the-art decision frameworks appear to have greater difficulty making it into practice. A review
of adaptation methodologies employed in Australia (Ramm et al., 2017) found that “prediction-first”
approaches—benefit-cost analysis and multicriteria decision analysis—predominated, although robust
methods were used on occasion (e.g., a regional plan for the Eyre Peninsula). Similarly, in five Swedish
case studies of decisions dating between 2012 and 2019, and encompassing transportation plans, housing
plans, comprehensive plans, and nuclear waste disposal, Kanyama et al. (2019) found that “prediction-first”
approaches were ubiquitous. Scientific assessment of sea-level rise (in this case, by the Swedish Meteoro-
logical and Hydrological Institute, SMHI) provided a critical source of information for all cases except the
nuclear waste case, but consultants using SMHI assessments ultimately reduced the range of possibilities
assessed to a single projection. The focus in many of the case studies was a “reasonable” “upper limit.”

The pathway from scientific assessment to on-the-ground decisions is tortuous in part because the scientists
and policymakers involved often adopt a linear model of operations. The policymakers may come to a scien-
tific assessment panel with a set of questions, which scientists then try to answer based upon an underlying
literature that has largely developed with limited reference to underlying decision goals. The assessment
panel writes a report and hands it off to policymakers, after which their role is done. Yet one lesson of the
literature on transdisciplinary research is that the linear approach, with scientists handing off an assess-
ment to end-users, tends to be ineffective (Cash et al., 2003). Rather, an iterative approach—with scientists
and end-users in dialogue throughout—helps ensure that the questions scientists are asking are the ones
to which end-users need answers. In other words, the credibility, relevance, and legitimacy of the underly-
ing science, as perceived by those who might use it, are enhanced by the iterativity of the process (Sarkki
et al., 2015).

At least in the United States, many sea-level adaptation decisions suffer from the lack of coordination
among different levels of decision makers. Critical decisions, such as zoning, are often highly decentral-
ized, but individual communities do not develop in isolation from one another, and infrastructure built
to protect one region may (positively or negatively) affect the exposure of neighboring regions. For exam-
ple, Gopalakrishnan et al. (2017) demonstrate that sediment transport processes create the potential for
prisoner's dilemma-type dynamics between adjacent communities engaging in beach nourishment. Thus,
strengthened coordination across scales and sectors can help match decision-making scales to the scales of
relevant dynamics. Within the scientific community, better coordination internally and with stakeholders
to establish standards and best practices for climate-related assessment and tools can be helpful (Moss et al.,
2019). Boundary organizations, whether external to academic institutions (e.g., nongovernmental organi-
zations) or internal to them (e.g., the extension networks of land-grant universities), are therefore essential
players in building cross-scale bridges between science and action (Kopp, 2019).

A couple case brief studies illustrate approaches taken to advance stakeholder engagement, as well as
intergovernmental and cross-sectoral coordination, in adaptation planning.

In the Netherlands, the Delta Programme has begun an iterative process of analysis, goal formulation, and
implementation undertaken through regional collaborations between municipalities, district water boards,
provinces, and the national government (Delta Programme, 2017). Standardized regional “stress tests,”
intended to be regularly repeated, are a core part of the analysis step. The goal-setting dialogues bring in
additional stakeholders, including housing corporations, grid managers, farmers, and park managers. The
first round of these, set to be complete in 2019, is intended to be followed by the development of implemen-
tation agenda by 2020. The identification of synergies with other spatial planning objectives is intended to
be a key part of the implementation plan development.

In Jamaica Bay, Queens, New York, the Science and Resilience Institute at Jamaica Bay, established after
Hurricane Sandy as a partnership among several governments, environmental groups, and academic insti-
tutions, has played a key role in efforts to incorporate local residents in the planning of resilience solutions
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for flooding (Science and Resilience Institute at Jamaica Bay, 2019). These efforts rely on the use of citizen
science, environmental education, increased communication, and iterative tools that require the close inter-
action between residents and experts in exploring issues associated with storm water, technical support for
regular flooding and extreme tides, and hazard response.

A similar process is underway in the Two Rivers region of Monmouth County, New Jersey, where fed-
eral funding allowed the state to partner with 15 local governments and Rutgers University to develop
a regional resilience plan through a series of open houses and other public consultations (New Jersey
Coastal Management Program, 2019). The New Jersey Climate Change Alliance, a network of public, pri-
vate, nongovernmental, and academic institutions coordinated by Rutgers, sponsored the original scientific
assessment underlying this process (Kopp, Broccoli, et al., 2016), which is expected to serve as a model for
similar processes in other regions of the state.

Even the best-intended, and theoretically well designed, sea-level science and adaptation decision frame-
works can go astray if efforts to translate science to action do not take political economy, including the legacy
of previous development programs, into account (Ramasubramanian et al., 2016). Sovacool and Linnér
(2016) identify four mechanisms by which climate adaptation efforts can perpetuate existing injustices and
distort their own goals. Economic enclosure leads to the capturing of resources or authorities, for instance,
the way the Dutch Delta Works subverted local water boards when it was established in the 1950s. Political
exclusion leads to the omission of the voices of some affected populations from the planning process, which
they argue happened with woman and minority voices during the post-Katrina recovery in New Orleans.
Environmental encroachment sacrifices environmental protection to advance adaptation projections: for
instance, they point to habitat degradation associated with the Dutch Delta Works and the relaxation of
environmental standards during the Katrina recovery. Finally, adaptation efforts can foster entrenchment
of inequality; for example, they note that post-Katrina Army Corps repairs disproportionately benefited
wealthier and whiter neighborhoods.

Unfortunately, efforts that deliberately promote community engagement and try to avoid Sovacool and
Linnér's (2016) four Es by acknowledging a larger participation in key stages of planning and long-term
response may still end up reinforcing the status quo. As Fleming (2019) highlights, the post-Hurricane Sandy
Rebuild by Design initiative in the United States aimed to foster close interactions between designers and
communities to advance more resilient designs. One of the winning designs, The Big U, envisioned berms
and retractable flood walls around lower Manhattan, made welcoming with parks and other amenities.
While many of the participating design firms remain involved, in a decision that may produce another case
study of Sovacool and Linnér's (2016) four Es, “the city has tossed out years of community planning and
announced a conventionally engineered solution: extend the land area with fill, add near-shore walls, and
unleash another round of hyper-luxury real estate development to help pay for the cost of new coastal infras-
tructure” (Fleming, 2019). Ensuring that future sea-level adaptation efforts increase resilience successfully
and equitably may thus require a greater focus from the scientists, boundary organizations, and other actors
involved on potential failure pathways tied to political and economic power structures.

8. Pathways Forward
Understanding the future evolution of coastlines requires an interdisciplinary systems approach. Human
activities, and the uncertain response of the climate system, influence the rate of mean sea level change
and the frequency and intensity of storms. These changes modulate coastal flooding, erosion, and
deposition—shifting the ground underneath ecosystems and human settlements and affecting vulnerabil-
ity to future flooding. Humans may respond to changing flood risk through engineering or migration; and
these processes will also shape the broader physical and socioeconomic evolution of the coast.

In the physical science domain, the ice-sheet response to greenhouse gas forcing is the primary driver of
deep uncertainty in multigenerational projections. The discovery of MICI may not be the last time that an
“unknown unknown” emerges with potentially profound implications for GMSL rise. Improving charac-
terization of MICI and other processes at the ocean/ice shelf/ice sheet interface may not initially lead to
a reduction in uncertainty but can provide the basis for designing observation systems targeted to reduce
uncertainty as quickly as possible. Transitioning processes from “unknown unknowns” to “poorly known
unknowns” is a critical task that can be crucially helpful in guiding decisions.
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For the next few decades, other processes driving regional and local change—such as atmosphere/ocean
dynamics, anthropogenic subsidence, tectonics, and GIA—are as important as ice-sheet uncertainty in driv-
ing uncertainty in RSL projections. Observational and modeling studies have the potentially to narrow
associated uncertainties greatly, particularly as the length of the high-density observational records of the
satellite era grow. For high-frequency processes where satellite coverage is too temporally sparse, innovative
observational strategies—for example, combining denser conventional sensor systems with crowdsourced
data (e.g., Wang et al., 2018)—may provide substantial advances.

Sea-level rise impact assessment need to move beyond exposure assessments that assume the physical and
human coast are passive recipients of environmental change. Coupling mean and extreme sea-level pro-
jections with geomorphological, ecological, economic, and population models can provide a more realistic
representation of exposure and vulnerability. But models need data, and data-driven statistical approaches,
as well as process-based approaches, are key (e.g., Hsiang, 2016).

While an interdisciplinary approach is necessary to understand coastal evolution, a transdisciplinary
approach is essential to ensuring the resulting knowledge is legitimate, relevant, and credible for coastal
stakeholders. Co-production of sea-level science, with stakeholders integrated into the entire process
from problem definition and analysis to communications and evaluation, is key to ensuring the scientific
questions being asked will provide useful answers. “Decision-first” frameworks can help identify the uncer-
tainties that could actually affect on-the-ground choices, while often facilitating analysis of robustness to
deep uncertainty. Real decisions provide a natural boundary object, a focal point for discussions among
scientists, practitioners, and affected populations.

Yet decision science too can become isolated from real decisions if the decision process is treated as though
it were separate from the affected systems. Political economy is as much a part of the dynamic coast as
geomorphology, human migration, and market economics. The institutional design of networks and hubs
intended to link science and adaptive decision making must therefore account for power relationships and
their effects on the efficacy and equity of adaptation, and figuring out how to do so is a crucial task for the
relevant social sciences.

For sea-level science to truly become actionable, we need to dissolve the boundary lines between sea-level
science, impact science, social science, decision makers, and affected populations. This does not mean we
foreclose fundamental advances, whether inspired by use or curiosity, even in the purely physical realm. But
it does imply complementing curiosity-driven science with a different way of doing science and of educating
the next generation of sea-level scientists—one that is not just interdisciplinary but transdisciplinary, with
two-way communications with nonspecialists as a fundamental element (Kopp, 2019).
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