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Abstract In the western U.S., smoke from wild and prescribed fires can severely degrade air quality. Due
to changes in climate and land management, wildfires have increased in frequency and severity, and this
trend is expected to continue. Consequently, wildfires are expected to become an increasingly important
source of air pollutants in the western U.S. Hence, there is a need to develop a quantitative understanding
of wildfire-smoke-specific health effects. A necessary step in this process is to determine who was
exposed to wildfire smoke, the concentration of the smoke during exposure, and the duration of the
exposure. Three different tools have been used in past studies to assess exposure to wildfire smoke: in
situ measurements, satellite-based observations, and chemical-transport model (CTM) simulations. Each of
these exposure-estimation tools has associated strengths and weakness. We investigate the utility of
blending these tools together to produce estimates of PM2.5 exposure from wildfire smoke during the
Washington 2012 fire season. For blending, we use a ridge-regression model and a geographically
weighted ridge-regression model. We evaluate the performance of the three individual exposure-estimate
techniques and the two blended techniques by using leave-one-out cross validation. We find that predictions
based on in situ monitors are more accurate for this particular fire season than the CTM simulations and
satellite-based observations because of the large number of monitors present; therefore, blending provides
only marginal improvements above the in situ observations. However, we show that in hypothetical
cases with fewer surface monitors, the two blending techniques can produce substantial improvement
over any of the individual tools.

1. Introduction

Ambient air pollution is one of the leading causes of premature mortality worldwide [Forouzanfar et al., 2015].
Atmospheric aerosols are a major component of air pollution, and exposure to fine particles with aerody-
namic diameters smaller than 2.5μm (PM2.5) is associated with many negative health effects [Pope and
Dockery, 2006]. While regulation has successfully reduced the anthropogenic contribution to ambient
PM2.5 [Sheppard et al., 1999; Gauderman et al., 2015], nonanthropogenic emissions are more difficult to
control. In the western U.S., nonanthropogenic biomass burning such as wildfires are a major source of
PM2.5 [Mallia et al., 2015]. Wildfire activity is closely coupled with spring and summer time temperatures
[Westerling et al., 2006]. Many metrics of drought and fire potential have been shown to increase in response
to anthropogenic climate change [Abatzoglou and Williams, 2016], suggesting that the relative importance of
wildfires for western U.S. air quality is likely to continue to increase [Yue et al., 2015].

Studies have attempted to quantify the impact of biomass burning PM2.5 smoke on human health [e.g.,
Lelieveld et al., 2015]. This has been done by using concentration-response (CR) functions to link PM2.5

exposure to health effects. CR functions for PM2.5 exposure are developed from environmental epidemiology
studies such as the Harvard Six Cities Study [Dockery et al., 1993] which examined incidence of disease in
populations with different exposures to ambient PM2.5. These CR functions pertain to chronic exposure to
low-to-moderate levels of PM2.5; they may not apply to transient pollution events lasting days to weeks with
much higher levels of pollution, an exposure pattern more typical of wildfire smoke [Val Martin et al., 2013].
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Furthermore, how particle composition impacts health is not well understood. As biomass-burning aerosol
has a different composition, it may also have a different toxicity than ambient mixtures of PM2.5 from other
aerosol sources. However, many CR functions are developed for exposure to ambient total PM2.5, not for
specific sources or components. Given this disconnect, as well as the increasing importance of wildfires to
western U.S. air quality, there is a need to develop CR functions specific to wildfire smoke.

Environmental epidemiology uses many different techniques for determining the health effects of an envir-
onmental pollutant and for calculating CR functions [Samet et al., 2000; Miller et al., 2007]. However, these
study designs require accurate estimates of pollutant exposure, reliable health data, and a large exposed
population in order to ensure detection of a statistically significant change in health outcomes between
the hazard and nonhazard periods. Because wildfire smoke events tend to occur in sparsely populated
regions, statistical power can be challenging. Therefore, reducing exposure misclassification by producing
increasingly accurate estimates of spatiotemporal smoke concentrations is even more necessary for the
epidemiology to be effective [Liu et al., 2015]. The focus of this study is to produce accurate estimates of
exposure to wildfire smoke across large areas, which can be used in an epidemiology study.

Previous studies on health effects due to wildfire-smoke exposure have relied on three different tools to
estimate smoke PM2.5 exposure: in situ monitors [e.g., Elliott et al., 2013], satellite-based observations [e.g.,
Rappold et al., 2011], and chemical-transport models (CTMs) [e.g., Alman et al., 2016]. While each of these tools
has a different set of strengths, wildfire smoke presents different challenges for all three of these exposure-
estimation techniques.

In situ measurements: in the United States, the Environmental Protection Agency (EPA) consolidates surface
PM2.5 measurements from state and local agencies into the Air Quality System (AQS) and Interagency
Monitoring of Protected Visual Environments networks. These in situ measurements provide accurate
information about PM2.5 concentrations at a single point in space; however, the spatial density of sites is
inconsistent throughout the western U.S. and monitors are often insufficiently spaced to resolve steep
spatial gradients associated with wildfire smoke. Furthermore, some measurement sites only record data
every third day which can fail to measure changes in smoke concentrations that often occur on shorter
time scales.

Satellite-based observations: satellite-based observations offer a good complement to in situ measurements
due to their ability to make observations over large spatial areas. However, surface concentrations are hard to
determine from a satellite-based observation. Instead, most air-quality satellite retrievals produce estimates
of aerosol optical depth (AOD), which is the integrated extinction due to the total column aerosol mass and
may not necessarily be indicative of surface PM2.5 concentrations. Satellite observations of AOD have been
used in numerous studies of air quality and health [Henderson et al., 2011; Rappold et al., 2011] and are often
combined with models or measurements for spatially improved PM2.5 estimates [e.g., van Donkelaar et al.,
2006, 2011; Brauer et al., 2012].

CTMs: to fill the gap between satellite and in situ observations, modeling tools are often used [e.g.,
van Donkelaar et al., 2006]. A wide range of CTMs are used to estimate surface PM2.5 based on knowledge
about emissions, chemical processing of emissions, and transport due to meteorology; because CTMs
produce spatially continuous information about many different species, these tools are attractive for use in
health studies [Alman et al., 2016]. However, CTMs are limited by our understanding of the underlying
physical processes [Alvarado et al., 2015], as well as our ability to represent these processes in a computation-
ally viable model. Specifically, accurate modeling of wildfire smoke requires detailed knowledge of fuel
loading and moisture, fire behavior, and thermodynamic structure of the atmosphere to correctly predict
emission species and mass, as well as pollutant injection height [Paugam et al., 2016], which are all crucial
to predicting surface PM2.5 in smoke plumes [Baker et al., 2016]. With additional uncertainties in meteorology
[Garcia-Menendez et al., 2013] and subgrid-scale parameterizations’ effect on transport, accurate modeling of
wildfire smoke is a challenging endeavor [Saide et al., 2015].

Given the limitations of these individual tools, several studies have examined the utility of combining infor-
mation from each of these tools, as well as other data sets. Reid et al. [2015] combines CTM simulation results
with AOD products from two satellite platforms, in situ monitor data, and other land use data and distance-
to-fire data in a data-adaptive machine-learning framework consisting of 11 different algorithms. Yao and
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Henderson [2014] combined various remote-sensing products with previous days’ in situ measurements as
well as a dispersion model in a regression model to predict surface PM2.5.

Henderson et al. [2011] compared the observed health signal by using models, monitors, and satellites sepa-
rately to determine exposure and found that the exact technique used to determine exposure can impact the
health response significantly. The recent review of wildfire-smoke exposure literature by Liu et al. [2015]
noted that while most studies find a signal for respiratory health effects of wildfire smoke exposure, cardio-
vascular morbidity and mortality signals are less consistently seen; however, there is a well-known relation-
ship between other sources of air pollution and adverse cardiovascular health effects [Dockery et al., 1993;
Pope et al., 2004; Miller et al., 2007]. The absence of a detected relationship between wildfire smoke and
cardiovascular health outcomes may be due to exposure misclassification, rather than the absence of a
relationship [Liu et al., 2015]. Therefore, new strategies for assessing exposure to wildfire smoke exposure that
reduce exposure misclassification are needed to resolve this discrepancy.

In this study, we evaluate the combination of model output with in situ measurements and satellite observa-
tions to produce estimates of population exposure to wildfire smoke. We compare the performance of this
method to conventional exposure estimate techniques for the Washington 2012 wildfire season, and we
simulate the performance of estimates for a hypothetical case with fewer in situ monitors.

Themethods and results of the companion epidemiology study can be found in “A comparison of smoke esti-
mation methods and their association with wildfire smoke and cardiopulmonary-related hospital admissions
during the 2012 Washington wildfires” [Gan et al., 2017].

2. Methods
2.1. Overview of Washington 2012 Wildfires

On 8 September 2012, a lightning storm ignited a series of fires in the east Cascade mountain range of
Washington which burned close to 260,000 acres through the month of September. The fires produced
spatially broad smoke plumes which severely impacted visibility and air quality in much of the central and
eastern parts of the state. Figure 1b shows the locations of fires on 21 September 2012.

For this study, we analyzed surface PM2.5 concentrations associated with these wildfires and the surrounding
months as control. We estimated daily average surface PM2.5 concentrations from 1 July to 31 October 2012.

2.2. Exposure Estimation Tools
2.2.1. Weather Research and Forecasting Model With Chemistry Simulations
We use the Weather Research and Forecasting model with Chemistry (WRF-Chem) [Grell et al., 2005] to
simulate the wildfire event. We chose WRF-Chem because it allows us to conduct simulations at higher
resolution than some other CTMs (e.g., Goddard Earth Observing System model with Chemistry (GEOS-
Chem)) which is important for resolving steep spatial gradients associated with wildfires [Wu et al., 2006].
Furthermore, WRF-Chem allows for chemical fields to feed back on meteorological variables. Dense aerosol
layers associated with wildfire plumes can impact radiative transfer and cloud processes, which can in turn
impact transport [Grell et al., 2011].

Simulations were conducted at 15 × 15 km resolution, with Global Forecast System analysis for meteoro-
logical initial/boundary conditions. Meteorological fields were reinitialized daily. We use output from the
Model for Ozone and Related Tracers Version 4 (MOZART-4) to initialize the model and establish bound-
ary conditions for chemical species [Emmons et al., 2010]. Biomass-burning emissions are based on the
Fire Inventory from National Center for Atmospheric Research (NCAR) (FINN) v1.5 [Wiedinmyer et al.,
2011], and anthropogenic emissions are based on 2011 EPA National Emissions Inventory. We use the
MOZART gas-phase chemical mechanisms [Emmons et al., 2010], with Goddard Chemistry Aerosol
Radiation and Transport model [Chin et al., 2000] to simulate the evolution of the biomass-burning
plume. We use the YSU boundary layer parameterization [X.-M. Hu et al., 2013] and the Morrison
microphysics parameterization [Morrison and Gettelmen, 2008] subgridscale processes. The WRF-Chem
simulations produced hourly estimates of surface PM2.5 concentrations, from which 24 h averages
were calculated. A detailed summary of our simulation parameters can be found in Table S1 in the
supporting information.
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2.2.2. In Situ Measurements
and Interpolation
In situ monitor data for the state of
Washington, as well as northern
Oregon, western Idaho, and
Montana were obtained from the
EPA AQS for the months of July–
October of 2012 (https://aqs.epa.
gov/aqsweb/documents/data_mart_
welcome.html). During smoky peri-
ods, the Washington Department of
Ecology deployed additional PM2.5

monitors, which were also included
in our analysis. Additional in situ
measurements from Canada were
obtained from Dr. Sarah Henderson
at the University of British Columbia
School of Population and Public
Health. There were a total of 212 in
situ measurement sites during our
study period. All networks of in situ
measurements use a combination of
automated and manual filter-based
instruments, and reported in situ
measurements are at varying
temporal resolution as follows:
Washington Department of Ecology
supplemental sites reported hourly
data, Canadian measurements
reported daily data, and EPA AQS
sites reported data every 3 or 7days.
A map denoting the location and
parent network of the various in
situ monitors can be found in
Figure S1 in the supporting informa-
tion. Because we produced exposure
estimates at daily temporal resolu-
tion, all subdaily (e.g., hourly) observa-
tions were averaged to produce 24h
averages at those monitor locations.

Previous studies of all-source PM2.5

exposure [e.g., Dockery et al., 1993;
Samet et al., 2000; Miller et al., 2007;
Bell and HEI Health Review
Committee, 2012] have relied on
nearest monitor observations to
estimate exposure and have limited
the study area to areas within a spe-
cified distance of a surface monitor.
However, reducing the spatial area
of the study has disadvantages
because it reduces the sample size
of the exposed population, and

Figure 1. Time series plot showing in situ measurements alongside WRF-
Chem, interpolated estimates of PM2.5, and MODIS AOD. Plots are from
(a) Mount Vernon, WA, which was not impacted by smoke during this time
period, and (b) Pullman, WA, which was impacted by smoke. (c) The locations
of these two measurement sites in Washington along with fire locations
and surface concentrations on 21 September 2012.
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many health effects (especially cardiovascular effects) may be obscured by a lack of statistical power [Reid et al.,
2016]. To avoid this issue, past studies have used an interpolation technique to estimate PM2.5 concentrations
in between measurement sites and increase the statistical power in exposure estimates [Deligiorgi and
Philippopoulos, 2011; Li et al., 2016]. Building off these approaches, we use ordinary kriging [Isaaks and
Srivastava, 1989; Jerrett et al., 2005; Janssen et al., 2008] to interpolate in situ measurements of PM2.5. We used
brute-force optimization to fit an analytical semivariogram to our data as follows: (1) we guessed a shape and
parameter values for an analytical semivariogram function, (2) we used the kriging weights derived from this
semivariogram function to do a leave-one-out cross validation evaluation [Efron, 1982] (which is described in
detail below) of the kriging model, and (3) we evaluated each kriging model by using slope, R2, mean average
error (MAE), and mean bias (MB) statistics. On each day, we use all available measurements to fit a new kriging
model for that day. We found that a spherical semivariogram shape with parameter values “sill” s=3.0,
“nugget” n=0.1, and “range” r=8.0 degrees produced the estimates with the best performance according
to our summary statistics, and the results are discussed in section 3.2.2. We use this analytical semivariogram
throughout our analysis. Because we use a constant semivariogram for the entire time period, we are only per-
forming two-dimensional spatial kriging; however, we do fit a kriging model for every day of our time period.
The semivariogram and kriging weights are calculated by using the Python PyKrige module followingMurphy
[2014]. We evaluate our ordinary kriging estimates by using leave-one-out cross validation (LOOCV) [Efron,
1982] as follows: an individual in situ measurement site is removed from the interpolation algorithm, a PM2.5

estimate at the location of the removed site is calculated based on interpolation of the remaining PM2.5 mea-
surements available on that date, and this estimate is compared with the measured value at that site. This pro-
cess is repeated for every in situ measurement site, on every day that the measurement site reports a value.

LOOCV is a common interpolation evaluation technique [Efron, 1982] and was done as follows: for a given
measurement site on a given day, all other measurements are used to interpolate to that point in space.
The interpolated value is then compared to the measurement made at that location as a means of testing
the skill of the interpolation strategy. This step is repeated for every measurement site, on every day that each
measurement site reports a value.
2.2.3. Moderate Resolution Imaging Spectroradiometer Satellite Observations
For satellite observations, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument
aboard the Terra and Aqua polar-orbiting satellites. Both satellites provide measurements of the entire
globe approximately once daily in the absence of clouds, with the Terra and Aqua overpasses occurring at
~10:30 A.M. and ~1:30 P.M. local time, respectively, with a swath width of 2330 km. MODIS instruments
consist of radiometer measurements of the Earth at 36 wavelengths [Remer et al., 2005]. Aerosol optical depth
(AOD) is a measure of the integrated optical extinction in the atmosphere due to the total amount of parti-
culate matter in an atmospheric column. In many locations, AOD is often highly correlated with surface
PM2.5 concentrations [Engel-Cox et al., 2004]. However, there can be variability in the strength of the relation-
ship which depends on many other variables [Ford and Heald, 2016].

For this analysis, we use the Level 2 AOD Dark-Target Collection 6 retrieval at 10 km spatial resolution [Sayer
et al., 2014]. The Terra (~10:30 A.M. local time) and Aqua (~1:30 P.M. local time) overpasses are composited
together to produce a single AOD observation that is representative of the daytime period according to a
procedure described in Text S1 in the supporting information. The Level 2 retrieval includes a cloud mask.
However, in the case of wildfires, thick smoke is often mistaken as cloud by the retrieval and erroneously
masked [van Donkelaar et al., 2011]. Changes were made in Collection 6 to account for this; however, some
pixels are still flagged as cloudy when we believe that they represent dense smoke. When masked pixels are
surrounded by elevated AOD values due to smoke, we assume that the retrieval failed on these pixels and we
interpolate surrounding pixel values to estimate the AOD in that pixel.

The details of the compositing and masking procedures are discussed in Text S1. Additionally, we present a
sensitivity analysis to demonstrate that these procedures do not introduce significant bias to our results.

2.3. Blending Techniques
2.3.1. Global Ridge Regression
We use linear regression to blend our three exposure estimate data sets together. Because each individual
data set is an estimate of surface PM2.5 concentrations, we expect a high degree of multicollinearity

GeoHealth 10.1002/2017GH000049

LASSMAN ET AL. MULTIMETHOD ESTIMATES OF SMOKE EXPOSURE 110



between these three data sets. Therefore, this is an “ill-posed” problem for a conventional regression
technique (e.g., ordinary least squares) and may lead to an overfitted model that amplifies noise [Vogel,
2002]. To account for this, we use ridge regression, which penalizes the model as the norm of the
regression coefficients grows and results in a more stable regression model for correlated inputs.

We use the ridge-regression algorithm provided in the Python SKLearn module [Pedregosa et al., 2011] to train
and implement our model. We evaluate this approach by using a leave-one-out cross validation (LOOCV)
approach, where we use all but one in situ measurement site to train a set of regression coefficients, and then
evaluate the model by using the data from the removed in situ measurement site. As inputs to our regression
model, we use the LOOCV ordinary kriging estimate along with WRF-Chem estimates and MODIS AOD esti-
mates at each point and use the measured value at the site to train and evaluate the regression model, allow-
ing us to simulate estimating PM2.5 concentrations with regression at a point far from ameasurement site. This
process is repeated for every measurement site. Therefore, we have a distribution of regression coefficients for
each iteration of the cross validation, though each iteration of the LOOCV produces one set of regression
coefficients for use throughout the domain. Because we aggregate data frommany in situ measurement sites
to train our regression model, we refer to this approach as a Global Ridge Regression (GRR) blend.
2.3.2. Geographically Weighted Ridge Regression
One limitation to the GRR approach is that we aggregate data across the full domain (the state of Washington
in this case) to train the regression model. However, the inputs to the regression model may perform differ-
ently in different parts of our domain. For example, the performance of WRF-Chem in the urban corridor in
westernWashington depends on the accuracy and precision of the anthropogenic emissions inventory, as well
as the ability of the chemical mechanism to simulate the complex chemistry that occurs in this region.
However, model performance in the central and eastern parts of the state is more determined by the emissions
and transport of emissions from the wildfires in the central part of the state. Likewise, we expect our estimates
from kriging of in situ measurements to perform better in regions where numerous surface sites are nearby.

In Geographically Weighted Regression (GWR), we can leverage the fact that different data sets can provide
better estimates of surface PM2.5 in different locations. GWR [Brunsdon et al., 1998; Fotheringham et al., 2002]
is a geostatistical technique that has been used before in urban air-quality studies [Song et al., 2014] as well as
national-level studies that incorporated remote sensing [X. Hu et al., 2013; You et al., 2016].

In GWR, regression coefficients are calculated at each in situ measurement site. The regression coefficients
are then interpolated by using a Gaussian kernel function:

Gi; j ¼ exp � Di; jBw
� �2� �

(1)

where Di,j is the distance to the surface monitor and Bw is a bandwidth parameter (we used 100 km) which
determines the length scale of the Gaussian kernel. The regression coefficients in a given grid cell in our
domain (w) are given by the following interpolation formula:

wj ¼ ∑Ni¼1Gi; jwi

∑Ni¼1Gi; j
(2)

where the index i denotes each surface monitor location and the index j refers to the grid cell. Using this
interpolation approach, we are able to calculate a set of unique coefficients for each location in our analysis
domain. We evaluate this technique by using LOOCV as described for GRR.

3. Results and Discussion

Figures 1a and 1b present in situ measurements of surface PM2.5 plotted alongside WRF-Chem and interpo-
lated estimates of surface PM2.5, as well as MODIS AOD for two in situ measurement locations for one
example day during our study time period. Figure 1c shows the relative locations of these measurement sites
with locations of major fires from the FINN inventory [Wiedinmyer et al., 2011].

Mount Vernon (Figure 1a) is located in the northwest part of Washington, which, based on the observed con-
centrations of PM2.5, was not impacted by smoke during this time period. Therefore, PM2.5 concentrations
during this time period were dominated by nonwildfire sources. There was little variability in measured
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PM2.5 at this measurement location (standard deviation of 1.8μgm�3), and concentrations were consistently
<15μgm�3. Our WRF-Chem simulation not only overpredicted PM2.5 throughout the time period but also
predicted increases in PM2.5 during September, when most of the fire activity in the region occurred.
These relative increases were not corroborated by the surface measurements. However, there were
increases in MODIS AOD during this time period, suggesting that smoke may have been lofted above the
measurement site and the model may have erroneously kept the smoke at the surface. Throughout this
time period, estimates of PM2.5 based on kriging of surrounding measurements appear to very closely
follow the observed concentrations (note that the actual measurements taken at this observation site were
left out of the kriging fit in order to evaluate the utility of kriging).

However, the other time series location in Pullman, WA (Figure 1b) was impacted by smoke during the time
period, as reflected by elevated PM2.5 measurements close to 60μgm�3. While WRF-Chem estimates of PM2.5

appear to overestimate concentrations during the time period, the increases in measured concentrations
correspond to increases in simulated PM2.5, which indicates that WRF-Chem captures the variability in
concentrations due to wildfire smoke, even if it overpredicts concentrations. These periods of elevated
PM2.5 are also captured by MODIS AOD as well as kriging of surrounding measurement sites.

To assess the performance of these techniques throughout the domain, we compared our estimates of
surface PM2.5 concentrations to measurements at every site throughout the domain. For these comparisons,
we use the LOOCV estimates derived from kriging, as well as ridge regression and GWR based on the LOOCV
kriged data set. We then compare these estimates to the actual measured value at that location. In doing so,
we are simulating estimating PM2.5 concentrations in a location where measurements are hypothetically
not available.

Figure 2 shows one-to-one scatterplots of the data, with performance statistics summarized in Table 1,
while Figure 3 shows the coefficient of determination (R2) between each estimate and measured
PM2.5 at every measurement site in the domain. These results will be discussed in further detail in the
following subsections.

Figure 2. One-to-one plots of (a) WRF-Chem, (b) kriging, (c) MODIS AOD, (d) Global Ridge Regression, and (d) Geo-Weighted Ridge Regression predictions of surface
PM2.5 versus measured PM2.5 concentrations for all measurement sites in Washington for 1 July 2012–2031 and October 2012.
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3.1. Aggregate Results of Individual Estimates
3.1.1. WRF-Chem Simulations
A comparison between the WRF-Chem simulation and the surface observations indicates that the model
overpredicts PM2.5 concentrations during the period of July–September 2012 throughout Washington
(Figure 2). WRF-Chem estimates have a slope of 0.67, R2 of 0.25, mean absolute error (MAE) of 11.4, and mean
bias (MB) of 10.2μgm�3 (Table 1). The slope of less than 1 is driven by (1) an underprediction of surface PM2.5

for the few highest concentrations that were recorded and (2) a high PM2.5 bias in nonsmoke regions.
Estimates from our WRF-Chem simulation are on average biased high, and an overprediction of PM2.5 in
nonfire regions makes a large contribution to this bias.

Figure 3. R2 value for each in situ measurement site as compared to (a) WRF-Chem, (b) kriged PM2.5 measurements, (c) MODIS AOD, (e) Global Ridge Regression, and
(f) geo-weighted ridge regression for 1 June 2012–2031 and October 2012. (d) The mean bias for the WRF-Chem simulated PM2.5 at each in situ measurement
site (note the different color scale).

Table 1. Performance Statistics for Each Exposure Estimate, Aggregated Across All In Situ Measurement Sites 1 July
2012–2031 and October 2012

Exposure Estimate Slope R2 Mean Absolute Error (μgm�3) Mean Bias (μgm�3)

WRF-Chem 0.67 0.25 11.45 10.22
Kriging 0.70 0.69 2.09 0.00
MODIS AOD 0.01 0.18 – –
Global ridge regression 0.70 0.69 2.14 0.01
Geographically weighted regression 0.78 0.66 2.40 0.37
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Much of the positive bias shown in Figure 2 is driven by the large number of monitors in western Washington
that was not impacted by smoke (Figure 3d). WRF-Chem is not capturing the variability at those surfacemoni-
tors as indicated by the R2 values near zero in Figure 3a. Model performance in these locations depends on a
suite of factors including nonwildfire emissions, such as anthropogenic emissions, biogenic emissions,
MOZART boundary conditions, or the choice of aerosol chemistry/physics scheme. In contrast, the mean
absolute bias is much closer to zero, and R2 values are much higher (0.5–0.7) in the central part of the state
that was most severely impacted by smoke. In the eastern third of the state, WRF-Chem-simulated PM2.5 are
also biased high with respect to the surface observations, but the R2 values remain high (>0.5). This is
consistent with our observations in Pullman, WA, where the time series in Figure 3c show that WRF-Chem
overpredicts ambient and wildfire PM2.5 but captures the variability in surface observations.

As previously mentioned, one of the main challenges for determining wildfire-specific health effects is expo-
sure misclassification bias [Liu et al., 2015]. Other studies that have attempted to use WRF-Chem to character-
ize exposure to wildfire smoke [e.g., Alman et al., 2016] have acknowledged that exposure misclassification
can occur when using models to estimate exposure and the extent of exposure misclassification is difficult
to quantify. In particular, the Alman et al. [2016] study had a comparatively smaller number of in situ PM2.5

monitors in their study domain available against which to evaluate their exposure estimates. While it is
possible in principle to use WRF-Chem to generate highly accurate surface PM2.5 estimates, this may require
optimizing the WRF-Chem simulation to better account for parameters and processes that are more repre-
sentative of each region. This would likely also require enough in situ monitors to comprehensively evaluate
WRF-Chem performance in the domain.
3.1.2. Kriging of In Situ Measurements
Using kriging to estimate PM2.5 appears to outperform our WRF-Chem simulation throughout the domain
with a slope of 0.7, R2 of 0.69, mean absolute error (MAE) of 2.1μgm�3, and mean bias (MB) of 0.0. The
analogous one-to-one plot for our kriged PM2.5 estimates and R2 map are shown in Figures 2b and 3b,
respectively. The slope less than one is driven by an underprediction of the highest observed concentra-
tions. This is expected, because interpolation techniques cannot predict local maxima or minima that do
not impact a measurement site used in the interpolation. If there are local maxima and minima in between
measurement sites, no interpolation strategy will successfully resolve these values. Likewise, when doing
LOOCV, if one measurement site is experiencing a higher concentration than the surrounding sites, then
there is no way to successfully predict that value based on other measurements through interpolation.
On average, however, kriging is able to produce estimates that are close to the actual value, given the
low MAE and bias.

Kriging produces the highest R2 values in regions where surface monitors are closest together (Figure 3b).
This is an expected result; the spatial autocorrelation of PM2.5 decays with distance, so sites in closer proxi-
mity are better able to capture the expected variability than more distant ones. However, there are individual
sites with low R2 values despite close proximity to other monitors. This low correlation may indicate a local
source of PM2.5. Because the kriging model produces estimates with a lower error and bias, we consider this
to be a more accurate estimate than our WRF-Chem simulations for the 2012 Washington fires.

Our interpolation is able to represent surface concentrations with better-than-expected accuracy. There are
two factors that contributed to this. (1) The state of Washington has an extensive in situ monitor network that
was augmented in summer 2012 by the deployment of extra monitors. (2) The number and distribution of
large wildfires (Figure 1) produced large areas of smoke impact instead of isolated plumes. While interpola-
tion has been shown to be useful for characterizing PM2.5 concentrations for ambient air pollution [e.g., Jerrett
et al., 2005; Li et al., 2012], relatively few studies have attempted to use interpolation to characterize smoke
concentrations for wildfires, largely because the highly concentrated plumes of smoke often produce spatial
PM2.5 concentration gradients that are too steep for in situ monitor networks to resolve [Wu et al., 2006].
Studies that do use in situ monitors to determine wildfire impacts on air quality either limit their study area
to close to a monitor [Wu et al., 2006] or combine PM2.5 monitor data with other sources of information [e.g.,
Reid et al., 2015]. Though our method represented surface concentrations well, the method cannot capture
local maxima or minima in PM2.5 concentrations between surface monitors. Other sources of information,
such as the satellite observations and WRF-Chem output, can add important information to exposure
estimates in these locations.
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3.1.3. MODIS AOD
MODIS AOD has been successfully used to identify wildfire smoke in previous studies [van Donkelaar et al.,
2011; Rappold et al., 2011]. With the exception of thick smoke occasionally being erroneously classified as
a cloud and cases where smoke is lofted above the boundary layer [van Donkelaar et al., 2011], AOD is well
suited for identifying large changes in atmospheric aerosol loading. Variability in AOD:PM2.5 ratios may
be due to variability in (1) the vertical profile of aerosol, e.g., due to lofted smoke; (2) the ambient relative
humidity driving variability in aerosol water; (3) the aerosol size distribution or composition driving variability
in the mass extinction efficiency; and/or (4) temporal/spatial variability in the 24 h PM2.5 not captured by the
resolution of the satellite observation.

Figure 2c presents the relationship between MODIS AOD and in situ PM2.5 concentrations for our study
region. There is a slope of 0.01 (Table 1); physically, this means that an increase in 0.01 AOD on average
produces an increase of 1μgm�3 in PM2.5 concentrations. The observations are bifurcated around the 1:1
line (either above or below), with few data points lying along the line. Our MODIS AOD data set is a
composite of Terra and Aqua overpasses, so while it may describe the location of smoke well for the time
period between 10 A.M. and 2 P.M. local time, we are comparing to 24 h average PM2.5 measurements.
This temporal discrepancy is further explored in section S3 in the supporting information, though we
do not find that this significantly biases our results. The R2 value for MODIS AOD is 0.18. In Figure 3c,
we see that, like with WRF-Chem PM2.5, R

2 values for AOD are close to zero in western Washington, but
R2 values are as high as 0.6 at some surface monitors in the central and eastern portions of the state that
were more heavily smoke impacted. Past studies have shown that AOD is well suited for identifying large
changes in atmospheric aerosol loading, which explains its good performance in central and eastern
Washington. Contrastingly, low variability in aerosol loading in western Washington, coupled with the pre-
sence of fog and stratus clouds, as well as uncertainties in the aerosol retrieval in coastal regions, produces
lower performance.

Even in smoke-impacted regions, we do not expect AOD to explain all of the variance in the surface PM2.5

concentrations, as there are still challenges associated with distinguishing surface PM2.5 from aerosol mass
that are above the surface and not directly relevant to human health. Other studies have attempted to deal
with this uncertainty in different ways; Rappold et al. [2011] used a binary exposure variable (e.g., smoke or no
smoke based on fractional coverage of counties) applied at a coarse spatial resolution. At this level of spatial
resolution, exposure misclassification is likely to occur frommany sources, and the contribution due to uncer-
tainty in smoke plume height may be relatively minor in comparison. van Donkelaar et al. [2011] combined
satellite AOD with output from a chemical-transport model to constrain population-level exposure estimates.
In the next section we combine MODIS AOD with WRF-Chem output and kriged in situ measurements of
PM2.5 to improve the accuracy of our estimates of PM2.5. We do not attempt to estimate exposure at subdaily
time scales because the MODIS data set is a composite of overpasses between 10 A.M. and 2 P.M. on each day
(representative of daytime concentrations), whereas the in situ PM2.5 measurements are 24 h averages. Our
health data [Gan et al., 2017] are also at the daily resolution, but we acknowledge that this temporal mis-
match between the satellite product and surface measurements might bias our comparisons (section S3).

3.2. Regression Results

We combined the simulated PM2.5 with the satellite and surface observations by using two different techni-
ques: Global Ridge Regression (GRR) and Geographically Weighted Regression (GWR).
3.2.1. Global Ridge Regression
Global Ridge Regression (GRR) produces summary statistics (slope = 0.70, R2 = 0.69, MAE= 2.14, MB= 0.01)
that are almost identical to the kriging estimate (Table 1). The regression coefficients for GRR are shown in
Table 2. We see that the GRR estimate is weighted heavily toward the estimate derived from kriging of
measurements. If we use the mean AOD:PM2.5 ratio from Table 1 of 0.01 AOD/[μgm�3] to convert the GRR
coefficient for AOD into the same units as the other GRR coefficients, we find that the relative weights are
0.91 for kriging, 0.07 for WRF-Chem, and 0.01 for MODIS AOD. Consequently, the GRR model-predicted
PM2.5 is very close to the kriging-predicted values and the performance statistics are similar. Because the
kriging estimates comprehensively outperform both our WRF-Chem simulation and MODIS AOD, the GRR
heavily relies on the kriged PM2.5 estimates. The R2 values across the different measurement locations for
the GRR are also quite similar to the kriged PM2.5 estimate (Figures 3a and 3d). The only discernible
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difference is the absence of a few surface monitor locations in the GRR figure (Figure 3d), which is due to a
lack of sufficient MODIS AOD observations at those locations.

We note that the three inputs to the regressionmodel are expected to be highly correlated. While we address
instabilities in the regression model by using ridge regression, one unavoidable complication is that the
regression coefficients are not necessarily unique, due to multicollinearity. Information that is contained in
multiple data sets is only added to the regression model once. Therefore, a set of coefficients could exist that
relies more on either our WRF-Chem PM2.5 or MODIS AOD to produce the same estimate of surface PM2.5.
3.2.2. Geographically Weighted Regression
For measurement sites near other sites, the GWR appears to perform the same or better than GRR, while
isolated sites suffer a slight decrease in performance (Figure 3e). This may be due to the interpolation of
regression coefficients, which adds another layer of estimation to the system for GWR relative to GRR.
Table 1 shows the performance of the GWR model (slope= 0.76, R2 = 0.66, MAE= 2.40, MB= 0.37). Although
the resulting R2 is lower than the R2 determined from the kriging estimate and the GRR, the MAE, and MB
are slightly higher, the slope is much closer to one. The increases in MAE and MB from 2.1 to 2.4 and 0 to
0.4μgm�3 (relative to using the kriged PM2.5) are small, relative to the concentrations seen during the
wildfire smoke events (e.g., 80μgm�3).

Figure 4 shows the intercept and three regression coefficients calculated at each in situ monitor in the
domain. In Figure 4b, we see that, at most of the in situ monitor locations, GWR relies heavily on the kriged
PM2.5 measurements to produce the best estimate of surface PM2.5 concentrations. However, in Figures 4c
and 4d, we see that there is a nonzero contribution from both WRF-Chem and MODIS in the central and
eastern parts of the state, where both data sets were shown to explain more of the variance in the in situ
measurements (Figure 3). WRF-Chem has negative coefficients at some of the smoke-impacted monitors
in central Washington, which shows that the best fit combinations at some sites are not always
physically intuitive.

GWR allows the model more degrees of freedom to account for strengths/weaknesses of the three inputs in
different regions, which is an advantage over GRR. A disadvantage of GWR is that the total amount of data
used to calibrate model coefficients at each individual site is lower than the amount of data used to calibrate
the single set of coefficients in GRR, where the data from all individual sites are pooled together. Thus, it
is possible that the fits at the individual sites for GWR are less robust than the global fit for GRR.
Furthermore, while sites outside the analysis domain were used as inputs to the kriging data set, they were
not incorporated into the GWR analysis, so analysis grid boxes near the boundaries of the domain have fewer
regression coefficients contributing to the GWR calculation and are also less reliable. In order to include sites
outside of the boundaries of the analysis domain in GWR, we need a robust kriging model to estimate LOOCV
concentrations outside the boundaries. To do this, we would need to use additional surface monitors even
further from our domain. Because our model does not perform worse near the boundaries, and because
the boundaries were not heavily impacted by smoke, this extra step would likely only produce marginal
improvements. However, applying these techniques to a different fire or region may require this extra step.

Our techniques perform comparably to other studies that have also estimated smoke concentrations. The
Yao and Henderson [2014] study of the 2003–2012 fire seasons in British Columbia, which combined prior
days’ PM2.5 concentrations with the NOAA Hazard Mapping System product, and MODIS-measured fire radia-
tive power, reported correlation coefficients of 0.84 (R2 of 0.71) and a normalized root-mean-square error
(NRMSE) of 55.6%, whereas our GWR model produces an R2 of 0.66 and an NRMSE of 2%. Another study,
Reid et al. [2015], combined many different types of land use and GIS data with in situ and satellite observa-
tions and CTM output in a multimethod, machine-learning framework. Reid et al. [2015] found that a general-
ized boosting model (GBM) with 29 different variables input produced their best estimates, with a slope of

Table 2. Global Ridge Regression Coefficients as Output by Regression Model (and Normalized to the Same Units)

Regression Coefficient Mean Value Standard Deviation

Intercept [μgm�3] ([μgm�3]/[μgm�3]) �0.78 (�0.00) 0.04 (0.00)
Kriging ([μgm�3]/[μgm�3] 0.91 0.00
WRF-Chem ([μgm�3]/[μgm�3] 0.07 0.00
MODIS AOD [μgm�3/AOD] ([μgm�3]/[μgm�3]) 0.87 (0.01) 0.04 (0.00)
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0.99, R2 of 0.80, and a root-mean-square error (RMSE) of 1.5μgm�3. In comparison to this study, we are able
to achieve similar performance with our error statistic (MAE of 2.4μgm�3 for GWR), but our slope and R2 do
not achieve the same level of performance. In large part, this is because the GBM uses more input variables
(29 versus our 3), allowing for more degrees of freedom to train the model. Reid et al. [2015] also used a suite
of 11 sophisticated statistical models and selected the top performer, whereas we use only one regression
model. An advantage of our techniques is that they allow us to investigate the spatial dependence of
different input data sets, which may be more difficult with esoteric machine-learning techniques. While
machine-learning techniques do not require many different variables as predictors, Reid et al. [2015] used
a wide range of environmental variables as inputs to their model such as wind direction, planetary
boundary layer height, and distance to nearest fire, as well as land use and distance to highways. While we
expect some of these to be related to surface PM2.5 concentrations, many of these variables (boundary
layer height and U and V wind components) are not necessarily independent, and others (distance to
highway) do not have a clear physical explanation for their ability to predict wildfire smoke concentrations
(when all-source PM2.5 measurements are used as the training and evaluation data), which limits our
ability to gain a physical understanding of the results from these types of model. However, they do
produce highly accurate results, which, in the context of a health study, is the primary objective. As in our
study, they found that WRF-Chem simulation output was relatively uncorrelated with their best predictor
variable (GASP AOD).

3.3. Simulating Fewer Available Surface Measurements

For our case study, kriging interpolation of the in situ measurements produces better estimates of surface
PM2.5 than WRF-Chem and satellite observations. Furthermore, because of the disparity in performance

Figure 4. Geographically Weighted Regression (a) intercept and coefficients of (b) kriged surface PM2.5 measurements,
(c) WRF-Chem surface PM2.5 estimates, and (d) MODIS AOD. All coefficients have been converted to be dimensionless.
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between these three data sets, combining all three data sets in a regression model does not greatly improve
on the kriging estimate. However, not every region or time period has an extensive in situ monitor network as
Washington did during September 2012. In a more sparsely monitored region, satellite observations and
CTMs may contribute more to the blended estimate. We explored this with a sensitivity study by lowering
the number of monitors in Washington during September 2012.

We randomly selected between 12 and 212 (which corresponds to using all sites) surface monitors as inputs
to our analysis. We then used ordinary kriging of this subset of the measurements to produce an interpolated
estimate of PM2.5 concentrations. We evaluated this estimate with LOOCV as above, using the complete set of
measurements for the evaluation step. Finally, we used our kriged estimates as inputs to our GRR and GWR
calculations and evaluated those results as well. Because the location and number of observations from sites
vary, not all sites provide the same amount of information to the kriging estimate and the resulting GRR and
GWR estimates. To account for this, we repeated our analysis for a given number of sites included 100 times
(for a total of 200,000 iterations). We calculated R2, slope, and standard error statistics for each estimate and
plotted the mean value of each statistics across the 100 trials as a function of sites included, with shading to
represent between the 25th and 75th percentiles. The results are shown in Figure 5.

On average, the GWR performs best with respect to slope for any number of input monitors. Furthermore,
GWR achieves the highest R2 when fewer than 50 monitors (corresponding to 25% of total available
monitors) are input into the model. Kriging and GRR both achieve higher R2 values than GWR when
120 monitors (i.e., 60% of total available monitors) have been included in the estimates. With respect to
standard error, kriging performs best for any number of sites. However, all three models maintain a
STDE between 2.0 and 4.0μgm�3, which is small relative to the concentrations that are typically produced
by wildfire smoke.

Figure 5. R2, slope, and standard error (top) for kriging, (middle) Global Ridge Regression, and (bottom) Geographically
Weighted Regression models as a function of measurement site number included in the analysis. The shaded regions
represent 25th and 75th percentiles for each statistic from the 100 random trials.
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A limitation of this analysis is that we have not optimized any of these estimation strategies for the new num-
ber of in situ monitors. The kriging weights are calculated based on the semivariogram which produced the
best performance with all sites included. The purpose of the semivariogram is to capture the dependence of
physical semivariance (i.e., spatial autocorrelation) as a function of distance and should theoretically be
independent of the number of in situ monitors used to inform the model. In principle, the performance of
the kriging interpolation should not change significantly if we were to recalculate the optimal semivariogram
for each configuration of surface sites. However, we acknowledge that using the semivariogram determined
from all in situ measurements is not realistic for a sparsely monitored region, where the semivariogramwould
be based only on available measurements.

Likewise, the free parameter in the GRR estimate is α, which is adjusted depending on the degree of
multicollinearity of the system. We do not expect the multicollinearity of the system to change significantly
as surface monitors are removed from the system, so the previously calculated value should be sufficient.
However, because αwas tuned for a more extensively monitored region, the optimal choice of this parameter
value may be more challenging to determine in a more realistic analysis of a sparsely monitored wildfire.

In contrast, GWR has a bandwidth parameter, which is the spatial scale at which the GWR coefficients influ-
ence a given part of the domain. We expect the optimal bandwidth parameter to change as a function of
number and configuration of monitors, as clustering effects due to the spatial heterogeneity of measurement
locations become potentially important. Therefore, this analysis can be thought of as a “lower bound” for
GWR performance with fewer in situ measurement sites.

4. Conclusions

As wildfires become increasingly important for the air quality in the western U.S., there is a need to
understand the risk to human health posed by wildfire smoke. Wildfires generate steep smoke gradients,
which can be challenging for monitor networks to resolve. Furthermore, because smoke often impacts small
populations, exposure misclassification can make epidemiological studies of wildfire smoke challenging.

This study uses three common techniques (chemical-transport modeling, in situ measurements, and satellite
observations) to determine population-level exposure to air pollution in the context of the 2012 wildfire
event in Washington state. Of the three techniques, interpolating between in situ measurements has the
most predictive skill because (1) there was a dense network of measurements in this region for this time
period and (2) the smoke plumes had a broad spatial extent. While WRF-Chem and MODIS were both shown
to have some predictive skill in the central parts of the state, poor performance in the urban corridor near the
Puget Sound hampered the aggregated performance of both data sets.

We also investigated combining these three data sets into two regression models. For the first regression
model (GRR), we aggregate data from all measurement sites to train one set of regression coefficients.
Because the kriging data set produced estimates that outperformed the other two, this approach did not
improve over the kriging data set on its own. The second regression approach (GWR) trained a unique set
of coefficients for each in situ measurement site. These coefficients were then interpolated between sites
to allow for estimation of smoke far from any individual measurement site. This approach allowed the
regression model to use WRF-Chem and MODIS in regions where both data sets were shown to have skill,
while suppressing their influence in regions where they struggled. This approach was able to produce
marginal improvements over the GRR and the kriging-only approach.

Despite these improvements, wildfires still present challenges to exposure assessment, in large part due to
the rapid changes in smoke concentration. This is because narrow, concentrated plumes are difficult to
resolve, even with a relatively dense network of monitors. Therefore, accurate estimation of PM2.5 concentra-
tions depends on a well-modeled event and/or high-resolution satellite observations. In terms of how the
spikiness translates to different health outcomes, this is a major unknown and a major factor for why we
are doing this research.

Finally, we investigated the skill of these approaches in a scenario with fewer in situ measurements available
by withholding measurements from the analysis. As measurements become sparser, all three approaches
lose skill, but the GWR approach outperforms the other two approaches at extremely low numbers of
monitors, suggesting that this approach may be useful in less extensively monitored regions.
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