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Abstract Coccidioidomycosis (Valley fever) is a fungal disease endemic to the southwestern United
States. Across this region, temperature and precipitation influence the extent of the endemic region and
number of Valley fever cases. Climate projections for the western United States indicate that temperatures
will increase and precipitation patterns will shift, which may alter disease dynamics. We estimated the area
potentially endemic to Valley fever using a climate niche model derived from contemporary climate and
disease incidence data. We then used our model with projections of climate from Earth system models to
assess how endemic areas will change during the 21st century. By 2100 in a high warming scenario, our
model predicts that the area of climate‐limited endemicity will more than double, the number of affected
states will increase from 12 to 17, and the number of Valley fever cases will increase by 50%. The Valley fever
endemic region will expand north into dry western states, including Idaho, Wyoming, Montana, Nebraska,
South Dakota, and North Dakota. Precipitation will limit the disease from spreading into states farther
east and along the central and northern Pacific coast. This is the first quantitative estimate of how climate
change may influence Valley fever in the United States. Our predictive model of Valley fever endemicity may
provide guidance to public health officials to establish disease surveillance programs and design
mitigation efforts to limit the impacts of this disease.

Plain Language Summary Valley fever is a fungal disease most common in the southwestern
United States. Generally, the disease is limited to areas that are hot and dry. Climate change will cause the
western United States to become hotter and may change the location, timing, and amount of rain. This is
likely to change which counties are affected by Valley fever. We used climate observations to estimate which
counties in the United States have a higher risk for Valley fever. Then, we used predictions of future climate
to map which counties may become affected by Valley fever during the remainder of the 21st century. By
2100, our model predicts that the area affected by Valley fever will more than double and the number of
people who become sick will increase by 50%. The area affected by Valley fever will expand north into drier
states in the western US, including Idaho, Wyoming, Montana, Nebraska, South Dakota, and North Dakota.
Our estimatemayhelp public health officials developmore effective plans so less people suffer from this disease.

1. Introduction

Coccidioidomycosis, commonly known as Valley fever, is an infectious fungal disease that has gained
attention in the United States due to a recent increase in cases (Centers for Disease Control and
Prevention (CDC), 2018a). Humans contract Valley fever when they inhale Coccidioides spp. fungal spores.
At onset, symptoms of Valley fever closely resemble the flu, which may delay diagnosis (CDC, 2018b). If left
untreated, debilitating symptoms may occur, and on rare occasion may cause death. Valley fever is not a
communicable disease, so cases are a result of human exposure to Coccidioides spp. in the environment.

Coccidioides spp., and therefore Valley fever, is endemic to the southwestern United States and parts of
Central and South America (CDC, 2017). Currently, there are two known species of Coccidioides, both of
which cause Valley fever: C. immitis and C. posadasii (Lauer, 2017). C. immitis is thought to be the primary
species present in California, whileC. posadasii has a broader geographic distribution and is more commonly
found in the highly endemic areas of Arizona (Barker et al., 2019; Lauer, 2017). The fungi grow as hyphae
within desert soils (Stewart &Meyer, 1932). As such, Coccidioides spp. growth and abundance are influenced
by environmental conditions (Maddy, 1957). The fungi proliferate during wet periods. When water becomes
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limiting, Coccidioides spp. hyphae then break apart into spore‐containing fragments, small enough for
humans to inhale (Maddy, 1957). Any type of soil disturbance, like high winds or digging in dry soils, can
cause Coccidioides spp. spores to become airborne and potentially inhaled by humans. Many details about
the Coccidioides spp. life cycle and the microecosystem characteristics that structure its presence in soils
are unknown. As a consequence, environmental surveillance for the fungi has yielded relatively few soil
samples that have tested positive for Coccidioides spp.

Because the fungi have not been systematically mapped across the hypothesized endemic region, much of
our understanding of the relationships between environmental factors and Coccidioides spp. comes from
studying epidemiological data. On a regional scale, weather and climate are known to influence the seasonal
and interannual variability of disease incidence. Previous studies support a pattern of wet, then dry condi-
tions preceding increased Valley fever incidence across the southwestern United States (Comrie, 2005;
Coopersmith et al., 2017; Gorris et al., 2018; Kolivras & Comrie, 2003; Komatsu et al., 2003; Park et al.,
2005; Talamantes et al., 2007; Tamerius & Comrie, 2011; Zender & Talamantes, 2006). These dual controls
first increase fungal growth during periods of higher than normal moisture. Then, they increase spore pro-
duction and effective dispersal when hot temperatures and low rainfall desiccate soils and enhance the pro-
duction of dust. Time delays between drying and elevated levels of incidence are observed in the two highly
endemic regions, the San Joaquin Valley of California and south‐central Arizona, despite regional differ-
ences in the timing of precipitation (Gorris et al., 2018). On finer temporal and spatial scales, processes such
as soil disturbance, dust storms, and agricultural activity can also influence Valley fever incidence (Tong
et al., 2017; Wilken et al., 2015; Williams et al., 1979).

These connections between climatic conditions and disease dynamics suggest that on regional scales, climate
may also structure the environmental range of the fungi, and therefore, the spatial extent of Valley fever
endemicity (Baptista‐Rosas et al., 2007; Fisher et al., 2007). Two main climate conditions that regulate the
occurrence of Coccidioides spp. in the environment are temperature and precipitation (Baptista‐Rosas
et al., 2007; Fisher et al., 2007; Gorris et al., 2018). County‐level Valley fever case reports from 2000 to
2015 across five states in the southwestern United States revealed the spatial pattern of incidence has a non-
linear positive relationship with mean annual temperature and nonlinear inverse relationship with mean
annual precipitation (Gorris et al., 2018). Ultimately, these two climate conditions structure the presence
of deserts: the biome in which Coccidioides spp. thrives (Fisher et al., 2007; Maddy, 1957). High temperatures
may limit the growth of many microbial competitors, allowing Coccidioides spp. to more effectively compete
for soil resources (Barker et al., 2012; Greene et al., 2000). Low levels of precipitation in deserts may also limit
microbial competitors; however, occasional periods of high moisture availability are important for
Coccidioides spp. fungal growth and reproduction (Fisher et al., 2007; Maddy, 1957). In contrast, wet soils
in regions with high mean annual precipitation may limit dust production, spore dispersal, and thus human
exposure to Coccidioides spp. (Gorris et al., 2018).

There is also preliminary evidence from the few soil samples positive for Coccidioides ssp. that temperature
and precipitation may be important for structuring the spatial pattern of Valley fever endemicity. Most soil
samples positive for Coccidioides ssp. were collected from the Central Valley of California (Colson et al., 2017;
Lauer et al., 2012, 2014), south‐central Arizona (Barker et al., 2012), and Baja Mexico (Baptista‐Rosas et al.,
2012; Catalán‐Dibene et al., 2014; Vargas‐Gastélum et al., 2015)—all areas that are hot and dry. Nineteen soil
samples positive for Coccidioides ssp. and measures of both temperature and precipitation along with a large
suite of other bioclimatic variables were used in the first known statistical environmental niche model of
Coccidioides ssp. in northwestern Mexico and parts of the southwestern United States (Baptista‐Rosas
et al., 2007). This model identified the most likely habitat for Coccidioides spp. as the Lower Sonoran
Desert and successfully highlighted epidemiological hotspots of Valley fever in the Central Valley of
California and south‐central Arizona. However, the niche model derived from this set of observations cannot
fully explain the current spatial pattern of Valley fever cases (CDC, 2018b). This may be a consequence of the
relatively small number of soil samples used to initialize the model. Until soils are systematically sampled
across the western United States, epidemiological data may provide a more robust way of delineating the
effects of temperature and precipitation on the regions endemic for Valley fever.

Climate change is increasing temperatures and shifting precipitation patterns throughout the United States.
These changes could alter the regions endemic to Valley fever, as well as the number of Valley fever cases.
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Temperatures in the contiguous United States are expected to increase by 1.6–6.6°C by 2100 (relative to
1986–2015) under a high greenhouse gas emissions scenario, representative concentration pathway 8.5
(RCP8.5; Hayhoe et al., 2018). This warming may allow Coccidioides spp. to expand its geographical range
farther north, in areas previously unsuitable for the species to survive. Precipitation projections are more
uncertain for the western United States, and changes will likely vary by region and season (Easterling
et al., 2017; Hayhoe et al., 2018; Swain et al., 2018). Along the Pacific coast, especially in the Pacific
Northwest, mean annual precipitation is projected to increase (Easterling et al., 2017; Hayhoe et al., 2018).
In contrast, the southwestern United States will likely experience little to no change in precipitation, while
the southern Great Plains may become drier. In dry areas, increasing temperatures will likely increase eva-
porative demand, which may contribute to desertification. The expansion of dryland ecosystems may
increase the area suitable for the occurrence of Coccidioides spp., along with the production of dust and
fungal spores.

To predict how climate change may influence the spatial pattern of Valley fever in the future, it is important
to have an accurate map of the current endemic area. The basis of the U.S. Centers for Disease Control and
Prevention (CDC) estimate of endemic areas is a historical skin test study of approximately 88,000 young
men at a Naval Training Center in San Diego, CA, from 1948 to 1950 that detected exposure to
Coccidioides spp. (CDC, 2018b; Edwards & Palmer, 1957). Since the original study, the endemicity map
has been modified to account for localized outbreaks of Valley fever (Marsden‐Haug et al., 2012; Petersen
et al., 2004; Werner et al., 1972; Werner & Pappagianis, 1973). One outbreak caused by C. immitis occurred
in Washington State, well outside its normal geographical range in the Central Valley of California and out-
side the hypothesized endemic region of Valley fever throughout the southwestern United States (Litvintseva
et al., 2014; Marsden‐Haug et al., 2012).

More recently, a county‐level map of mean annual Valley fever incidence derived from 16 years of epidemio-
logical data collected from state health agencies provided an independent way to estimate endemic areas
(Gorris et al., 2018). This incidence database has not been used with niche modeling to explore the spatial
pattern of disease. Valley fever case reports alone may be an underestimate of the actual burden of disease
due to misdiagnosis, underreporting, or other host factors (Ampel, 2010; Chang et al., 2008; Jones et al.,
2017). Despite this limitation, further analysis of epidemiological data may provide a means to better esti-
mate where Valley fever is currently endemic. This could allow public health agencies to improve surveil-
lance programs and help decrease the time to patient diagnosis. The incidence database also provides a
starting point for predicting how climate change will modify the location and extent of endemic areas.

The goal of our work was to create a model that describes the area in the United States currently endemic to
Valley fever and then to use this model to predict how the endemic area may shift in response to climate
change. First, we used established relationships between climate and the spatial distribution of Valley fever
incidence to create a climate‐constrained niche model that predicts the contemporary pattern of Valley fever
endemicity. Then, we used our niche model with climate projections from Earth system models to analyze
where the climate limits are lifted in the future, potentially allowing the area to become endemic to Valley
fever. A secondary goal of our work is to estimate future Valley fever incidence and the number of people
who may contract this disease. We report future estimates of the endemic area and potential changes in inci-
dence for the years 2035, 2065, and 2095 under both moderate and high climate warming scenarios. We also
examine the compounding effect of climate change and increases in human population on the number of
people living in the endemic region and number of potential Valley fever cases. This is the first quantitative
projection for the United States of how climate change may affect Valley fever. Our predictive model of the
endemic area to Valley fever and estimate of future disease burden may provide guidance to public health
officials as to where increased Valley fever surveillance and education may improve health outcomes.

2. Methods
2.1. Valley Fever Incidence Data

To create our models of endemic area and incidence, we used a previously compiled data set of Valley fever
cases for the southwestern United States (Gorris et al., 2018). This data set included monthly, county‐level
Valley fever cases from 2000 to 2015 from Arizona, California, Nevada, New Mexico, and Utah. We calcu-
lated Valley fever incidence for each county using 2000–2015 intercensal population estimates from the
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U.S. Census Bureau (U.S. Census Bureau, 2011, 2016). We performed our
analysis at the county‐level, which was the highest resolution available
from the state health agencies for the deidentified, aggregated case data.

2.2. Current and Future Projections of Climate

We focused our analyses on two main climate drivers that influence the
presence of Coccidioides ssp. in the environment: temperature and
precipitation. We gathered surface air temperature and surface precipita-
tion data for years 2000–2015 to compare directly with Valley fever inci-
dence. For both climate variables, we used 4‐km gridded products from
the Precipitation‐elevation Regressions on Independent Slopes Model
(PRISM; Daly et al., 2008). To compare county‐level Valley fever incidence
data with climate data, we calculated county‐level climate averages by
spatially averaging the gridded PRISM climate data within each county
using QGIS (https://www.qgis.org). We obtained county shapefiles from
the U.S. Census Bureau (https://www.census.gov/geo/maps‐data/data/
tiger‐line.html).

In previous work, we found a significant, positive nonlinear relationship
between county‐level mean annual temperature and Valley fever incidence,
and a significant, nonlinear inverse relationship between mean annual pre-
cipitation and incidence throughout the southwestern United States
(Figures 1a and 1b; Gorris et al., 2018).We previously analyzed a suite of cli-
mate variables and found that mean annual temperature, precipitation, soil
moisture, surface dust concentration, and county cropland area had signifi-
cant relationships with the spatial distribution of Valley fever incidence in
the southwestern United States (Gorris et al., 2018). We chose to use preci-
pitation here instead of soil moisture for mapping the spatial extent of
Valley fever because of large model‐to‐model differences in the representa-
tion of the processes regulating soil moisture content in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) models. We did not include dust
or cropland area because of the ineffectiveness of these variables in con-
straining Valley fever endemic areas at the continental scale of the contigu-
ous United States (data not shown). Analysis of these data shows that
counties with higher levels of mean annual Valley fever incidence have a
hot and dry contemporary climate (Figure 1c).

For future climate projections, we used output of monthly surface air tem-
perature (variable “tas”) and surface precipitation (variable “pr”) from 30
Earth system models from the Bias‐Corrected Spatially Downscaled
CMIP5 Climate Projections archive (Table S1 in the supporting informa-
tion; available at https://gdo‐dcp.ucllnl.org/downscaled_cmip_projec-
tions/; Maurer et al., 2007; Reclamation, 2013). The CMIP5 model
simulations were used extensively in the Intergovernmental Panel on
Climate Change 5th Assessment Report (Stocker et al., 2013; Taylor et al.,
2012). We analyzed data for RCP4.5, a moderate fossil fuel emissions and
warming scenario in which emissions peak in the mid‐21st century and
decrease thereafter, and RCP8.5, a high fossil fuel emissions and warming
scenario inwhich emissions increase continuously through the 21st century
(Moss et al., 2010). We calculated a mean annual temperature for our ana-
lyses by averaging the raw, gridded monthly temperatures, and we calcu-
lated a mean annual precipitation by taking the sum of monthly
precipitation for each year, separately for each of the 30 models.

To estimate future climate, we combined information from the CMIP5 simulations with contemporary
climate observations from PRISM. We first selected a baseline period of 2007 (averaging across the years

Figure 1. Valley fever incidence for counties in the southwestern United
States (n = 152) as a function of (a) mean annual temperature and
(b) mean annual precipitation. All counties that have endemic levels of
Valley fever incidence (defined as meeting or exceeding 10 or more cases per
100,000 population per year during 2000–2015; n = 23) have a mean
annual temperature greater than or equal to 10.7°C and a mean annual
precipitation level less than or equal to 600 mm/year. (c) Counties with
higher levels of mean annual Valley fever incidence are concurrently hotter
and drier. We adapted panels a and b of this figure from Gorris et al. (2018)
and added the gray lines to indicate the position of the climate thresholds
we used to build our climate‐constrained niche model.
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2000–2015) to match the period of available Valley fever case data. We averaged the raw, gridded CMIP5 out-
put to calculate future mean annual temperature and precipitation for 2035 (the average of years 2030–2040),
2065 (the average of years 2060–2070), and 2095 (the average of years 2090–2100). We used 11‐year averages
to reduce (but not eliminate) the uncertainty associated with low‐frequency internal variability that can
make it difficult to detect or quantify trends from anthropogenic forcing (Deser et al., 2012). Next, we spa-
tially averaged these climate projections to the county‐level. We then calculated climate anomalies as the dif-
ference between each of these future time periods and our baseline period for each county, separately for
each CMIP5 model. For mean annual temperature, we calculated the absolute difference between our base-
line and each future time period. For mean annual precipitation, we calculated the percent change between
the baseline and each future time period. We created climate projections by adding the CMIP5 climate
anomalies to our 2007 baseline PRISM data. We averaged the climate anomalies from the 30 CMIP5 simula-
tions to create a multimodel mean climate projection that we added to our 2007 baseline PRISM data; we
used this multimodel mean to create our main projections of Valley fever endemicity.

To provide an estimate of the uncertainty in our multimodel mean, we calculated the standard deviation
across the 30 CMIP5 simulations for each Valley fever statistic. As another measure of climate projection
uncertainty, we report individual model projections of the number of counties endemic to Valley fever in
2095 for both RCP4.5 and RCP8.5 climate scenarios in Table S1. We further used the individual CMIP5 simu-
lations to quantify the level of agreement among models that each county will become endemic to Valley
fever for both the RCP4.5 and RCP8.5 scenarios and report this uncertainty metric as a map.

Our climate projections show the highest warming in the north‐central contiguous United States and rela-
tively high levels of warming throughout the northern United States and Rocky Mountains (Figures 2a–2c
and S1 in the supporting information). Mean annual temperatures are predicted to increase for the RCP8.5
climate scenario by 3.1 to 6.0°C by the end of the 21st century. Mean annual precipitation is predicted to
increase across the Pacific Northwest and in the eastern United States but decrease in the south‐central
and southwestern United States (Figures 2d–2f and S2). Both the increase in temperature and changes in pre-
cipitation are larger for the RCP8.5 climate scenario than for the RCP4.5 climate scenario (Figures S1 and S2).

2.3. Climate Niche Modeling of Current and Future Valley Fever Endemic Regions

We used the observed relationships between mean annual Valley fever incidence and both mean annual
temperature and precipitation to map regions endemic to Valley fever. First, we selected a minimum level
of mean annual Valley fever incidence (averaged from 2000 to 2015) to designate that a county was endemic
by comparing our Valley fever incidence data against the CDC endemicity map. We found that there were
large variations in the mean annual incidence between the three CDC definitions of endemicity: counties
considered “highly” endemic by the CDC had mean annual Valley fever incidence between 21.3 and 158.4
cases per 100,000 population per year. Counties considered “established” endemic had between 0.7 and
94.5 cases per 100,000 population per year. Counties considered “suspected” endemic had between 0.0 and
31.8 cases per 100,000 population per year.

Taking these large variations into account, we selected a conservative level of mean annual incidence to
define a county as endemic, which we defined as meeting or exceeding 10 cases per 100,000 population
per year. This definition included all the counties the CDC defined as “highly” endemic (5/5), over half
the counties the CDC described as “established” endemic (16/28), and one county the CDC described as “sus-
pected” endemic (1/44; San Luis Obispo, CA; mean annual incidence of 31.8 cases per 100,000 population
per year).

Then, we examined the mean annual temperature and precipitation for the counties we defined as endemic.
For temperature, all of the counties we defined as endemic have a mean annual temperature above 10.7°C
(Figure 1a). For precipitation, all of the counties we defined as endemic have mean annual precipitation less
than 600 mm/year (Figure 1b). We used these two thresholds together to create a climate‐constrained niche
model, which describe the climate necessary for Valley fever endemicity. Our niche model identifies a county
as endemic if that county has both a mean annual temperature greater than or equal to 10.7°C and mean
annual precipitation less than or equal to 600 mm/year (Figure 1c).

We applied our climate‐constrained niche model to the entire United States to estimate the areas which
may currently be endemic to Valley fever. Then, we used our climate projections for both the RCP4.5
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and RCP8.5 scenarios as input to estimate the areas that may become endemic to Valley fever in years 2035,
2065, and 2095.

We attempted different optimizations of our incidence and climate thresholds to improve the accuracy of our
map in comparison to the CDC map. When we apply our climate‐constrained niche model to the United
States, we acknowledge that there may be differences between the area we defined as endemic and the area
the CDC defines as endemic since the basis for the CDC map is over 65 years old (Edwards & Palmer, 1957).
Moreover, Valley fever incidence varies widely for counties within each of the three classes of endemicity
defined by the CDC.

As a sensitivity analysis to complement our climate‐constrained niche model, we ran the ecological niche
model Maxent (R package “dismo” version 1.1‐4 and Maxent version 3.3.3k; Phillips et al., 2006). We trained
our model by defining occurrence points as the counties that met our definition of endemicity (10 cases per
100,000 population per year; n = 23). All other counties were considered background points (n = 3085). We
ran our models with default configurations, so all feature types were possible. We ran two scenarios with
Maxent: one with the PRISM baseline mean annual temperature and mean annual precipitation as explana-
tory variables and a second with the PRISM mean January temperature, mean July temperature, and mean
annual precipitation as explanatory variables. The output of Maxent is a relative environmental suitability

Figure 2. Representative concentration pathway (RCP) 8.5 climate projections indicate warming throughout the contiguous United States with the highest levels
occurring in northern states (a–c). Changes in precipitation will vary by region (d–f). RCP8.5 projections indicate drying in the southwestern United States and
south‐central Great Plains and wetting across the Pacific Northwest and eastern United States. The difference panels (c and f) are the difference between the 2095
and 2007 maps for each climate variable.
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measure, ranging from 0 to 1, where 1 describes an environment most similar to the training data set. To
identify a county‐level endemicity threshold, we optimized the environmental suitability variable to attain
the highest accuracy when compared to the CDC endemicity map (comprised of all three CDC endemicity
classes; Table S2). Counties at or above this suitability threshold were considered endemic. After this optimi-
zation, the two‐variable Maxent model has an accuracy of 96.3% and the three‐variable Maxent model has an
accuracy of 96.8%. As described below, we compared the areas identified as endemic to Valley fever by our
climate‐constrained niche model to the more conservative predictions from the Maxent models as a sensitiv-
ity analysis and report the results in Table S2.

2.4. Modeling of Current and Future Mean Annual Valley Fever Incidence

We estimated an upper bound of current and future for counties our climate‐constrained niche model
defined as endemic. To do so, we applied a multiple linear quantile regression using iterative reweighted
least squares for the 90th percentile using the observed relationships between mean annual Valley fever inci-
dence (VFI) and mean annual temperature (T) and precipitation (P) for the endemic counties (red and blue
colored counties in Figure 1, n = 78).

VFI ¼ β1T þ β2P

VFI ¼ 6:57ð ÞT þ −0:12ð ÞP

Our model had a pseudo r‐square (not analogous to ordinary least squares r‐square) value of 0.29 describing
the local fit for our baseline period. We chose to report the 90th percentile estimate as an indicator of poten-
tial Valley fever incidence, recognizing that there is a wide spread in the incidence among counties that met
our climate‐constrained niche model thresholds (Figure 1). Some of this spread may be caused by fine‐scale
variations in agriculture, dust storms, health care infrastructure, epidemiological reporting, and other nat-
ural and socioeconomical factors known to influence Coccidioides spp. abundance and disease incidence
(Gorris et al., 2018; Louie et al., 1999; Tong et al., 2017; Williams et al., 1979). Following a similar approach
to our endemicity analysis, we used the climate projections from CMIP5 to estimate future changes in poten-
tial Valley fever incidence.

2.5. Projections of Human Population

To isolate the effects that climate change alone may have on the number of people who contract Valley fever,
in our main analysis we assumed an invariant human population in the United States. However, United
States population is projected to increase throughout the 21st century (Hauer, 2019), whichmay expose more
people to Coccidioides ssp. and lead to more Valley fever cases. To estimate the combined effect of both cli-
mate change and increasing population, we used future projections of human population from the shared
socioeconomic pathways (SSPs; Hauer, 2019) to calculate future population levels within the Valley fever
endemic region. The county‐level human population projections we used take into account age, sex, and race
and were specifically tailored for the United States (Hauer, 2019).

The SSPs describe how socioeconomic factors such as population, economic growth, and technological devel-
opment evolve in the absence of climate change or climate policy (O'Neill et al., 2014). We used both SSP2, a
scenario in which there is moderate population growth in the United States throughout the 21st century, and
SSP5, a scenario in which there is large population growth (O'Neill et al., 2014). Our 2007 (mean of years
2000–2015) baseline United States population is 300 M (U.S. Census Bureau, 2011, 2016). By 2095, SSP2 pro-
jects the total United States population to be 454 M and SSP5 projects it to be 690 M (Hauer, 2019). We exam-
ined each SSP population scenario in combination with the RCP4.5 and RCP8.5 climate scenarios.

3. Results
3.1. Estimating the Current Spatial Extent of Valley Fever Endemicity

We used our climate‐constrained niche model to map counties potentially endemic to Valley fever for the
2007 baseline period (mean of years 2000–2015; Figure 3a). Counties where mean annual temperature and
mean annual precipitation are suitable for Valley fever endemicity are shown in magenta. Counties with sui-
table temperature but unsuitable precipitation are shown in red. Likewise, counties with suitable precipita-
tion but unsuitable temperature are shown in blue. Counties where both temperature and precipitation are
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unfavorable are shown in white. This analysis reveals that precipitation limits the area endemic to Valley
fever to the north along the coast of the Pacific Northwest and to the east across eastern Texas, Oklahoma,
and Kansas, whereas temperature limits the northern range of Valley fever endemicity in many interior
western states.

Using our climate niche model, we estimate that 217 counties may currently be endemic to Valley fever.
These counties span 12 states—Arizona, California, Colorado, Idaho, Kansas, Nebraska, Nevada, New
Mexico, Oklahoma, Texas, Utah, andWashington State. Using the 2007 baseline county population estimate,
approximately 47.5 M people live within this endemic region (U.S. Census Bureau, 2016).

Figure 3. (a) Counties our climate‐constrained niche model identify as endemic (with a mean annual temperature greater
than or equal to 10.7°C and a mean annual precipitation level less than or equal to 600 mm/year) are colored in magenta.
(b) There is reasonable agreement between this set of counties and the endemic region identified by the CDC. Counties
shown in red in panel a have a mean annual temperature greater than or equal to 10.7°C but unsuitable mean annual
precipitation (greater than 600 mm/year). Counties shown in blue have a mean annual precipitation level less than or
equal to 600 mm/year but unsuitable mean annual temperature (less than 10.7°C). Counties in white our model defines as
unsuitable according to both thresholds.
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The niche model predicts a spatial pattern of endemicity that is broadly similar to the map produced by the
CDC but with several notable differences (Figure 3b). Of the 170 counties identified by the CDC as endemic,
the niche model classifies 110 counties as potentially endemic. Of the 60 counties not classified as endemic
by our model but identified by the CDC, many are located in southwestern Utah, northwestern New
Mexico, and southcentral Texas. Compared to the CDC map, our model also omits a few counties that pre-
viously experienced localized outbreaks of Valley fever. These outbreaks include cases contracted in
Dinosaur National Monument and Duchesne County in Utah (Petersen et al., 2004), where Coccidioides
spp. is thought to survive in isolated areas with high soil temperatures, and cases associated with
archeological sites in northern California in Tehama and Butte Counties (Werner et al., 1972; Werner &
Pappagianis, 1973).

Our niche model predicts 107 counties as endemic that the CDC model did not identify as endemic. The
niche model predicts that endemic areas extend farther north throughout the Great Plains and Central
Valley of California. These areas include several states that are absent from the CDC map, including
Colorado, Idaho, Kansas, Nebraska, and Oklahoma. The model identifies the two most populous counties
in Idaho–Ada and Canyon County–as potentially endemic, including the city of Boise (U.S. Census
Bureau, 2016).

One striking similarity between our model estimate and the CDC map is the identification of endemicity in
three counties in southeastern Washington State, originally thought to be well outside the endemic region.
These counties were recently added to the CDC map after an outbreak of Valley fever cases was reported
from 2010–2011 (Marsden‐Haug et al., 2012). Since then, C. immits has been extracted from Washington
State soils (Litvintseva et al., 2014).

Considering the CDC endemic map as truth, our model identifies 2,831 counties in the United States as true
negatives (TN; nonendemic), 110 counties as true positive (TP; endemic), 107 counties as false positives, and
60 counties as false negatives (FN). This corresponds to a 94.6% accuracy rate ([TP+TN]/total) for predicting
endemic counties in the United States (a 5.4% error rate) and a 64.7% recall rate (TP/[TP+FN]).

The Maxent ecological niche models that we ran as a sensitivity analysis produces similar, but more conser-
vative patterns of contemporary endemicity when compared to our climate‐constrained niche model. Both
the two‐variable and three‐variable Maxent models have higher accuracy rates (96.3% and 96.8%, respec-
tively; Table S2). However, the two‐variable Maxent model considerably underestimates the number of ende-
mic counties compared to the CDC map, with a 37.6% recall rate; it yields more false negatives (106) and
fewer true positives (64) when compared to the climate‐constrained niche model. The relative contributions
of the environmental variables in the two‐variable Maxent model are 80% for mean annual precipitation and
20% for mean annual temperature, highlighting the importance of precipitation in structuring contemporary
areas of endemicity. The three‐variable Maxent model performs better than the two‐variable Maxent model
but again yields more false negatives (79) and fewer true positives (91) compared to the climate‐constrained
niche model. The relative contributions of variables in the three‐variable model are 75% for mean annual
precipitation, 25% for mean annual January temperature, and less than 0.1% for mean annual July tempera-
ture, which again demonstrates the importance of precipitation and suggests that winter temperatures may
be more important than summer temperatures in structuring the spatial pattern of endemicity.

Overall, our simple, two‐variable climate‐constrained niche model provides a reasonable regional‐scale
depiction of the area endemic to Valley fever. Other factors such as soil characteristics and competition
among microorganisms may further refine where Coccidioides spp. is present on finer spatial scales.
Additionally, Coccidioides spp. may be able to adapt to different soil environments (Colson et al., 2017).
Recognizing that many additional processes contribute to Coccidioides spp. abundance and disease dynamics
at finer spatial scales, our model may enable preliminary exploration of climate change impacts on areas
affected by Valley fever throughout the 21st century.

3.2. Estimating the Future Spatial Extent of Valley Fever Endemic Regions

We applied our climate‐constrained niche model to identify counties that may become endemic to Valley
fever in the future for the moderate (RCP4.5) and high (RCP8.5) climate warming scenarios. Over time,
the area of climate‐constrained endemicity is predicted to expand northward, most notably throughout the
Great Plains and in the rain shadows of the Sierra Nevada and Rocky Mountain Ranges (Figures 4 and
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Figure 4. For the representative concentration pathway (RCP) 8.5 climate change scenario, areas where climate will
permit Valley fever endemicity are shown for the years (a) 2035, (b) 2065, and (c) 2095. Areas where mean annual
temperature will permit endemicity are shown in red, areas where mean annual precipitation will permit endemicity
are shown in blue, and areas where both temperature and precipitation will permit endemicity are shown in magenta,
following the color scheme used in Figure 3. The area endemic to Valley fever will extend farther north in future
decades, especially in the rain shadows of the Sierra Nevada and Rocky Mountain Ranges. Precipitation will play a key
role in determining which areas become endemic through time, as greater rainfall and moisture availability will
limit the eastward extent of Valley fever as well as its presence in the Pacific Northwest and in western counties at
higher elevations.
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S3). For the high climate warming scenario (RCP8.5), the model predicts that by the end of the 21st century,
the area endemic to Valley fever will more than double (a 113% increase), the number of states with Valley
fever endemicity will increase from 12 to 17, the number of counties with endemicity will increase from 217
to 476, and the number of people living within the endemic region will increase by 17% (Figure 5). The
smaller relative change in human exposure compared to endemic area is caused by increases in
endemicity in many western counties that have relatively low population (and follows our assumption
here of an invariant population). For the moderate climate warming scenario (RCP4.5), the model predicts
that by the end of the century the expansion of Valley fever endemic area will be considerably smaller
than for the RCP8.5 scenario, increasing by only about 46% (Figures S3 and 5a). Other Valley fever disease
metrics also change more slowly for RCP4.5 (Figures 5b–5e). The contrast between the two scenarios
highlights the importance of climate change mitigation as a means for limiting the health impacts of
Valley fever, especially for more northern states (Table S3).

By 2035 for RCP8.5, we predict the climate‐constrained range of Valley fever will expand into northern Utah
and eastern Colorado. By 2065, southern Idaho, Nebraska, southeastern Montana, and South Dakota will
become endemic, and by 2095, Valley fever will enter North Dakota and move farther north in Montana.
The Valley fever endemic region will expand northward in dry western states primarily as a consequence
of warming that pushes mean annual temperatures above the temperature threshold required for disease
establishment. From our baseline time period to 2095 for RCP8.5, 242 counties will become endemic to
Valley fever because of warming above the temperature threshold, 20 counties will become endemic because
of drying below the precipitation threshold, and 3 counties will become unsuitable for endemicity because of
increases in precipitation.

Precipitation has a key role in determining whether a county becomes endemic in the future. By 2095 for
RCP8.5, most of the western United States will have a climate that permits Valley fever endemicity, except
for counties near the central and northern Pacific Coast and counties at higher elevations in mountain
ranges. Northern California, western Oregon, and western Washington State will meet the mean annual
temperature threshold yet will be shielded from becoming endemic because of high levels of precipitation.
The eastward extent of the climate‐constrained endemic range across the Great Plains is also limited for con-
temporary and future periods by precipitation, with a sustained north‐south barrier occurring near the 100°
W meridian. This axis corresponds to a zonal atmospheric water vapor gradient where dry, continental air
from the southwestern United States meets moist, warm maritime air from the Gulf of Mexico, creating a
sharp increase in moisture availability to the east (Lin, 2007).

We calculated the percent of the individual CMIP5model simulations that are in agreement that each county
will have a climate that permits Valley fever endemicity for the RCP4.5 and RCP8.5 scenarios. There is strong
model agreement across the majority of the projected endemic region (Figures 6 and S4). By 2095 for RCP8.5,
some models predict that Valley fever will be endemic farther east throughout the Central Plains, even into
Minnesota. However, there is still a clear climate control on the eastern boundary of endemicity driven by
the moisture gradient along the 100°W meridian. There is also strong agreement that several high elevation
counties within the Rocky Mountains, as well as counties along the northern Pacific Coast, will remain out-
side the zone of endemicity.

As a sensitivity analysis, we ran projections of our Maxent ecological niche models for RCP8.5. Both the
two‐variable and three‐variable Maxent models also predict an expansion of areas endemic to Valley fever
along the leeside of the Rocky Mountains and in the dry inland areas of the Pacific Northwest including
southeastern Washington State. By 2095 for RCP8.5, the two‐variable Maxent model identifies that 15 states
will have a climate that permits endemicity and the three‐variable Maxent model identifies 14 states (Table
S2). We calculated the relative change in the population living within the Valley fever endemic area to com-
pare across models, not considering changes in human population. Our climate‐constrained threshold
model predicts that the population living within the Valley fever endemic area will increase by 6% in year
2035, by 16% in 2065, and by 17% in 2095. Similarly, the two‐variable Maxent model predicts a 5% increase
in 2035, a 12% increase in 2065, and an 18% increase by 2095. Projections using the three‐variable Maxent
model show similar changes and yield a 16% increase in the population living within the Valley fever ende-
mic area by 2095. Although the Maxent models are more conservative in estimating the area endemic to
Valley fever for the contemporary period, the projected pattern of Valley fever expansion is broadly
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consistent across all three models. The three‐variable Maxent model that includes both January and July
mean annual temperatures as explanatory variables allows us to better represent biological limits on the
fitness of Coccidioides spp. to inhabit regions that experience exceptionally cold winters or hot summers.
This more complex model still yields a pattern of future expansion that is similar to the simpler models
that use mean annual climate variables.

Figure 5. Time series of change in (a) the total area potentially endemic to Valley fever, (b) the number of endemic states,
(c) the number of endemic counties, (d) the number of people living within endemic regions, and (e) the estimated
number of annual cases from 2007 to 2095 for both representative concentration pathway (RCP) 8.5 and RCP4.5 climate
scenarios. The shaded areas are the standard deviation describing variation among the 30 CoupledModel Intercomparison
Project Phase 5 (CMIP5) Earth system models used in our analyses.

10.1029/2019GH000209GeoHealth

GORRIS ET AL. 319



Figure 6. There is strong model agreement throughout the majority of the area we estimate as endemic to Valley fever
for the RCP8.5 climate scenario in years (a) 2035, (b) 2065, and (c) 2095. The model agreement shows a measure of
uncertainty for the counties along the edge of the endemic area. Some models predict that the endemic range in 2095 will
expand into counties as far east as western Minnesota. Percent model agreement was calculated as the number of
individual CMIP5 models that predict the county will have a climate that permits endemicity, divided by the total number
of models (n = 30), as projected by the climate‐constrained niche model.
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3.3. Estimating Current and Future Mean Annual Valley
Fever Incidence

We estimated an upper bound of Valley fever incidence by performing
quantile regression on observed Valley fever incidence and mean annual
temperature and precipitation (Figure 7). For our baseline period, our
model predicts that mean annual Valley fever incidence is likely to be
greatest in the extreme southwestern United States and southwestern
Texas (Figure 7). The model also predicts high incidence in the Central
Valley of California. For the baseline period, our model predicts up to
34,460 potential cases of Valley fever within Arizona, California,
Nevada, New Mexico, and Utah, compared to approximately 9,500
observed cases per year (CDC, 2018a).

We then applied our quantile regression model to future climate projec-
tions for both RCP4.5 and RCP8.5. Our model predicts that Valley fever
incidence will increase over time throughout the extreme southwestern
United States, southern Great Plains, Central Valley of California, and
the northwestern United States (Figures 7 and S5). Using our baseline
(invariant) human population estimates, we transformed incidence pro-
jections into the number of Valley fever cases (Figure 5e). The number
of potential cases each year for RCP8.5 is projected to increase by 12% in
the year 2035 and by 50% in the year 2095.

3.4. Compounding effects of climate change and human
population projections on Valley fever

Increasing United States population will compound disease impacts
caused by climate change. By 2095 for RCP8.5 assuming an invariant
population, we estimate that the number of people living in the Valley
fever endemic area will be 55.5 M (Table 1). When we account for both cli-
mate change and increasing population, this number increases by 32%
(73.2 M) for the SSP2 population scenario and by 44% (80.1 M) for the
SSP5 population scenario. In concert, the number of potential Valley fever
cases will increase by the same percent. The compounding effect between
climate change and increasing population in the dry southwestern United
States highlights the importance of developing more effective approaches
for measuring and modeling geospatial patterns of Coccidioides spp. abun-
dance and disease risk.

4. Discussion
4.1. Biogeography of Valley Fever Expansion

Our analysis identifies that a primary pathway for Valley fever expansion
lies in the rain shadow of the RockyMountains. By the end of the 21st cen-
tury, the climate‐constrained area endemic to Valley fever will extend
from the southern through the northern Great Plains. This is a predomi-
nant region for agriculture, which has a positive correlation with Valley
fever incidence (Gorris et al., 2018). Further, climate projections indicate
that this region will experience an increased risk of drought (Cook et al.,
2015). Together, intensifying drought and agriculture may increase the
amount of dust loading and thus human exposure to Coccidioides spp. It
is notable in this context that the Valley fever expansion pathway pre-
dicted by our model is through areas affected by the 1930s Dust Bowl
(Burnette & Stahle, 2013).

Not all states throughout the Great Plains are required to report Valley
fever cases, which may limit our ability to monitor the potential spread of

Figure 7. We estimated an upper bound of future Valley fever incidence
using a 90th percentile regression model for (a) our 2007 baseline period,
(b) 2035, (c) 2065, and (d) 2095 for representative concentration pathway
(RCP) 8.5. Over time, our model predicts Valley fever incidence will increase
throughout the extreme southwestern US and the southern Great Plains.
Incidence will also increase throughout the Central Valley of California and
in the northwestern United States.

10.1029/2019GH000209GeoHealth

GORRIS ET AL. 321



this disease. States in the Great Plains that do report have had minimal
cases in recent years (CDC, 2019). There is plausible evidence, however,
that Coccidioides spp. inhabited this region before. Two buffalo that were
radiocarbon dated to be 8500 years old, collected near Milburn, Custer
County, Nebraska, showed signs of a fungal infection consistent with
Valley fever; the buffalo may have migrated through endemic regions in
the south before meeting their demise in Nebraska, or alternatively, the
central Great Plains was an endemic region in the past (Morrow, 2006).

4.2. Increasing Costs of Valley Fever for Human Health

We expect the total number of Valley fever cases and subsequently total
cost of disease will increase in concert with the expanding endemic area.
Roughly 45% of people with Valley fever are hospitalized (Sondermeyer

et al., 2013; Tsang et al., 2010). The estimated median total hospital charge per person in California from
2000–2011 was $55,000 (assuming 2011 USD; Sondermeyer et al., 2013). Based upon this hospitalization rate,
the median total hospital charges (about $58,000 in 2015 USD), and the number of observed cases from 2000 to
2015 (149,286 cases), we estimate that total hospitalization costs are about $244 M per year (2015 USD) for our
baseline period. Based on our predicted changes in the relative number of Valley fever cases (and assuming no
change in human population), we estimate that hospitalization costs due to climate change alone for the
RCP8.5 scenario will rise to $274 M per year in 2035, $326 M per year in 2065, and $365 M per year in 2095
(2015 USD). These estimates do not include other costs associated with outpatient care and medications,
missed days of work, or childcare (Colby & Ortman, 2014; Sondermeyer et al., 2013; Tsang et al., 2010), nor
do they account for the compounding effects of future changes in United States population described above.

4.3. Improving Future Projections and Sources of Uncertainty

Our derived maps of Valley fever endemicity in 2035, 2065, and 2095 describe the disease range constrained
solely by future climate. For these areas to become endemic, however, Coccidioides spp. needs to physically
move into these new areas. This migration may be accomplished by the atmospheric transport of fungal
spores in dust or by migration of infected animals, such as rodents (Taylor & Barker, 2019). To reduce uncer-
tainties regarding rates of spread, more work is needed to systematically map the presence of Coccidioides
spp. in both soils and atmospheric dust throughout the western United States.

Our map of the area currently endemic to Valley fever may be helpful in the design of future sampling cam-
paigns to gather occurrence data of Coccidioides spp. Once the presence of Coccidioides spp. in soils has been
systematically mapped, we will be able to build a spatially explicit environmental niche model for
Coccidioides ssp. directly from environmental surveillance data instead of epidemiological case reports
(Miller, 2010; Peterson, 2006) and use this model to determine the response of the fungi to climate change
(e.g., Escobar et al., 2016; Romero‐Alvarez et al., 2017). As more positive occurrences of Coccidioides spp.
in the soil are obtained, it will become increasingly critical to simultaneously measure soil properties such
as alkalinity, pH, salinity, soil type, soil texture, along with the diversity and presence of other soil microbes
to further refine the environmental controls on fungal presence and abundance. High‐resolution occurrence
maps could also help disentangle controls on disease incidence arising from different Coccidioides species
(Baptista‐Rosas et al., 2007; Colson et al., 2017; Lauer, 2017) as well as the impacts of heterogeneity in eleva-
tion and climate conditions within each county, especially for large counties throughout the western United
States that span mountainous areas.

Concurrently, improved monitoring and reporting of Valley fever cases in states that currently have low or
marginal disease incidence would allow for a more accurate delineation of contemporary climate controls.
This is most critical for states where current climate conditions permit endemicity (Figure 3), yet the state
is not currently reporting, including Colorado, Idaho, Kansas, Oklahoma, and Texas (CDC, 2018a).
Proactive surveillance in states where climate does not currently permit endemicity but may in the future
will help with monitoring disease spread.

Another factor that will likely modulate the number of Valley fever cases in the future is changes in the sea-
sonal and interannual variability of precipitation. Precipitation in California is projected to shift to more
intense periods of heavy and extreme rainfall, with moderate to small changes in the overall amount

Table 1
Compounding Effects of Climate Change and Increasing Human
Population on the Number of People in Millions Living in the Endemic Region
for Valley Fever in the Years 2035, 2065, and 2095, Relative to our 2007
Baseline Population Estimate of 47.5 M

RCP4.5 Climate RCP8.5 Climate

2035 2065 2095 2035 2065 2095

No change in population (M) 49.9 52.1 52.7 50.1 55.0 55.5

SSP2 population scenario (M) 65.7 68.6 69.7 66.0 72.6 73.2

SSP5 population scenario (M) 71.9 75.0 76.2 72.2 79.4 80.1

Abbreviations: RCP, representative concentration pathway; SSP, shared
socioeconomic pathways.
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(Polade et al., 2017; Swain et al., 2018). These periods of greater moisture availability may increase fungal
growth, while longer and more intense dry periods may enhance dust production and dispersal. In
Arizona, summer rainfall brought by the North American monsoon is projected to weaken (Pascale et al.,
2017), potentially leading to drier and dustier summers. It is also important to recognize that there is signifi-
cant low‐frequency (decadal) internal variability in precipitation in the western United States, driven, for
example, by the Pacific Decadal Oscillation, that may seemingly dampen or amplify the effects of climate
change (e.g., Lehner et al., 2018). In our analysis, variability in precipitation causes some counties to switch
back and forth over time in terms of their designation as endemic. For example, the estimated number of
California counties endemic to Valley fever for RCP8.5 increases from 28 counties in 2035 to 31 counties
in 2065, but then decreases to 30 counties in 2095 due to an increase in precipitation in San Francisco
County, which was considered endemic in 2065. Evidence of precipitation variability can also be seen in
the maps of precipitation change for RCP4.5 (Figure S2), where many areas that are drier in 2035 become
wetter again in 2065, contrary to the stronger unidirectional pattern of change associated with anthropogenic
forcing in RCP8.5.

We used a large set of CMIP5model simulations to calculate the average projections of climate change for the
United States. Although somemodels perform better than others for the United States compared to historical
observations, the multimodel mean tends to provide a reliable estimate of contemporary surface climate
(Sheffield et al., 2013). With improved representation of ocean and atmospheric dynamics and higher spatial
resolution, simulations contributed to the 6th CoupledModel Intercomparison Project (CMIP6; Eyring et al.,
2016) will likely reduce uncertainties in future projections of temperature and precipitation for the United
States (Stouffer et al., 2017). The higher quality climate information, along with improved downscaling tech-
niques, will provide better boundary conditions for statistical and mechanistic models predicting changes in
Valley fever endemic regions. However, uncertainty in climate projections is only one of the several different
types of uncertainty limiting our ability to predict Valley fever endemicity.

Our model draws upon Valley fever incidence data, which implicitly links Coccidioides spp. presence with
human cases of Valley fever. An important next step is the development of a mechanistic model, which sepa-
rately simulatesCoccidioides spp. abundance, transmission efficiency, and host heterogeneity as a function of
different environmental and human demographic variables. As research on Valley fever and Coccidioides
spp. continues, additional information such as the possible role of mammals in the fungal life cycle
(Barker, 2018; Taylor & Barker, 2019), variations in ecological traits and ecosystems linked to different spe-
cies of Coccidioides (Barker et al., 2012; Colson et al., 2017), and microbial competition (Lauer et al., 2019)
will need further consideration for integration into both mechanistic and statistical models of disease inci-
dence. This will be especially important if we learn that differentCoccidioides species have different virulence
and tolerances for environmental controls, as this could affect the dispersal of disease and health impacts
caused by climate change. As more occurrences of Coccidioides spp. in the soil are documented, adding
any soil characteristics that limit the presence of the fungi into the model, such as alkalinity, salinity, soil
type, and soil texture, may further refine the endemic area (Baptista‐Rosas et al., 2007; Colson et al., 2017;
Fisher et al., 2007; Maddy, 1957).

4.4. Coccidioidomycosis in a Global Context

Disease surveillance efforts throughout the United States and the comprehensive Valley fever case data set
provided the foundation for our study. However, Valley fever is not limited to the United States. Our model,
as well as the CDC endemicity model, depicts Valley fever endemicity spanning the United States‐Mexico
border. It is well known that Coccidioides spp. is present in Mexico; however, there has been minimal disease
surveillance within the country (CDC, 2018b; Laniado‐Laborin, 2007). Our future projections indicate that
the climate‐constrained endemic region may also extend north to the United States‐Canada border by the
end of the 21st century, potentially introducing Coccidioides spp. to a new country.

We found that the area endemic to Valley fever in the United States, as well as the number of cases per year,
will increase in response to climate change. Patterns of future change may be similar in other endemic areas
within Central and South America. Apart from Mexico, countries that are likely endemic to Valley fever
include Guatemala, Honduras, Argentina, Brazil, Paraguay, Bolivia, Venezuela, and Columbia (Colombo
et al., 2011; Laniado‐Laborin, 2007). International collaboration and Valley fever surveillance in these
regions will help delineate the endemic boundaries, provide further information regarding the
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environmental factors structuring disease presence and incidence, and increase physician awareness (Cat
et al., 2019).

4.5. Importance of Integrating Valley Fever Into Future Climate Change Assessments

The U.S. Global Change Research Program recently suggested that climate change may alter the spatial
extent and number of Valley fever cases (Crimmins et al., 2016). Our study provides a first estimate to quan-
titatively describe this change. Furthermore, the Fourth National Climate Assessment report for the United
States recognized the implications of drought on the interannual variability of cases (Ebi et al., 2018).
Although the area currently endemic to Valley fever is relatively smaller than other infectious diseases, like
West Nile Virus (CDC, 2018c), we expect that there may be similar or even larger negative health impacts
from the exposure of new communities to Valley fever in response to climate change. In fact, recent mortality
rates from Valley fever are similar, if not larger, than those reported for West Nile virus. There are approxi-
mately 110 deaths per year from West Nile virus in the United States (mean 1999–2016; CDC, 2018c) com-
pared to approximately 200 deaths per year from Valley fever (mean 1990–2008; CDC, 2018a). Further,
Valley fever cases have increased considerably since 2008, suggesting that there may be additional negative
impacts from this disease.

5. Conclusions

We combined a multistate database of VFI observations and climate projections to predict how climate
change may influence the endemic area and number of Valley fever cases in the United States. Using our
climate‐constrained niche model, we found that the endemic area to Valley fever, as well as the number
of cases per year, will increase in response to climate change. As temperatures increase and precipitation pat-
terns change, most of the western United States will meet climate thresholds necessary for Valley fever ende-
micity. Through time, we found that the endemic area will expand northward, most notably through the
Great Plains. Expansion of the endemic area is suppressed farther east by regional increases in precipitation
and the presence of moist air from the Gulf of Mexico. By 2095 for a high climate warming scenario (RCP8.5),
our model predicts that 476 counties across 17 states will have a climate that permits Valley fever endemicity.
This could result in up to 50% more annual Valley fever cases, before taking into account the compounding
effect of future increases in human population. Estimating the regions that may become endemic to Valley
fever can mitigate the health effects of this disease, as it will allow health care providers and citizens to pre-
pare in advance. Our research is an example of the necessary bridge between climate science and human
health as climate change reshapes areas endemic to infectious diseases.
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