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Abstract

While immune checkpoint inhibitors (ICI) have demonstrated clinical activity in multiple tumor 

types, the majority of patients do not respond to ICI monotherapy. Mounting evidence suggests 

that ICI-mediated clinical responses rely upon tumor infiltration by T cells that are able to 

recognize and kill cancer cells. Here we review therapeutic modalities that have been shown to 

promote T cell infiltration into human tumors in studies to date, and discuss emerging data guiding 

how these modalities can be sequenced in order to optimize T cell effector function and memory T 

cell generation, while minimizing over-activation and potential toxicity.
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Introduction

The goal of cancer immunotherapy is to direct the immune system against tumor cells, 

leveraging its exquisite specificity and capacity for memory to achieve rapid and durable 

tumor clearance. The clinical success of checkpoint blockade across many solid tumors and 

hematologic malignancies, has illustrated the promise of this strategy (1–3). However, the 

overall proportion of patients responding to ICI is low, with single-agent response rates 

across tumor types generally ranging from 10–35% (with few exceptions: tumors with 
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microsatellite instability (MSI), Hodgkin lymphoma, Merkel cell carcinoma) (4,5). There is 

mounting evidence indicating that major barriers to efficacy include the absence of a pre-

existing tumor-specific T cell response, and exclusion of T cells from the tumor 

microenvironment. For example, analyses of pre-treatment melanoma biopsies have shown 

that clinical response to anti-PD-1 (6) and anti-CTLA-4 (7) is correlated with the presence 

of tumor-infiltrating lymphocytes (TILs) prior to therapy, specifically CD8+ TILs at the 

invasive tumor margin. Furthermore, an inflamed transcriptional state, defined as expression 

of interferon-gamma (IFNγ) by activated T cells, and up-regulation of downstream signaling 

molecules, has been shown to correlate with clinical response to therapy (8). These IFNγ 
responsive genes are related to chemokine expression, antigen presentation, and cytotoxic 

effector molecules.

These observations have led to a framework classifying immune profiles of tumors that are 

unresponsive to immunotherapy into immune-inflamed, immune-excluded, and immune-

desert tumors (Figure 1) (9). Immune-inflamed tumors are characterized by the presence of 

CD4+ and CD8+ T cells within the tumor parenchyma, suggesting the presence of a pre-

existing anti-tumor response that has been quelled by an immunosuppressive 

microenvironment or intrinsic T cell anergy. This phenotype is associated with a type I 

interferon signature, highlighting the importance of innate immune signaling in successful T 

cell priming against tumor antigens (10,11). In contrast, cold tumors are characterized by the 

absence of pre-existing TILs, and can be further subdivided into immune-excluded tumors, 

in which T cell have been attracted to the periphery of the tumor, but fail to infiltrate, and 

immune-desert tumors, which are entirely devoid of a T cell infiltrate. Of note, the immune 

profile of a given individual’s tumors can be heterogeneous – at different sites within the 

tumor bed, and between primary site and metastases – and may evolve over time with 

disease progression, recurrence and therapeutic intervention, posing challenges to the use of 

information from individual tumor biopsies as a guide for therapy selection (12,13).

To increase the clinical benefit of immunotherapy, novel strategies to convert immune-

excluded and immune-desert tumors into inflamed microenvironments with increased tumor-

infiltrating T cells are needed. To accomplish this goal, we will need to better understand the 

barriers preventing T cell infiltration, ideally for each individual patient given the 

heterogeneity described above. In this review, we discuss the therapeutic strategies currently 

in development that have shown potential to drive T cells into the tumor microenvironment, 

and describe how early efforts to combine these agents highlight the importance of 

sequencing therapies to maximize T cell function.

Mechanisms underlying immune phenotype

A productive anti-tumor immune response requires an intricately orchestrated sequence of 

events: tumor antigens are released, the innate immune system is activated to facilitate 

antigen processing and presentation, and antigen-presenting cells (APCs) prime naïve T 

cells in the draining lymph node, resulting in activation and expansion of tumor-specific T 

cells. These cells must then traffic to the tumor site, infiltrate into the tumor bed, and finally 

recognize and kill tumor cells (9,14). This can feed forward, resulting in release of 

additional tumor antigens, and broadening of the T cell response against additional tumor 
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antigens. Preclinical studies and in-depth analysis of the tumor microenvironment from 

patient samples have begun to elucidate the mechanistic basis underlying T cell exclusion, 

including intrinsic tumor properties, and extrinsic factors (Figure 1).

(i) Defects in T cell priming

T cell priming is the first step that is required to trigger an effective anti-tumor immune 

response. Successful priming of a T cell requires recruitment of APCs, innate immune 

activation, the presence of targetable tumor antigen, and intact antigen presentation 

machinery. In particular, cross-presentation of tumor antigens by specialized dendritic cells 

(DCs), such as Batf3-expressing DCs, is crucial for priming of CD8+ T cell responses. 

Targetable tumor antigens include antigens arising from somatic mutations, known as 

neoantigens, as well as over-expressed tumor associated antigens and cancer germline 

antigens. Neoantigens have been shown to be particularly important, evidenced by an 

association of higher tumor mutational burden (TMB) with improved outcome in patients 

treated with ICI and other immunotherapies, expansion of neoantigen-specific T cells in 

patients who receive immunotherapies, and direct evidence of tumor killing by adoptively 

transferred neoantigen specific T cells (15,16). Given the high response rates of 

“hypermutated” cancers to ICIs across tumor types, it is conceivable that low mutation 

burden broadly decreases the likelihood of effective endogenous priming of tumor specific T 

cells (17). However, TMB and the extent of T cell inflammation (reflected by IFN gene 

signatures) are not correlated, suggesting that low tumor neoantigen burden does not solely 

account for lack of T cell infiltration (18–20). Additional mechanisms affecting antigen 

presentation that can account for lack of tumor T cell inflammation include mutations or 

epigenetic changes affecting antigen-presentation machinery, such as beta-2-microglobulin 

(β2m) loss – a subunit required for HLA I surface expression – and mutations in HLA, 

which have been associated with resistance to checkpoint blockade (21,22). Other innate 

immune cells also influence T cell priming, notably NK cells, which can exert both positive 

and negative effects on the generation of anti-tumor immunity. NK cells modulate DC 

maturation and function via secretion of cytokines (TNF, IFNγ), and enhance cross-

presentation by killing target cells and releasing antigen for presentation by DCs (23). NK 

cells also produce Fms-related tyrosine kinase 3 ligand (FLT3L), an important cytokine for 

recruitment of intratumoral DCs, providing another axis that could be targeted to enhance T 

cell priming and activation (24).

(ii) Oncogenic pathway activation

Activation of tumor-intrinsic oncogenic pathways has been associated with T cell exclusion 

from the microenvironment. This was first observed in patients with metastatic melanoma, 

with activation of the Wnt/beta-catenin pathway associated with an immune cold phenotype, 

and subsequently demonstrated to be correlated across tumor types in TCGA (25,26). 

Studies in mice identified absent recruitment of Batf3-expressing DCs into the tumor bed as 

a likely mechanism, impairing cross-presentation to CD8+ T cells (27). Upregulation of the 

mitogen-activated protein kinase (MAPK) pathway has been associated with reduced T cell 

infiltration in triple-negative breast cancer (28). Targeting MAPK may be particularly 

attractive, as this pathway can be upregulated in tumor cells, but is also a major pathway 

downstream of normal T cell receptor (TCR) signaling, and its blockade therefore impacts 
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both tumor cells and T cells. Notably, while inhibition of MEK has been shown to abrogate 

IL-2 production and priming of naïve T cells, it can also promote the effector phenotype and 

longevity of tumor-infiltrating CD8+ T cells, suggesting the timing of administration would 

be an important consideration to achieve maximal anti-tumor effect (29). Loss of PTEN and 

downstream activation of the PI3K/AKT pathway has also been implicated in T cell 

exclusion and PI3K-beta inhibitors were shown to sensitize tumors to T cell mediated killing 

in preclinical studies (30). Moreover, up-regulation of MYC leads to increased PD-L1 and 

CD47 expression, disrupting T cell activation and priming (31). Another example is CDK4/6 

activation, which has been implicated in T cell exclusion and immune evasion in the setting 

of resistance to checkpoint blockade (32). These oncogenic pathways represent therapeutic 

targets for inhibiting tumor cell growth and increasing T cell infiltration to improve 

susceptibility to other immunotherapies.

(iii) Tumor microenvironment: stromal factors, aberrant vasculature, and 
immunosuppressive factors

T cell infiltration can be impeded by local factors in the tumor microenvironment, including 

dense stroma, aberrant vasculature, and immunosuppressive factors. For example, 

Transforming Growth Factor (TGF)-β is an immunosuppressive cytokine that inhibits T cell 

effector function through multiple mechanisms, including the expansion of T regulatory 

cells (Tregs) and inhibition of antigen-presenting DCs. TGF-β can also produce stromal 

modifiers that promote tumor progression and metastasis (33), and its expression has been 

associated with exclusion of T cells from the tumor microenvironment (34,35). 

Indoleamine-2,3-dioxygenase (IDO) is an intracellular enzyme involved in tryptophan 

degradation, which is expressed in the tumor microenvironment and has been implicated in 

tumor immune escape (36). Adenosine is an immunosuppressive metabolite derived 

predominantly from ATP catabolism, which under normal conditions protects against 

excessive immune responses. In the tumor microenvironment, adenosine attenuates DC 

maturation and effector activity of T cells and NK cells, blunting anti-tumor immune 

responses (37). Immunosuppressive cell types including FOXP3+ CD4+ Tregs, myeloid 

derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) can limit 

effective immune response against tumor cells (38–40). These immunosuppressive cells can 

be found across the different tumor immune profiles, potentially counteracting effective anti-

tumor T cell responses.

Therapeutic approaches to drive T cells into tumors

Since different mechanisms can lead to a lack of T cell infiltration tumors, therapies would 

ideally target the specific “defect(s)” in a given tumor to overcome T cell exclusion. Here we 

review the evidence supporting select therapeutic modalities aimed at driving T cells into 

tumors (Figure 2).

(i) Therapies to promote T cell priming

Upon activation by innate stimulation pathways, APCs can prime naïve T cells to initiate a 

tumor-specific T cell response. This process occurs in the draining lymph node, and requires 

antigen release, uptake by antigen-processing cells and presentation on MHC molecules, and 
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recognition by a cognate TCR. A number of therapeutic approaches have the ability to 

induce endogenous T cell priming, without needing to target specific tumor antigens.

Oncolytic Viruses—Oncolytic viruses can promote T cell priming through tumor antigen 

release as well as maturation and trafficking of APCs within the tumor microenvironment. 

These viruses are modified to selectively infect and replicate within tumor cells, leading to 

tumor cell lysis, and in turn stimulate an anti-tumor immune response via release of tumor 

antigens (41). The first FDA approved oncolytic virus, Talimogene laherparepvec (T-VEC), 

which has demonstrated superior progression-free survival over granulocyte-macrophage 

colony stimulating factor (GM-CSF) in patients with advanced melanoma (42), is derived 

from human herpes simplex virus (HSV) and engineered to express GM-CSF. A phase Ib 

trial of T-VEC in combination with pembrolizumab (anti-PD-1) for patients with advanced 

melanoma showed an overall response rate of 62%, with a complete response rate of 33% 

(43). Responses were observed in a number of patients whose tumors had low T cell 

infiltrates and low IFNγ signatures at baseline. Serial tumor biopsies after single-agent T-

VEC showed an increase in the extent of cytotoxic CD8+ T cell infiltration in 8 of 12 

injected lesions available for analysis, which increased further after combination therapy; a 

trend that was not observed in tumor samples from patients who did not have clinical 

responses. A phase 3 trial of T-VEC combined with pembrolizumab compared to 

pembrolizumab alone has completed accrual. Several other oncolytic viruses have been 

evaluated in early phase trials, including Coxackievirus A21, which has shown clinical 

activity as monotherapy and is being tested with ipilimumab and pembrolizumab in patients 

with advanced melanoma (44), and the attenuated herpes simplex virus 1 HF-10 (45). 

Furthermore, both DNX-2401 and H-1 Parvovirus, which have been tested in patients with 

glioblastoma, mediated increases in cytotoxic CD8+ T cell infiltration (46,47). Given their 

dual effects of direct tumor-cell killing and T cell priming, oncolytic viruses are likely to 

play a major role in increasing T cell infiltration for non-inflamed tumors.

Immune Adjuvants—Tumors with a high degree of T cell infiltration are associated with 

a type I interferon signature, highlighting the importance of innate immune sensing 

pathways in establishing an anti-tumor T cell response. In order to induce productive T cell 

responses against tumor antigens, APCs must first be activated by stimulation of danger-

associated and pattern-associated molecular pattern (DAMP/PAMP) receptors, enabling 

presentation of antigen and priming of naïve T cells. A number of therapeutic strategies have 

been developed to promote innate immune activation, including TLR and STING agonists. 

Of note, most of these agents are administered intratumorally with the intention to deliver 

the stimulus of innate immune responses directly at the site of the tumor and to limit. 

However, their effects may be exerted beyond the injected lesion, by establishing a systemic 

anti-tumor immune response, particularly when used in combination regimens. Systemically 

administered agents are in development, for example a small moleculare inhibitor of 

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) which negatively regulates 

STING (48).

Toll-like receptor agonists.: Toll-like receptors (TLRs) are pattern-recognition receptors 

that are highly expressed by tumor-infiltrating immune cells, particularly APCs, and upon 
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stimulation have powerful immune adjuvant effects. TLR signaling leads to DC maturation 

resulting in increased antigen presentation, and type I interferon production. Agonists 

targeting a variety of TLRs, including TLR3, TLR4, TLR7, TLR8 and TLR9, are under 

investigation in the clinic. For example, SD-101, a TLR9 agonist administered 

intratumorally, and given in combination with low-dose radiation for patients with indolent 

B cell lymphomas, led to reduction in overall tumor burden in 26 of 29 patients, with 

corresponding increase in CD8+ and CD4+ effector T cells, and decrease of Tregs in the 

tumor microenvironment (49). Intratumoral SD-101 was also tested in combination with the 

anti-PD-1 antibody pembrolizumab in patients with metastatic melanoma; the combination 

mediated increased T cell infiltration and resulted in an overall response rate of 78% in 

treatment naïve patients and 15% in patients who had previously received prior PD-1 

therapy (50). Another TLR9 agonist, CMP001 was tested in combination with anti-PD-1 in 

patients with advanced melanoma who were refractory to anti-PD-1 monotherapy, and 

demonstrated objective responses at injected sites as well as non-injected visceral metastases 

(51). Among patients with paired pre- and post-treatment biopsies available, an increase in 

CD8+ T cells following treatment was observed.

STING agonists.: In the context of tumor-immunity, the STING (stimulator of interferon 

genes) pathway responds to tumor-derived DNA within the cytosol of DCs, other innate 

immune cells, and tumor cells, leading to nuclear factor-kB (NF-kB) activation, JAK-STAT 

activation and type I IFN production (11,52). As such, agonists of the STING pathway 

promote cross-presentation of tumor antigens and migration to lymph nodes, and in turn 

augment the priming and recruitment of T cells. Specifically, type I interferon signaling is 

crucial for recruiting Batf3+ DCs which are the most potent type of APC for cross-

presenting antigen to CD8+ T cells, and necessary for effector T cell function (27). Clinical 

trials testing these agents are ongoing, with preliminary studies reporting encouraging 

results. A Phase I dose-finding study of ADU-S100 (MIW815), a STING agonist, was 

performed and increased T cell infiltration in one of the patients studied (53) was found. 

Further studies will be required to define the impact of this agent on the extent of T cell 

infiltration. A phase I study of another STING agonist, MK-1454, in monotherapy or 

combination with pembrolizumab was recently reported. In the combination arm, 6 of 25 

patients had partial response (3 with HNSCC, 2 with anaplastic thyroid carcinoma, 1 with 

triple-negative breast cancer), with reductions in both target-injected and non-injected 

lesions; no objective responses were observed with monotherapy (54). STING agonists 

require local administration, via intratumoral injection, which limits their application to 

tumors that are accessible to injection, though systemic formulations are also being 

developed (55).

Cytotoxic Therapies—Traditional cancer therapies such as chemotherapy and radiation 

may also have a role in augmenting T cell priming. Radiation therapy mediates direct 

cytotoxicity to cancer cells through lethal DNA damage. In addition, radiation induces a 

focal inflammatory response at the irradiated site, leading to an increase in DAMPs, type I 

interferon production, and release of tumor antigens, thereby creating an in situ vaccine 

effect (56). This has been shown to occur through STING-dependent pathways, and to result 

in dramatic enhancement of the cross-priming capacity of tumor-infiltrating DCs (57). Of 
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note, the extent of this effect appears to depend upon the dose and fractionation of radiation 

administered (58). A key factor attenuating the immune response elicited by radiotherapy is 

Trex1, a DNA exonuclease, which can degrade DNA in the cytosol and therefore preclude 

activation of STING. Therefore, repeated doses of radiation below the threshold that induces 

Trex1 (between 12–18Gy in different cancer cells), may optimally stimulate a type I 

interferon response required to recruit cross-presenting DCs. Radiation therefore has an 

important role in recruiting inflammatory cells to the tumor site, and in turn has been shown 

to increase tumor-specific effector T cells infiltrating within the tumor in preclinical models 

(59). In addition to the type I interferon-mediated effects, radiation therapy may also 

contribute to enhanced T cell priming via increased tumor antigen release, and increased 

antigen-recognition through enhanced MHC class I expression on tumor cells, achieving an 

in situ vaccination effect. For example, a recent clinical trial used local radiation in 

combination with intratumoral injections of an Fms-like tyrosine kinase 3 ligand agonist 

(Flt3L, to recruit intratumoral DCs) and a TLR3 agonist (poly-ICLC), in patients with 

advanced stage indolent non-Hodgkin Lymphoma (iNHL), based on preclinical evidence 

that this combination achieved robust cross-presentation, priming of CD8+ T cells and 

increased T cell infiltration (60). In the clinical trial, patients were treated with intratumoral 

injections and local radiation in a single target lesion, resulting in partial or complete 

regression of the treated tumor in 8 of 11 patients, and regression of a distant site in three 

patients, suggestive of generation of systemic anti-tumor effect.

Individual chemotherapeutic drugs may have differential impacts on the tumor 

microenvironment, shaping the tumor immune microenvironment by affecting 

immunosuppressive cells, stimulating effector cells, or increasing immunogenicity (61). 

Some agents have been found to induce T cell infiltration; for example paclitaxel mediated 

an increase in T cell infiltration in a small prospective study of patients with breast cancer, 

which was non-inflamed at baseline, following four treatment cycles (62). Other common 

chemotherapeutic classes, including anthracyclines and alkylating agents, are known to 

induce immunogenic cell death, and may potentiate responses to ICI. This has been 

demonstrated in preclinical models, in which oxaliplatin/cyclophosphamide sensitized lung 

adenocarcinoma lacking T cell infiltration to respond to checkpoint blockade (anti-PD-1 + 

anti-CTLA-4) (63). In clinical trials, a benefit in combining chemotherapy and checkpoint 

blockade was demonstrated; for example, the combination of platinum chemotherapy, 

pemetrexed and pembrolizumab demonstrated improved survival compared to chemotherapy 

alone (64). Furthermore, neoadjuvant chemotherapy in patients with NSCLC resulted in 

higher levels of tumor PD-L1 and CD3+ T cell infiltration, which may potentiate response to 

subsequence checkpoint blockade (65).

It is worth noting that both chemotherapy and radiation can also exert immunosuppressive 

effects on the tumor microenvironment, highlighting the need for careful selection of 

individual chemotherapeutic agents, assessing optimal chemotherapy dosing schedules, as 

well as evaluating optimal dosing and fractionation of radiotherapy.
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(ii) Therapies to increase antigen-specific T cells

Additional therapeutic strategies that target specific tumor antigens may be useful to 

promote expansion of tumor antigen-specific T cells and attain a sufficient number for 

infiltration into the tumor microenvironment. Alternatively, T cells engineered to target 

specific tumor antigens can be exogenously infused using adoptive cellular therapy, or T 

cells can be activated and expanded in a polyclonal fashion using bispecific T cell engagers. 

These strategies typically require identification of targetable tumor antigen(s), although 

approaches to broadly target whole tumor cells have been also devised and are promising.

Vaccines—Therapeutic cancer vaccines directed against specific tumor antigens have the 

ability to prime de novo immune responses, expand existing tumor-specific responses, and 

ideally establish long-lasting tumor-specific memory T cells (66). Many vaccine 

formulations and delivery approaches have been tested, including peptide, DNA, RNA, 

dendritic cell, and whole tumor cell vaccines, targeting over-expressed tumor-associated 

antigens, cancer-germline antigens, and, more recently, neoantigens. As opposed to native 

antigens, neoantigens, which are encoded by somatic mutations, are exquisitely tumor-

specific and not affected by central tolerance. Some of these strategies have demonstrated 

capacity to increase T cells infiltration. For example, sipuleucel-T, an autologous cell based 

vaccine targeting prostatic acid phosphatase (PAP), an enzyme that is overexpressed in 

prostate cancer, induced a more than three-fold increase of infiltrating CD3+, CD4+ 

FOXP3−, and CD8+ T cells in radical prostatectomy tissues compared to pre-treatment 

specimens (67). Clinically, sipuleucel-T increased overall survival by 4 months and 

improved 3-year survival rates in patients with advanced castration-resistant prostate cancer, 

leading to its FDA approval in metastatic prostate cancer (68). Additionally, the GM-CSF-

transfected autologous tumor cell vaccine, GVAX, for pancreatic cancer was shown to 

increase tertiary lymphoid structures in the tumor microenvironment – aggregates that 

resemble lymph nodes and are associated with positive prognosis – and when combined with 

anti-PD-1, demonstrated enhanced anti-tumor immunity (69–71).

Personalized vaccines targeting neoantigens have recently shown promise as effective tools 

to expand antigen specific T cells in the periphery and to mediate trafficking of vaccine 

specific T cells into the tumor. Several preclinical studies demonstrated that neoantigen-

directed vaccination can increase tumor antigen-specific T cell infiltration (72,73). The first 

clinical trials testing neoantigen vaccines in humans were conducted in patients with 

melanoma (74–76). Extensive immune profiling demonstrated generation of robust, durable, 

and polyfunctional vaccine-specific CD4+ and CD8+ T cell responses. In a phase I trial 

testing a personalized long peptide-neoantigen vaccine in patients with glioblastoma, 

increased infiltration of tumors with CD4+ and CD8+ T cells was seen following vaccination 

in patients who also developed vaccine-specific circulating T cell responses. Single cell level 

transcriptomic profiling and TCR sequencing of post-vaccine tumor-infiltrating T cells 

demonstrated co-expression of multiple inhibitory receptors (PD-1, TIGIT, and TIM3) 

consistent with a severe exhaustion phenotype and identified vaccine-specific tumor-

infiltrating T cells. Another recent study testing vaccines targeting both neoantigens and 

non-mutated tumor-associated antigens in glioblastoma patients similarly demonstrated the 

presence of vaccine-specific T cells among tumor-infiltrating lymphocytes following 
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vaccination (77). Taken together, these studies provide evidence that neoantigen vaccines are 

able to drive antigen-specific T cells into the tumor microenvironment, but also that the 

functionality of these T cells may be compromised, potentially requiring additional 

therapeutic intervention such as ICI therapy.

Adoptive Cellular Therapy—Adoptive cellular therapies entail the infusion of large 

numbers of tumor antigen-specific T cells into the host. These include TIL therapy, in which 

tumor-infiltrating T cells are isolated, expanded ex vivo, and re-infused peripherally, as well 

as T cells that are engineered to express tumor antigen-specific TCRs or chimeric antigen 

receptors (CARs) (78). Patients usually receive lymphodepleting chemotherapy prior to the 

transfer in order to decrease endogenous lymphocytes which compete with transferred cells 

for homeostatic cytokines, and eliminate Tregs. IL-2 therapy is given post transfer to support 

growth and activity of the infused product. Adoptive TIL therapy has shown promise in 

melanoma (79). Clinical success with CAR-T cells has largely been limited to hematologic 

malignancies, particularly B-cell leukemias and lymphomas. Efforts to apply this strategy to 

solid tumors have proved challenging owing to the need for targetable tumor antigen, 

efficient infiltration, and persistence in the tumor microenvironment. Adjunctive therapies 

combined with CAR-T cells have been investigated to augment tumor infiltration, including 

induced expression of chemokines (e.g. CXCL11 (80), CCL19 (81)), as well as alternative 

delivery methods including regional/local CAR T cell administration. CAR-T cells may be 

particularly effective for cold tumors with defects in antigen presentation, as the antigen 

receptor activation is not MHC dependent.

Bispecific T cell engager—Bispecific T cell engagers are soluble chimeric proteins 

consisting of an antigen recognition domain and a T cell engaging domain, which stimulate 

polyclonal T cell activation. When the molecule is immobilized on a target cell, T cells can 

be activated independent of their TCR specificity, recruited into the tumor bed, and release 

pro-inflammatory cytokines. The antigen recognition domain can be derived from an 

antibody or a TCR, and ideally targets antigens that are selectively expressed by tumor cells. 

As with CAR-T cells, this strategy has been most successful in B cell malignancies, 

targeting CD19, but is also being tested in solid malignancies. One such molecule, 

IMCgp100, has a TCR-based antigen recognition domain targeting the overexpressed 

melanoma antigen, gp100. It has been shown to induce lymphocyte mobilization and 

increased CD8+ PD-1+ T cell infiltration into the tumor bed in uveal melanoma (82). One 

caveat to this strategy is that by virtue of stimulating T cell activation independent of TCR 

specificity, it is possible for T cell engagers to activate both cytotoxic and regulatory T cells. 

This was evidenced by studies of the bispecific T cell engager targeting CD19, 

blinatumomab, for which the frequency of Tregs determined outcome in patients with B-

precusor acute lymphoblastic leukemia. Non-responding patients had significantly higher 

circulating Tregs, and this effect was mediated by blinatumomab-activated T regs producing 

IL-10 and suppressing T cell proliferation and tumor lysis (83). Thus, further work is 

necessary to increase the specificity of this modality.
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(iii) Therapies to overcome T cell exclusion

Once tumor-specific T cells have been primed and activated, they must home to the tumor 

site and infiltrate within the tumor bed. Barriers to infiltration include oncogenic pathway 

activation, dense stroma, aberrant vasculature, and immunosuppressive factors in the 

microenvironment. There are a number of therapeutic strategies under development that are 

designed to target barriers to T cell infiltration:

Oncogenic pathway inhibitors—Activation of select oncogenic pathways has been 

implicated in T cell exclusion and modulation of T cell function. MAPK signaling is a 

crucial driver of tumorigenesis, and upregulation of the pathway has also been associated 

with reduced T cell infiltration, with overlap between this pathway and elements 

downstream of TCR signaling. Consistent with this mechanism, MEK inhibition has been 

shown to potentiate antitumor immunity by inducing expansion of antigen-specific CD8+ 

TILs (via inhibition of signaling that would otherwise lead to T cell exhaustion or 

apoptosis). Additionally, BRAF or combined MEK/BRAF-inhibition leads to increased 

expression of melanoma antigens (84), inhibits VEGF production to normalize vasculature, 

and promotes T cell trafficking in preclinical models (85). BRAF inhibition also has 

favorable effects on the tumor immune microenvironment in patients, with studies 

demonstrating increased T cell infiltration, increased cytotoxicity (increased levels of 

granzyme B, perforin) and immune stimulatory cytokines (IFNγ, TNFα) in posttreatment 

biopsies (86).

Other examples of T cell exclusion mediated by oncogenic pathway activation include the 

Wnt-β-catenin pathway, which has been associated with poor T cell infiltration and primary 

resistance to checkpoint blockade, primarily due to impaired recruitment of cross-presenting 

DCs (25–27). Preclinical studies of RNAi-based β-catenin inhibition, DCR-BCAT, in 

combination with checkpoint blockade have shown increased T cell infiltration into tumors 

and improved tumor growth inhibition compared to monotherapy (87). Early clinical studies 

of small molecule Wnt inhibitors focused on tumors with upregulated Wnt/β-catenin 

signaling such as colorectal cancer, but given their immunomodulatory effects, further 

clinical trials assessing the role of Wnt inhibition in increasing susceptibilty to 

immunotherapy in other tumor types are anticipated. CDK4/6 inhibitors like palbociclib 

have been investigated for their immuno-stimulatory potential, and have been shown to 

enhance T cell activation and increase T cell infiltration, via derepression of nuclear factor 

of activated T cells (NFAT) activity (88). Alterations in the PI3K-AKT-mTOR pathway have 

also been associated with modulating the differentiation, homeostasis and functional activity 

of effector T cells, with loss of PTEN correlating with resistance to checkpoint blockade. 

PI3K inhibitors are under development to target this pathway (30).

Anti-angiogenesis agents—The tumor microenvironment is characterized by 

structurally and functionally aberrant vasculature, resulting from an imbalance of pro- versus 

anti-angiogenic factors. In addition to facilitating tumor growth, this hinders leukocyte-

endothelial interactions and impairs infiltration of immune effector cells into the tumor bed. 

As such, vascular normalization, an attempt to balance pro- and anti-angiogenic factors, has 

been proposed as a strategy to facilitate immune infiltration. Anti-VEGF agents have been 
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shown to normalize tumor vessels when used at lower doses, and result in improved vessel 

perfusion, decreased hypoxia and enhanced drug delivery, resulting in overall increase in 

immune cell access (89). In a clinical trial of bevacizumab and ipilimumab in patients with 

metastatic melanoma, a qualitative increase in CD8+ T cells and CD163+ DCs was seen 

following combined treatment, but not with ipilimumab alone (90). In a clinical trial of 

bevacizumab and atezolizumab in patients with renal cell carcinoma, increased CD8+ T cell 

infiltration post treatment was observed in all but one of 10 patients. Furthermore, there was 

a significant increase in CX3CL1, a chemokine that mediates T cell homing, and no change 

in the ratio of Ki67/CD8 in on-treatment samples, suggesting that the increased infiltration 

was not due to enhanced intratumoral proliferation, but increased trafficking and infiltration 

(91). In some cases where T cell exclusion is due to aberrant vasculature, there may be a role 

for therapeutic manipulation of the vasculature to promote T cell infiltration.

TGFβ inhibitors—TGFβ plays a central role in immune suppression in the tumor 

microenvironment (33). It has been implicated in T cell exclusion and lack of response to 

ICI (34,35). In addition, TGFβ has a well-established role in promoting Tregs, suppressing 

Th1 differentiation, and inhibiting T cell proliferation and effector function. As such, TGFβ 
blockade using small molecule inhibitors and monoclonal antibodies has been studied as a 

strategy to convert immune-excluded tumors into immune-inflamed tumors. In a first line 

trial of patients with unresectable pancreatic cancer, the small molecule inhibitor targeting 

TGFBR1 kinase, Galunisertib, combined with gemcitabine resulted in improved overall 

survival, compared to gemcitabine alone (92). The impact of TGFβ inhibition on tumor T 

cell infiltration has not yet been studied in patients. However, in preclinical studies, TGFβ 
inhibitors combined with checkpoint blockade or radiation therapy enhanced anti-tumor 

activity (93,94), providing a rationale for further study in clinical trials.

Sequencing therapies in combination regimens for optimal T cell function

The strategies reviewed above have demonstrated the potential to mobilize T cells into the 

tumor microenvironment – a critical first step to achieve an effective immune response in 

patients with immune-cold tumors. However, while infiltration of tumors with antigen-

specific T cells is presumably necessary, it is often not sufficient for tumor control, as 

evidenced by the observation that many tumors with pre-existing TILs still fail to respond to 

treatment with ICI (8). This may be due to up-regulation of alternative checkpoint 

molecules, T cell exhaustion, or an immunosuppressive microenvironment. Therefore, 

additional goals to establish effective anti-tumor immunity in both inflamed and non-

inflamed tumors include optimizing T cell effector and memory function, and reducing 

immunosuppressive factors, while avoiding immune over-activation and potential toxicity 

(Figure 3). These goals are best achieved in combination regimens.

Other agents that optimize T cell functionality are reviewed in detail elsewhere, including 

checkpoint inhibitors (targeting multiple inhibitory receptors including CTLA-4, PD-1, 

LAG3, TIM3, and TIGIT) and co-stimulatory agonists (targeting OX40, 4–1BB, GITR, 

ICOS, CD137, and CD28/27) (95). Likewise, many therapeutic strategies targeting 

immunosuppresive factors in the microenvironment (Tregs, MDSCs, TAMs etc.) are under 

investigation (38–40). However, the optimal doses and sequence of administration of these 
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agents when used in combined regimens remains to be defined. Here we highlight some 

combination regimens that illustrate important considerations for sequencing therapies in 

order to optimize T cell function – unleashing effector functions, promoting T cell memory, 

and avoiding over-activation.

(i) Optimal effector T cell activity

Combining multiple agents that augment T cell priming can achieve improved T cell effector 

function, particularly when using agents that act through multiple mechanisms. However, the 

increase in T cell infiltration achieved with such agents is frequently accompanied by up-

regulation of checkpoint molecules, potentially limiting T cell effector activity. For example, 

this has been observed in studies of oncolytic viruses, vaccines, radiation, and targeted 

therapies, particularly PD-1 and PD-L1 (71,84,96,97). These observations provide a 

rationale for combining T cell priming agents with anti-PD-1 or anti-PD-L1 antibodies. 

Further research will be necessary to delineate whether agents that augment T cell priming 

should be given concurrently or sequentially with checkpoint inhibitors to maximize effector 

function. Given that PD-1 acts primarily on recently activated and exhausted T cells, it is 

generally thought that concurrent administration or administration following T cell priming 

agents may be most effective.

However, based on the observation of multiple upregulated co-inhibitory receptors on T 

cells, the combination of therapies aimed at inducing T cell inflammation with a single 

checkpoint inhibitor may still be inadequate. This was observed in our own study of 

neoantigen vaccines for glioblastoma, in which neoantigen-specific T cells detected post-

vaccination within the tumor expressed multiple co-inhibitory receptors (98). In such cases, 

optimal effector function may require targeting multiple checkpoints simultaneously.

(ii) Promoting T cell memory

Another aspect to consider in the design of combination regimens is the impact of these 

therapies on memory T cell populations. This is particularly relevant for regimens targeting 

the PD-1/PD-L1 axis, as PD-1 expression has been shown to affect the transition from naïve 

to effector T cells, and blockade of the PD-1 pathway may impact the maintenance of 

memory T cells (99,100). In order to avoid a negative impact on memory T cell formation, it 

may therefore be necessary to administer agents that promote T cell priming, such as cancer 

vaccines and oncolytic viruses, sequentially with anti-PD-1 rather than concurrently. In 

contrast, anti-CTLA-4 enhances T cell priming in the draining lymph node and promotes T 

cell memory, suggesting a potential benefit were CTLA-4 inhibition to be given concurrently 

or prior to the therapy aimed at priming (101). In an analogous case, the combination of 

anti-CTLA-4 and radiation was found to be most effective when anti-CTLA-4 was 

administered prior to radiation, with robust memory formation in a preclinical model (102). 

As described above, combining checkpoint blockade with cancer vaccines or oncolytic viral 

therapy is a promising strategy to generate tumor-specific memory T cell populations. For 

optimal results, careful assessment of timing, sequencing, and duration of these therapies 

will be necessary.
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(iii) Reversing Immunosuppression

To achieve optimal effector function of tumor-infiltrating T cells, additional therapy to 

counteract immunosuppressive factors in the tumor microenvironment will be needed. 

Agents that target immunosuppressive cell types (Tregs, MDSCs, TAMs) or inhibit 

immunosuppressive factors (e.g. TGFβ, IDO) are reviewed in detail elsewhere. Of note, 

these include some of the agents reviewed here, including chemotherapy, targeted therapies, 

and TGFβ inhibitors, which have multiple effects in increasing T cell infiltration and 

depleting immunosuppressive cell types.

There is emerging evidence that therapies targeting immunosuppressive factors should 

ideally be administered early in the treatment course, to permit optimal T cell priming and 

activation with subsequent agents. For example, in the CT26 murine colorectal cancer 

model, CTLA-4 blockade was most effective when given prior to a single radiation dose; 

this effect was in part attributed to anti-CTLA-4 mediated Treg depletion, via Fc-dependent 

mechanisms (102). Another study using the same mouse model found that TGFβ inhibition 

administered prior to radiation resulted in increased intratumoral activated CD8 T cells and 

fewer CD4 Tregs, with pretreatment demonstrating increased efficacy relative to radiation 

alone (93). Pre-clinical studies testing BRAF/MEK inhibitors in combination with 

checkpoint blockade suggest that targeted therapies should be administered first to 

reprogram the microenvironment, including through decreasing Tregs and MDSCs, followed 

soon after by checkpoint blockade (103,104).

A number of chemotherapy agents have also been shown to counteract immunosuppressive 

cell populations including low dose cyclophosphamide for Treg depletion (105), or 

gemcitabine and 5-fluorouracil for decreasing MDSCs (106). The ideal timing for 

combining chemotherapy and immunotherapy likely depends on the particular agents and 

tumor type. For example, in a phase II trial with NSCLC patients the combination of 

CTLA-4 blockade and paclitaxel/carboplatin improved PFS when chemotherapy was given 

prior to anti-CTLA-4, but not when the two therapies were given concurrently (107). In 

contrast, in a preclinical study of mesothelioma, the combination of gemcitabine and 

CTLA-4 blockade was only synergistic when the 2 therapies were administered concurrently 

(108). Further work dissecting the mechanisms by which chemotherapy may interact with 

immunotherapy, including through immunogenic cell death, release of DAMPs, and 

depletion of immunosuppressive cell types may better inform how to best combine and 

sequence these therapies.

(iv) Avoiding over-activation and T cell apoptosis

Some combinations can lead to excessive T cell activation, resulting in T cell apoptosis, 

potentially abrogating the single agent activity of the individual therapeutic agents used in a 

combinatorial regimen. In other cases, excessive T cell activation may increase immune 

related toxicities. For example, when administered concurrently with an OX40-agonist and 

peptide vaccine in the TC-1 tumor model, PD-1 inhibition reversed the therapeutic effect of 

anti-OX40, abrogating the effect on tumor-growth inhibition and survival, and leading to 

apoptosis of tumor-infiltrating T cells as a result of excessive activation (109). Another study 

in a mouse model of mammary cancer confirmed this finding, and further observed that 
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sequential administration of OX40 followed by anti-PD-1 resulted in enhanced anti-tumor 

activity that was dependent on both CD4+ and CD8+ T cells, while the reverse order 

abrogated the anti-tumor effect (110). Other therapies, including radiation and 

chemotherapy, can also cause T cell apoptosis, and careful consideration should be given as 

to how to sequence them appropriately in combination regimens to avoiding nullifying anti-

tumor responses.

An important guiding principle for building combination regimens will be minimizing 

immune mediated toxicities. We envision this could be accomplished through the use of 

carefully tailored combination therapy, personalized for a given individual’s tumor, ensuring 

that the minimum number of therapies necessary is used to achieve an effective immune 

response. Additional considerations for avoiding T cell over-activation and minimizing 

toxicity include drug delivery systems, capable of stimulating localized anti-tumor T cell 

response. Intralesional therapies may be particularly useful for this purpose.

Perspective/Concluding Remarks

Agents capable of driving antigen specific T cells into tumors, as discussed here, are 

essential elements of effective immunotherapy, particularly for patients with non-T cell 

inflamed tumors. Optimal clinical efficacy will likely require combination regimens that are 

able to achieve additional goals, including optimization of T cell effector function and 

memory T cell formation, and reversal of immunosuppressive mechanisms, addressing the 

distinct mechanisms underlying therapy resistance in immune cold and immune-inflamed 

tumors. Ideally, the selection of immunotherapeutic agents and their sequencing should be 

guided by the specific immune phenotype in a given patient. We acknowledge that this is an 

ambitious goal given the complexity of these immune phenotypes, but also the toxicity 

profile of individual therapeutic agents, regulatory requirements, and drug proprietary 

considerations, and the development of optimal combinatorial approaches is constrained by 

these realities. Nevertheless, we are confident that ongoing preclinical work as well as 

intelligently designed, biomarker driven clinical trials will get us closer to this goal. These 

efforts will continue to advance our understanding of the steps necessary to reprogram the 

tumor microenvironment to achieve maximal benefit for patients with cancer.
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Significance

The lack of pre-existing T cell inflammation in tumors is a major barrier to effective 

cancer immunity. A deep understanding of the mechanisms that prevent T cells from 

trafficking into the tumor in a given individual will be critical for tailoring 

immunotherapy combinations that can overcome resistance to ICI in patients with cancer.
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Figure 1. Tumor Immune Profiles
Three immune profiles of tumors – inflamed, immune-excluded, and immune-desert – 

correlate with responsiveness to checkpoint blockade. Features of each profile highlight 

therapeutic targets for reprogramming the microenvironment.
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Figure 2. Steps to drive tumor-specific T cells into tumors
(i) T cell priming, (ii) T cell expansion to achieve sufficient numbers, and (iii) trafficking 

and infiltration into tumor microenvironment
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Figure 3. Rational combination
Sequencing agents to promote T cell infiltration and optimal functionality
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