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Transition fronts, moving through solids and fluids in the form
of propagating domain or phase boundaries, have recently been
mimicked at the structural level in bistable architectures. What has
been limited to simple one-dimensional (1D) examples is here cast
into a blueprint for higher dimensions, demonstrated through
2D experiments and described by a continuum mechanical model
that draws inspiration from phase transition theory in crystalline
solids. Unlike materials, the presented structural analogs admit
precise control of the transition wave’s direction, shape, and
velocity through spatially tailoring the underlying periodic net-
work architecture (locally varying the shape or stiffness of the
fundamental building blocks, and exploiting interactions of tran-
sition fronts with lattice defects such as point defects and free sur-
faces). The outcome is a predictable and programmable strongly
nonlinear metamaterial motion with potential for, for example,
propulsion in soft robotics, morphing surfaces, reconfigurable
devices, mechanical logic, and controlled energy absorption.

mechanical metamaterial | multistability | structure |
phase transformation | nonlinear dynamics

Mechanical metamaterials have been riding on a (transition)
wave in recent decades, transforming the way in which

we think of material behavior—no longer as nature-given but
rather as tailorable for enhanced performance and functionality
in everyday applications (1–3). Testament to this development
is the now well-established phononic and acoustic metamate-
rials to control mechanical waves in unprecedented ways (4)
and to facilitate applications such as nonreciprocal transmission
(5, 6), cloaking (7), and noise reduction (8–10). Common to
all these systems is that they operate in the linear regime and
take advantage of spectral gaps in frequency (11), possibly tai-
lorable by finite predeformation such as in bistable systems (12,
13). By contrast, nonlinear dynamic counterparts are still rare,
even though they have shown tremendous potential for control-
ling mechanical signals (14–17) and unraveling unique effects
such as unidirectional wave motion (18). The most prominent
cause of nonlinearity in those examples is a nonconvex, multi-
welled energy landscape, which was shown to support the stable
propagation of topological defects (19).

Natural materials systems are rich in propagating transition
fronts that separate distinct phases (or domains) through phase
(or domain) boundaries. Examples range from temperature- and
stress-induced solid–solid phase transformations in crystalline
materials (20, 21); to domain wall motion in ferroelectrics, fer-
romagnetics, and multiferroics (22–24); to deformation twinning
in metals and ceramics (25). In each case, a nonconvex potential
energy landscape is responsible for the existence of multiple sta-
ble equilibrium states (e.g., multiple phases or domains), and the
application of external stimuli drives transition fronts between
domains. The multiwelled energy landscape renders the resulting
system kinetics inherently nonlinear and the associated transi-
tion phenomena complex to describe (26, 27) and to imitate in

artificial systems. Demonstrated structural analogs so far have
been limited to one-dimensional (1D) periodic chains (15, 18);
extensions to 2D configurations have been limited to numer-
ical studies of grounded systems with each unit cell attached
to a bistable on-site potential (28)—making the resulting
architectures immobile and of limited applicability.

In this work, we use a combination of analysis and experiments
to demonstrate transition waves in a class of 2D architectures
previously employed only for static reconfiguration. Specifically,
we focus on monostable unit cells which, when tessellated,
form an untethered and ungrounded network in which each
unit cell displays multistability. The transition from monosta-
bility to bistability emerges from the suppression of rotational
rigid-body modes of individual unit cells by the enforcement of
periodicity in tessellated networks. We leverage a continuum
mechanical model of solid–solid phase transitions to qualita-
tively and quantitatively describe the observed dynamic effects
and to aid in the design process. Then, guided by simulations,
we experimentally demonstrate the steering of transition fronts
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through carefully engineered topological defects (akin to point
defects and free surfaces in crystal lattices; Fig. 1). This leads
to morphing and reconfigurable structures with not only tailored
initial and final configurations but the entire kinetic transforma-
tion path—including the wave travel direction, trajectory, and
velocity—geared toward a time-dependent deployment history
with programmable intermediate states. Besides enabling oppor-
tunities for actuated all-soft, substrate-free engineering appli-
cations from soft robotics to “4D printing” (29–31), our work
also highlights avenues to replicate rich material-level kinetic
phenomena at the structural level.

Multistable Structural Networks
The point of departure is a structural network whose unit cells,
once periodically connected, experience two stable configura-
tions: the unstrained ground state and a strained (here, volu-
metrically expanded) equilibrium state of higher strain energy
(Fig. 2). This setup is akin to solid–solid phase transitions and
represents our starting point for guiding transition fronts. Mul-
tistability is key to achieving topological domain boundaries
in the structural network between open (strained) and closed
(unstrained) unit cells. The high level of elastic strain energy in
partially open or closed unit cells favors the formation of large
domains of uniform equilibrium strain, separated by domain
boundaries of generally diffuse character and accommodated by
transitioning unit cells of high energy (collectively contributing
interface energy). Stable static configurations of the structural
network are hence minima of its total energy, subject to particu-
lar boundary conditions. Upon changes to the loading, domain
boundaries move, and transition fronts propagate (Fig. 1 and
Movie S1).

As shown in Fig. 2 A and B, the unit cell is based on four trian-
gular building blocks containing slender joints that admit large
reversible local rotations, producing auxetic expansion upon
loading (32, 33), and pins that stiffen the unit cell in compression
(SI Appendix, Fig. S3). Its geometry is defined by the dimen-
sionless ratios l/L, δ/L, and a/L, where l , δ, a , and L denote,
respectively, the hinge length, hinge thickness, core length, and

unit cell size. While variation in these parameters enables control
of the energy landscape (33), our experimental prototypes in this
study are characterized by l/L= 0.15, δ/L= 0.02, and a/L= 0.3
(with L= 27 mm). We find that such unit cells are monostable if
free-standing but bistable when tessellated (SI Appendix, Figs. S6
and S7). More specifically, while a free-standing unit cell exhibits
a single equilibrium in the undeformed ground state (Fig. 2D),
our simulations indicate a bistable behavior for the 3× 3 tessel-
lation, as the load vanishes in the expanded state at an applied
displacement of ca. 22 mm (Fig. 2E and SI Appendix, Figs. S4–
S6; note that experiments record a small positive force in that
state, which is attributed to friction in the clamps and the resolu-
tion of the load cell). Therefore, as in classical phase transitions
(34), the overall sample size of our multistable metamaterials
and the particular boundary conditions have an essential impact
on the (multi)stability of the network (here demonstrated by the
influence of the number of columns and rows per sample; SI
Appendix, Fig. S8).

Finally, in addition to free surfaces, the introduction of zeroth-
order lattice defects in the form of isolated point defects (mod-
ified unit cells) affects the stability as well as the domain nucle-
ation and the domain wall migration within samples (Fig. 2)—the
latter being reminiscent of Zener drag on domain walls by point
defects (35). As shown in Fig. 1, all such architectural features
can be exploited to guide transition fronts of complex shapes
and paths.

Continuum Mechanical Model
Having demonstrated the fundamental concept of transition
fronts in multistable structural networks (Fig. 1), we introduce a
continuum model to describe and efficiently simulate the domain
formation and growth processes. The model will be used for the
exploration of the design space of 1D, 2D, and 3D transition
waves with and without defects.

Leveraging the analogy to solid–solid phase transitions (20,
36, 37), we borrow from continuum mechanics to describe
the observed domain kinetics by a simple analytical model,
based on the observations that 1) each unit cell has two

Transition front

Defects

Domain wall

0.125 s

1.118 s

0.275 s

1.268 s

Fig. 1. Upon initiation by an impulse (orange arrow), a transition front propagates through a 2D periodic multistable network, transforming unit cells from
an open (strained) to a closed (unstrained) state as the domain wall passes by. Lattice defects and boundaries can be used effectively to predicatively guide
the wave in the laser-cut polymer sheet (the right boundary acts as a rigid wall here).
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Fig. 2. Unit cell geometry, tessellation, and response. (A) Geometric param-
eters defining the unit cell, which consists of four triangular building
blocks (material is gray, voids are white). (B) Snapshots of an individual
unit cell in the undeformed configuration and loaded by an applied dis-
placement of 9.45 mm. Note that, since a single unit cell is monostable,
the structure returns to the undeformed configuration as soon as the
clamps used to stretch the structure are removed. (C) Snapshots of a 3× 3
unit cell tessellation in the undeformed configuration and in the stable
expanded configuration. Since the tessellation is multistable, it remains in
the expanded state when the clamps used to stretch it are removed. (Scale
bars for B and C, 10 mm.) (D and E) Load–displacement curves and associated
potential energy densities ψ (defined by first fitting a fifth-degree polyno-
mial to the measured force–displacement data and then integrating) for (D)
a single unit cell and (E) a 3× 3 tessellation. Both experimental (continuous
line) and finite element results are shown.

energy-minimizing strain states, 2) inertial effects of the thin
structure and ground friction play a negligible role, and 3) the
lossy base material leads to viscous dissipation during deforma-
tion. As in classical homogenization, we consider a separation
of scales between the unit cell size L and the overall sample
dimensions, so that the sample deformation can be described
by a continuous displacement field u(x, t) at a location x at
time t . Assuming linearized kinematics, the strain tensor fol-
lows as ε= sym(∇u). Acknowledging that the bistability is linked
to volumetric straining (in d dimensions), we decompose the
strains into the scalar volumetric strain θ= tr ε/d and the devia-
toric (volume-preserving) strain tensor e = ε− θI. Based on this
kinematic description and the above constitutive observations,
we postulate an isotropic elastic energy density W (ε) =ψ(θ) +
µ ε · ε, where ψ(·) denotes the bistable energy landscape identi-
fied from the volumetric straining of the unit cell (SI Appendix,
Fig. S9), and µ> 0 acts as an effective shear modulus penalizing
strain variations between unit cells (hence contributing energy in
the interfaces between domains). ψ is chosen as a quartic poly-
nomial to approximate the bistable energy obtained from finite
element analysis (FEA) and calibrated by experiments, whereas
µ is identified by homogenization of the discrete unit cell energy
(SI Appendix, section 3).

Following the Coleman–Noll procedure of continuum me-
chanics, this energy density defines the elastic stress tensor
as σe = ∂W /∂ε. To account for material-intrinsic damping,
we decompose the total stress tensor into elastic and viscous
contributions, that is,

σ=σe +σv =
∂W

∂ε
+ η ε̇= η ε̇+

ψ′(θ)

d
I +µ e, [1]

where η > 0 represents a Newtonian viscosity, and dots denote
partial derivatives with respect to time. The point-wise equation
of motion for the mechanical system, linear momentum balance
in the absence of inertial effects and body forces (gravity acting
perpendicular to the plane), becomes

∇·σ= 0 ⇔ η∇· ε̇+
ψ′′(θ)

d2
∇θ+µ∇· e = 0. [2]

When discreteness effects can be neglected, Eq. 2 describes the
mechanics of the multistable network at the continuum level (in
principle, in arbitrary dimensions d), which is solved numeri-
cally for the displacement field u(x, t), using a finite element
spatial discretization and implicit time integration. Simulations
start from a fully stretched equilibrium configuration and predict
the time evolution upon applied loading—leading to a transition
wave that reconfigures the structure into its collapsed equilib-
rium state. The only calibration parameter, η, is chosen by direct
comparison of transition wave speeds obtained from this contin-
uum model and experiments of uniaxial (1D) transition waves
(Fig. 3).

Uniaxial Transition Waves
Long and slender chains comprising 32× 2 unit cells are ini-
tialized in their stretched equilibrium state (Fig. 3A) and com-
pressed by a gradually increasing indenter force until a transition
wave is triggered and subsequently propagates through the chain
(Movie S2). The experimental snapshots in Fig. 3E confirm that
a phase boundary propagates through the 1D body, gradually
transforming unit cells from the open (high-energy) to the closed
(low-energy) equilibrium state. To quantify this transition, we
use the relative change in area,

∆A=

∣∣∣∣ AA0

∣∣∣∣ , [3]

as a continuous metric for phase identification (with A and
A0 denoting the measured current and initial unit cell size,
respectively). The average wave speed measures 5.2 m/s, requir-
ing 0.166 s to traverse the entire chain (a constant speed is
reached within the first unit cell, after the decay of transient
effects due to the initiation). Interestingly, defective unit cells
(as seen, e.g., in the upper boundary region of Fig. 3A) show
a vanishing impact on the propagating transition wave, demon-
strating the robustness of the system against fabrication-induced
imperfections.

Importantly, results obtained from describing the 1D chain
dynamics by the above continuum model (Fig. 3 G and H) reveal
convincing agreement with experiments, for example, comparing
the measured and simulated wave profiles at time stamps 0.036,
0.094, 0.134, and at 0.166 s, confirming the applicability of the
chosen linear kinetics and of the continuum description (Movie
S2). Simulations yield a constant wave speed (and hence constant
slope in the x–t diagram, Fig. 3H) after the decay of tran-
sient effects, while disturbances in experimental data (Fig. 3G)
are attributed to fabrication imperfections and unavoidable fric-
tional losses. It is remarkable that the wave speed shows little
dependence of the triggering impulse (as long as it is suffi-
cient to induce the transition front). Similar to grounded 1D
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Fig. 3. The 1D transition waves. (A and B) Tessellations of bistable unit cells in their (A) open and (B) closed equilibrium states. (Scale bars, 20 mm.) (C
and D) A color map shows the relative change in unit cell area, here indicating closed as blue and open as yellow. (E) Upon initiation from the left, a 1D
transition wave travels through the structure, whose (F) x–t diagram confirms the approximately constant wave speed. (G) The transition front motion is
reproduced by the continuum model in agreement with the experiment, also seen in (H) the x–t diagram.

chains (19), the constant speed is the result of a balance between
energy release from transforming unit cells, on the one hand, and
energy consumption due to viscous losses and kinetic energy of
the growing tail end of the chain undergoing rigid-body motion,
on the other hand (the latter being of minor importance here due
to negligible inertial effects).

Controlling Transition Waves by Defects in Two
Dimensions
Assembling unit cells into multistable 2D structures adds more
than an additional dimension: Analogous to domain wall inter-
actions with lattice defects in crystalline solids, the introduction
of point and line defects in two dimensions provides opportuni-
ties for complex transition front guidance (SI Appendix, Fig. S10).
Contrary to topological defects utilized to facilitate localized soft
modes in a structure (38, 39), we here introduce stiff defects
(akin to, e.g., precipitates or solute atoms in a crystal) that
locally interact with—and thereby pin or redirect—the propagat-
ing transition front (see SI Appendix, Fig. S10 for details of the
induced defects). Similarly, boundaries (such as stress-free sur-
faces; SI Appendix, Figs. S11 and S12) interact with the transition
front and locally alter the propagation speed, thus affecting the
front profile and shape.

Fig. 4 illustrates five examples of propagating transition fronts
(comparing experiments and simulations for each; Movie S3),

demonstrating the influence of defects and boundary condi-
tions on the path of the transition wave. When the 2D body is
indented symmetrically by a point load (Fig. 4A, row 1), a 1D
front propagates, here showing edge effects that arise from the
free boundaries and producing a convex shaped front. By con-
trast, when initiating the wave asymmetrically, for example, by an
eccentric point load (Fig. 4A, row 2), a wave is generated in the
transverse direction with a concave front, ultimately propagating
orthogonally to the direction of initiation.

Stiff point defects (namely, open unit cells of the same size
but constrained to not collapse under load) interact with prop-
agating transition fronts by local pinning in the bulk of the
structure. For example, when adding a defect at the center of
a symmetric structure, the transition front is locally deflected
and travels around the defect (Fig. 4A, row 4). If the sam-
ple is sufficiently small (Fig. 4A, row 3), the front may also
be fully arrested due to the large driving force required to
unpin the wave [akin to, e.g., the inverse scaling of the strength
of Zener pinning (35) with the distance between two defects].
Deliberately tailoring defect locations, in combination with free
boundaries, can hence be exploited to guide transition fronts
in a complex fashion. Repeating, for example, the scenario of
Fig. 4A, row 2, but with a point defect in the bottom right corner,
results in a transition front that propagates around the defect
(Fig. 4A, row 5).
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Fig. 4. The 2D transition waves. (A) Experimental observations of transition waves propagating through 2D structures (after initialization in the fully open
configuration, each transition wave is triggered by a point load applied by the black indenter). Waves are controlled by boundary conditions (e.g., boundary
application sites) as well as by defects (e.g., point defects realized by nontransforming open unit cells). Examples show free transition wave propagation
in two directions, wave pinning, wave deflection, and rotation. (B) Numerical results obtained from the continuum model are in good agreement with
experimental findings (differences stemming mainly from imperfections and size effects).

Fig. 4B summarizes analogous simulation results for those
five cases and demonstrates the power of the continuum
model toward predicting transition fronts. Of course, differences
between experiments and simulations are expected due to, for
example, fabrication imperfections, imperfect boundary condi-
tions, and size effects. Considering the relatively small size of
samples and the large ratio of unit cell to sample size (whereas
the model assumes a separation of scales), it is remarkable
that the simple model captures the qualitative transition front
behavior well—thus offering predictive support in the design of
tailored configurations for guided transition fronts.

Expansion of the Design Space
Having demonstrated the general feasibility of the approach and
the agreement between model predictions and measurements
through the above prototype experiments, we use the contin-
uum model (and its finite element implementation) to explore
the design space beyond the limitations of current fabrication
constraints (Movie S4).

We start by considering a slender structure with point defects
alternating on opposite surfaces (Fig. 5A). An impulse applied to

the right end of the sample (the left end is kept fixed) excites a
wave that propagates at constant speed and amplitude between
defects. However, the locally circular motion around each defect
collectively results in a snake-like motion of the overall structure,
suggesting opportunities for utilization in soft robotic motion.

Next, to achieve functional shape morphing, we combine mul-
tiple point defects with a more complex sample shape with inter-
nal and external free boundaries. Fig. 5B visualizes an example
whose defect and boundary arrangement leads to wave splitting
and merging as well as to overall shape changes, from a sit-
ting figure with a neutral face and hanging arms to a standing
one with a smiley face and upward arms. Once the transition
is initiated by an impulse at the bottom center, the front prop-
agates vertically and splits into three waves deforming the legs
and torso, then again splitting into three waves to deform the
arms, and, finally, reaching and reconfiguring the head shape and
facial expression (the redirection around the mouth being of sim-
ilar nature as the circular motion around point defects shown
previously).

Finally, we study a 3D architecture capable of supporting
transition waves, created by shaping 2D multistable sheets into
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Fig. 5. The 3D waves and expansion of the design space. (A) By combining the effects of point defects and free surfaces, a transition fronts is designed to
produce an alternating serpentine motion with potential for locomotion of soft robots. (B) Combining point defects with complex shapes having interior
and exterior surfaces adds functionality such as splitting and merging of waves, resulting in reconfigurable devices. (C) Forming a 2D multistable sheet into
a 3D structure: (i) hollow tube made of a multistable sheet; (ii) four different unit cell geometries produce four distinct energy landscapes, which correspond
to four different wave speeds; (iii) simulated wave propagation at different time steps; (iv and v) quantifying the wave speed along a tube made of five
sections with the above energy landscapes shows a wave that adjusts its speed in each section. The colormap shows the relative change in unit cell area;
see Eq. 3.

3D surfaces without altering the essential transition behavior
or kinetics discussed in two dimensions (2D). Fig. 5C shows
a reconfigurable circular pipe created by rolling a multistable
sheet (based on the unit cell of Fig. 3) into a hollow tube. To
control the wave speed along the tube, we divide it into five
sections and modify the unit cell geometry in each of those.
Remarkably, we find that the front seamlessly propagates from
section to section, rapidly changing its speed within approxi-
mately a single unit cell when entering a new section. This is
confirmed by the numerically measured speed profile (Fig. 5 C, v)
with velocities ranging from 1.8 m/s to 7.45 m/s (a difference
of > 300%).

Summary and Conclusion
To summarize, we have demonstrated, via a combination of
theory, simulations, and experiments, that periodically bistable
networks show structural phase transition fronts that propa-
gate with many of the characteristics classically known from
crystalline solids, including the interaction mechanisms with lat-
tice defects. Homogeneous networks resulted in constant-speed
transition fronts (emerging from the balance between energy dis-
sipation by damping and release of stored mechanical energy),

whereas the presence of defects was shown to redirect or pin
transition waves, as well as to split, delay, or merge propagating
wave fronts. Unlike their crystalline counterparts, the presented
structures allow for full control of the network architecture (and
an efficient performance prediction through the presented con-
tinuum mechanical model), and are thus amenable to tailored
wave motion and optimized reconfiguration kinetics. We further
note that the behavior of the networks is robust and mini-
mally affected by imperfections introduced during either fabri-
cation or testing, such as broken ligaments. Like all mechanical
analogs, the presented metamaterial features some but certainly
not all aspects of phase transformations in solids, excluding,
for example, statistical effects such as those arising from finite
temperature. Admittedly, transition waves in the shown exam-
ples are one-time effects without automatic resetting; however,
unlike in previous approaches (15, 18), each structural network
is easily reset by applying mechanical loads to expand all unit
cells—a task that can be realized, for example, using pneumatic
actuators.

The multistable structures presented here serve as representa-
tive examples of the more general concept of employing struc-
tural transition fronts for guided motion and reconfiguration
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in arbitrary dimensions and of arbitrary complexity. The same
principles (and the same model) apply to 3D unit cells,
which widens the untapped design space. Moreover, graded
networks of spatially changing unit cells promise local wave
speed modulation, which is of interest, for example, for mechani-
cal logic (15, 40, 41), 4D printing (29–31), and morphing surfaces
and reconfigurable devices (42–44). The simple yet powerful link
between multistable energy landscape and resulting wave speed
provides fruitful grounds to engage in extending concepts clas-
sically used for linear waves—such as transformation optics for
wave focusing (45, 46)—to the strongly nonlinear transition front
motion reported here.

Materials and Methods
Details of the materials and fabrication methods are summarized in SI
Appendix, section 1. The experimental procedures, including the uniaxial

tensile tests, microscopy, and analysis of planar waves, are described in

SI Appendix, section 2. FEA procedures, continuum model, and numerical
implementations are detailed in SI Appendix, section 3.

Data Availability
The data that support the findings of this study are openly
available in Figshare under https://doi.org/10.6084/m9.figshare.
10048724.
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